JPH02257045A - Method and device for measuring plated deposit of plated steel sheet and composition of plated film - Google Patents

Method and device for measuring plated deposit of plated steel sheet and composition of plated film

Info

Publication number
JPH02257045A
JPH02257045A JP7996489A JP7996489A JPH02257045A JP H02257045 A JPH02257045 A JP H02257045A JP 7996489 A JP7996489 A JP 7996489A JP 7996489 A JP7996489 A JP 7996489A JP H02257045 A JPH02257045 A JP H02257045A
Authority
JP
Japan
Prior art keywords
intensity
theoretical
rays
plated steel
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7996489A
Other languages
Japanese (ja)
Other versions
JPH07109406B2 (en
Inventor
Katsuyuki Nishifuji
西藤 勝之
Kiyotaka Imai
清隆 今井
Hiroharu Katou
宏晴 加藤
Tadaaki Hattori
服部 忠昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1079964A priority Critical patent/JPH07109406B2/en
Priority to US07/476,251 priority patent/US5081658A/en
Priority to CA002009698A priority patent/CA2009698C/en
Priority to EP90102910A priority patent/EP0389774B1/en
Priority to DE69026748T priority patent/DE69026748T2/en
Publication of JPH02257045A publication Critical patent/JPH02257045A/en
Publication of JPH07109406B2 publication Critical patent/JPH07109406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enhance measurement precision of both the plated deposit and composition of a plated film by making monochromatic X-rays incident on a standard sample and a material to be measured at the same angle of two kinds, calculating the intensity of fluorescent X-rays, utilizing a previously obtained theoretical expression in the same conditions and calculating the intensity of the theoretical X-rays. CONSTITUTION:When monochromatic X-rays of wavelengths lambda1, lambda2 are made incident into a plated steel sheet at the incident angles phi1, phi2, a theoretical calculation expression of the intensity of fluorescent X-rays in K-sequence of the aimed element for analysis in the measuring angles psi1, psi2 is obtained. Then a standard sample is utilized wherein both the plated deposit and the composition of a plated film are already known. The intensity of fluorescent X-rays is measured in the same conditions as the above-mentioned method. A conversion factor is obtained by which the measured value is converted into the theoretically calculated value on the basis of the theoretical expression. Then the intensity of fluorescent X-rays is measured in the same conditions for the plated steel plate to be measured. This measured intensity is converted into the theoretical intensity by utilizing the conversion factor. The theoretical intensity obtained by the theoretical calculation expression is most closely approached the converted theoretical intensity. The parameter in the theoretical calculation expression is made the plated deposit and the composition of the plated film of the material to be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、メッキ鋼板のメッキ(=1着量およびメッキ
被膜組成をオンラインで測定するメッキ鋼板のメッキ(
−1着量およびメッキ被膜組成の測定方法およびその測
定装置に係わり、特にメッキ被膜が下地金属と同じ成分
を含む場合の分析に有効なメッキ鋼板のメッキ付着量お
よびメッキ波膜組成の測定方法およびその測定装置に関
する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to the plating of a plated steel sheet (=1 coating amount and coating film composition are measured online).
-1 Method and apparatus for measuring coating weight and plating film composition, particularly effective for analysis when the plating film contains the same components as the underlying metal; Regarding the measuring device.

〔従来の技術〕[Conventional technology]

この種のメッキ鋼板のメッキ刊着量やメッキ波膜組成を
測定する場合、蛍光X線分析法が用いられている。この
蛍光X線分析法はZnメッキ鋼板やZn−Niメッキ鋼
板の如くメッキ被膜が下地金属を含まないものについて
はオンラインでメッキ471着量やメッキ被膜組成を測
定することが可能である。
Fluorescent X-ray analysis is used to measure the amount of plating deposited and the composition of the plating film on this type of plated steel sheet. This X-ray fluorescence analysis method can measure the amount of plating 471 and the composition of the plating film on-line for materials such as Zn-plated steel sheets and Zn-Ni-plated steel sheets where the plating film does not contain a base metal.

しかし、近年、zn−re合金メッキ鋼板が耐食性、加
工性等で優れた特性を有することが注目されてきている
が、蛍光X線分析法ではメッキ彼膜中のFeによる蛍光
X線と下地のFeによる蛍光X線との区別がつけ難く、
ひいては蛍光X線強度とメッキ付着量、メッキ被膜組成
との関係を対応づけることが困難であり、オンラインで
分析することか難しい。
However, in recent years, ZN-RE alloy plated steel sheets have attracted attention for their excellent properties such as corrosion resistance and workability. Difficult to distinguish from fluorescent X-rays caused by Fe,
Furthermore, it is difficult to correlate the relationship between the fluorescent X-ray intensity, the amount of plating deposited, and the composition of the plating film, and it is difficult to analyze it online.

そこで、従来1以上のような不具合を解決する方法とし
て、次の2つの分析法が提案されている。
Therefore, the following two analysis methods have been proposed as methods for solving the above problems.

その1つは、Zn−Fe合金メッキ鋼板」二に多数の波
長をもった。いわゆる白色X線を照射した後、そのメッ
キ鋼板の下地金属からの蛍光X線がX線侵入深さの点か
ら実質的に検出されない第1の/l1ll定角と、下地
金属からの蛍光X線か検出できる第2の測定角とにおい
てそれぞれI(系列の蛍光X線の強度を測定し、この両
側定値に基づいてメッキ付fHmおよびメッキ被膜組成
を求めるオンライン分析法である(特開昭58−223
047号公報)。
One of them is a Zn-Fe alloy plated steel plate, which has a large number of wavelengths. After irradiating so-called white X-rays, the first /l1ll constant angle at which fluorescent X-rays from the underlying metal of the plated steel plate are not substantially detected from the point of the X-ray penetration depth, and the fluorescent X-rays from the underlying metal. This is an on-line analysis method in which the intensity of fluorescent X-rays of the series I is measured at a second measurement angle that can detect the angle of 223
Publication No. 047).

他の1つは、Zn−Fe合金メッキ鋼板において、被膜
による吸収を利用して下地のα−Feの回折X線からメ
ッキ付着量を求め、さらにメッキ肢j摸中のZn−Fe
合金J・IJおよびη相から選ばれた1つ以」二の相の
回折X線強度からメッキ被膜組成を求める方法である(
特開昭GO−169553号公報)。
The other method is to use absorption by the film to determine the coating amount from the diffraction
This is a method for determining the plating film composition from the diffraction X-ray intensity of one or two phases selected from alloy J, IJ and η phases.
(Japanese Patent Application Laid-open No. Sho GO-169553).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、以上のように2つの#IIJ定角を用いた蛍光
X線分析法は、入射X線として白色X線を用いているた
めに次のような問題が指摘されている。
However, since the fluorescence X-ray analysis method using two #IIJ constant angles uses white X-rays as incident X-rays as described above, the following problems have been pointed out.

先ず、前者の蛍光X線分析法では、 ■−1白色X線中の高エネルギーのX線は、メッキ被膜
中での減衰が小さいために侵入深さか大きいといった性
質を有しており、そのため下地金属からの蛍光X線が検
出されない第1の測定角は5°以内と非常に小さくする
必要があるので、鋼板面の」二下動、つまりバタツキに
よる測定距離の変動および測定角の変動の影響を受けや
すい問題がある。
First, in the former fluorescent X-ray analysis method, ■-1 The high-energy X-rays in the white X-rays have a property of having a large penetration depth because their attenuation in the plating film is small. The first measurement angle at which fluorescent X-rays from the metal are not detected needs to be very small, within 5 degrees, so the influence of fluctuations in the measurement distance and measurement angle due to downward movement, or flapping, of the steel plate surface. There are some issues that are easy to deal with.

■−2また、メッキ(=1着量及びメッキ被膜組成は、
メッキ鋼板に実際にX線を入射して得られる実411強
度と予め周知の理論強度計算式に与えて得られる理論強
度とを比較演算して求めることが考えられるが、理論強
度の計算の際、X線管の経時変化などによる入射X線の
スペクトル変動の影響を受けるので測定精度が低下する
問題がある。
■-2 Also, plating (=1 coat amount and plating film composition is
It is conceivable to calculate the actual 411 strength obtained by actually injecting X-rays into the plated steel plate and the theoretical strength obtained by applying it to a well-known theoretical strength calculation formula in advance, but when calculating the theoretical strength, However, there is a problem in that the measurement accuracy decreases because it is affected by spectral fluctuations of incident X-rays due to changes in the X-ray tube over time.

■−3また、分析値を求めるに際して測定された実71
11蛍光X線強度と、周知の理論強度計算式から計算さ
れる理論蛍光X線強度との比較演算により分析値を求め
る場合、理論強度の計算において波長積分が必要なため
に計算時間が長くなり、ひいては/l111定時間の増
加は否めない。
■-3 In addition, the actual 71 that was measured when obtaining the analysis value
11 When calculating the analytical value by comparing the fluorescent X-ray intensity with the theoretical fluorescent X-ray intensity calculated from a well-known theoretical intensity calculation formula, the calculation time becomes long because wavelength integration is required in calculating the theoretical intensity. Therefore, the increase in /l111 constant time cannot be denied.

■−4さらに、前記■−2で指摘した問題を回避するた
めに、校正曲線を用いる方法があるが、この方法はマト
リクス効果を考慮したモデルの作成に20〜30種類の
標準試料が必要となり、非常に煩雑な分析法とならざる
を得ない。
■-4 Furthermore, in order to avoid the problem pointed out in ■-2 above, there is a method that uses a calibration curve, but this method requires 20 to 30 types of standard samples to create a model that takes into account matrix effects. However, this is a very complicated analysis method.

一方、後者の回折X線による分析法では、■−1下地の
α−Feの回折X線強度は、メッキ付着量だけでなく、
鋼板の鋼種や板厚、メッキ鋼板の製造条件等により異な
る集合組織やメッキ被膜組成に依存し、測定精度の面で
問題がある。
On the other hand, in the latter analysis method using diffraction X-rays, the diffraction X-ray intensity of α-Fe on the ■-1 base is determined not only by the amount of plating deposited, but also by
There is a problem in measurement accuracy because it depends on the texture and plating coating composition, which vary depending on the steel type and thickness of the steel plate, the manufacturing conditions of the plated steel plate, etc.

■−2一方、合金相の回折X線強度はメッキ条件により
異なり、また溶融メッキ材と電気メッキ材では合金の構
造や組成が異なり、この場合にも同様に十分な測定精度
が得られない。
(2) On the other hand, the diffraction X-ray intensity of the alloy phase varies depending on the plating conditions, and the structure and composition of the alloy differ between hot-dip plated materials and electroplated materials, and in this case as well, sufficient measurement accuracy cannot be obtained.

本発明は以上のような問題を解決するためになされたも
ので、メッキ鋼板表面の変動の影響を低減化でき、かつ
、分析精度の向上および分析時間の短縮化が図れ、少な
い標準試料を用いて確実にメッキ付着量およびメッキ被
膜組成を取得しうるメッキ鋼板のメッキ付着量およびメ
ッキ被膜組成の測定方法を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and it is possible to reduce the influence of fluctuations on the surface of a plated steel plate, improve analysis accuracy, shorten analysis time, and use a small number of standard samples. It is an object of the present invention to provide a method for measuring the amount of plating and the composition of the plating film on a plated steel sheet, by which the amount of plating and the composition of the plating film can be reliably obtained.

また、他の発明であるメッキ鋼板のメッキ付着量および
メッキ被膜組成の」す定装置の目的とするところは、簡
単な構成を用いてオンラインでメッキ付着量およびメッ
キ被膜組成を精度良く測定することにある。
In addition, the purpose of another invention, a device for determining the amount of plating and the composition of the plating film on a plated steel sheet, is to accurately measure the amount of plating and the composition of the plating film online using a simple configuration. It is in.

〔課題を解決するための手段および作用〕本発明方法は
」二記課題を解決するために、メッキ鋼板に所定の入射
角で単色のX線を入射した場合に得られる。2種類の所
定の測定角での分析口的元素のに系列の蛍光X線強度又
は強度比の理論計算式のほか、メッキ伺着量およびメッ
キ被膜組成を既知とする標準試料を用いて前記理論計算
式を求めたと同じ条件で蛍光X線強度又は強度比を実測
し、この実測値と前記理論計算式とに基づいて実測値を
理論計算値に換算するための変換係数を予め求めておく
[Means and effects for solving the problems] In order to solve the second problem, the method of the present invention is obtained when monochromatic X-rays are incident on a plated steel plate at a predetermined angle of incidence. In addition to the theoretical calculation formula for the fluorescent X-ray intensity or intensity ratio of the two series of analytical elements at two predetermined measurement angles, the above theory can be calculated using a standard sample for which the amount of deposited plating and the composition of the plating film are known. The fluorescent X-ray intensity or intensity ratio is actually measured under the same conditions as those used to determine the calculation formula, and a conversion coefficient for converting the actual measurement value into the theoretical calculation value is determined in advance based on the actual measurement value and the theoretical calculation formula.

以上のようにして理論計算式および変換係数を求めた後
、メッキ付着量およびメッキ被膜組成を未知とする被測
定メッキ鋼板に対し、前記理論計算式を求めたのと同じ
測定条件を用、いて当該被測定メッキ鋼板から得られる
蛍光X線強度又は強度比を測定し、その後、この蛍光X
線強度又は強度比を変換係数を用いて理論強度又は強度
比に変換する。そして、前記理論計算式より得られる理
論強度又は強度比を、前記変換された理論強度又は強度
比に最も近づける、理論計算式中のパラメーターである
メッキ付着間およびメッキ被H#1成をもって前記被測
定メッキ鋼板のメッキ付着量およびメッキ被膜組成とす
るものである。
After determining the theoretical calculation formula and conversion coefficient as described above, use the same measurement conditions as those used to determine the theoretical calculation formula for a plated steel sheet to be measured whose coating weight and coating film composition are unknown. The fluorescent X-ray intensity or intensity ratio obtained from the plated steel plate to be measured is measured, and then the fluorescent
Convert the linear intensity or intensity ratio to a theoretical intensity or intensity ratio using a conversion coefficient. Then, the theoretical strength or strength ratio obtained from the theoretical calculation formula is made closest to the converted theoretical strength or strength ratio by using the plating adhesion distance and plated H#1 composition, which are the parameters in the theoretical calculation formula. The amount of plating deposited on the plated steel sheet and the composition of the plating film are measured.

また、他の発明方法においては、予めメッキ鋼板に所定
の入射角で単色のX線を入射した場合に得られる、2種
類の所定の測定角での分析]」重元素のに系列の蛍光X
線強度又は強度比の検量線をメッキ付着量およびメッキ
被膜組成をパラメータとして求めておき、しかる後、メ
ッキ(=1着量およびメッキ被膜組成を未知とするit
 all+定メッキメッキ鋼板、前記検量線を求めたの
と同じ測定条件で当該被測定メッキ鋼板から得られる蛍
光X線強度又は強度比を測定する。さらに、検量線より
得られる蛍光X線強度又は強度比を、前記測定された蛍
光X線強度又は強度比に最も近づける、検量線中のパラ
メータ〜であるメッキ付着mおよびメッキ被膜組成をも
って前記被測定鋼板のメッキ付着量およびメッキ被膜組
成とするものである。
In addition, in another method of the invention, two types of analysis at predetermined measurement angles are obtained when monochromatic X-rays are incident on a plated steel plate at a predetermined angle of incidence.
A calibration curve of line strength or intensity ratio is determined using the plating amount and plating film composition as parameters, and then, plating (= 1 plating amount and plating film composition are unknown).
The fluorescent X-ray intensity or intensity ratio obtained from the plated steel plate to be measured is measured under the same measurement conditions as those used to obtain the calibration curve. Further, the measurement target is determined using the plating adhesion m and the plating film composition, which are the parameters ~ in the calibration curve that bring the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve closest to the measured fluorescent X-ray intensity or intensity ratio. The amount of plating deposited on the steel plate and the composition of the plating film.

本発明装置においては、X線を発生するX線発生部と、
このX線発生部から発生ずるX線を単色化するモノクロ
メータと、X線のパスラインを決めメッキ鋼板に所定の
入射角で投射し所定の受光角で受光するスリット系と、
メッキ鋼板から発生する分析[1的元素のに系列蛍光X
線強度を異なる角度で測定する2個の検出器と、これら
の測定系で得られるべき理論強度又は強度比の理論計算
式を記憶する手段と、実際に測定された蛍光X線強度又
は強度比を理論強度又は強度比に変換する手段と、この
変換された理論強度又は強度比と理論計算式より得られ
る理論強度又は強度比の差を最小にするメッキ付着量お
よびメッキ被膜組成を求める手段とを備えたものである
In the device of the present invention, an X-ray generating section that generates X-rays;
A monochromator that monochromates the X-rays generated from this X-ray generator, a slit system that determines the path line of the X-rays, projects them onto the plated steel plate at a predetermined incident angle, and receives the X-rays at a predetermined receiving angle.
Analysis generated from plated steel sheets [Series fluorescence X of one element]
Two detectors that measure line intensities at different angles, means for storing theoretical calculation formulas for the theoretical intensities or intensity ratios that should be obtained with these measurement systems, and actually measured fluorescent X-ray intensities or intensity ratios. means for converting into theoretical strength or strength ratio, and means for determining the plating coating amount and plating film composition that minimize the difference between the converted theoretical strength or strength ratio and the theoretical strength or strength ratio obtained from the theoretical calculation formula. It is equipped with the following.

従って、このような手段を講じたことにより、X線発生
部から発生されたX線をスリットを通してモノクロメー
タで単色化し所定の入射角で被測定メッキ鋼板へ入射し
、これによって被測定メッキ鋼板から発生する分析i」
重元素のに系列蛍光X線強度を2個の検出器を用いて異
なる所定の受光角で検出する。
Therefore, by taking such measures, the X-rays generated from the X-ray generating section pass through the slit, are made monochromatic by a monochromator, and are incident on the plated steel plate to be measured at a predetermined incident angle, thereby allowing the Analysis i that occurs
The series fluorescent X-ray intensity of heavy elements is detected using two detectors at different predetermined acceptance angles.

そして、この2個の検出器で測定した蛍光X線強度又は
強度比を理論強度又は強度比を変換し、またメッキ付着
量およびメッキ被膜組成を可変パラメータとして理論計
算式により理論強度又は強度比を計算し、この計算値が
前記変換値に最も近づくパラメータから被測定メッキ鋼
板のメッキ付着mおよびメッキ被膜組成を得るものであ
る。
Then, the fluorescent X-ray intensity or intensity ratio measured by these two detectors is converted into the theoretical intensity or intensity ratio, and the theoretical intensity or intensity ratio is calculated using a theoretical calculation formula using the plating amount and the plating film composition as variable parameters. The plating adhesion m and the plating film composition of the plated steel sheet to be measured are obtained from the parameters whose calculated values are closest to the converted values.

また、他の本発明装置においては、X線発生部、モノク
ロメータ、スリット系および2個の検出器等からなる測
定系のほか、これらの測定系で得られるべき理論強度又
は強度比の検量線を記憶する記憶手段と、実際に測定さ
れる蛍光X線強度又は強度比と検量線より得られる蛍光
X線強度又は強度比の差を最小にするメッキ付着量およ
びメッキ被膜組成を求める手段とを備えたものである。
In addition, in other apparatuses of the present invention, in addition to a measurement system consisting of an X-ray generator, a monochromator, a slit system, two detectors, etc., a calibration curve of the theoretical intensity or intensity ratio that should be obtained with these measurement systems is provided. and a means for determining the plating coating amount and plating film composition that minimize the difference between the actually measured fluorescent X-ray intensity or intensity ratio and the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve. It is prepared.

この装置では、理論計算式に代えて検量線を用いて上記
とほぼ同一の信号処理手段により、被Al11定メッキ
鋼板のメッキ付着量およびメッキ被膜組成を/11り定
する。
In this apparatus, the amount of coating and the composition of the plating film of the steel plate to be plated with Al11 are determined by using a calibration curve in place of the theoretical calculation formula and using a signal processing means substantially the same as that described above.

〔実施例〕〔Example〕

以下、本発明の詳細な説明するに先立ち、オンライン測
定に適したものとするため、次のような条件を満たす測
定系で構成するものとする。
Hereinafter, before a detailed explanation of the present invention is given, it is assumed that the present invention is constructed with a measurement system that satisfies the following conditions in order to be suitable for online measurement.

(イ) 入射X!!ilは市販のX線管を用いて十分な
蛍光X線強度が得られること。
(a) Incident X! ! il must be able to obtain sufficient fluorescence X-ray intensity using a commercially available X-ray tube.

(ロ) X線入射角、蛍光X線取出角等の測定角はオン
ラインで実現可能な/測定角、つまり5°以上とするこ
と。
(b) Measurement angles such as the X-ray incident angle and fluorescent X-ray extraction angle must be achievable online, that is, 5 degrees or more.

また、メッキ鋼板から発生する蛍光X線の強度は放射線
検出器で測定するが、望ましくは牛導体検出器を用いて
Δ11定する。
Further, the intensity of fluorescent X-rays generated from the plated steel plate is measured with a radiation detector, and preferably, Δ11 is determined using a bull conductor detector.

以下、Zn−Fe合金メッキ鋼板のメッキ付着量および
メッキ被膜組成(Fe%)を測定する方法の実施例につ
いて説明する。
Hereinafter, an example of a method for measuring the coating amount and coating film composition (Fe%) of a Zn-Fe alloy plated steel sheet will be described.

すなわち、この測定方法は、第1図および第2図に示す
如く被測定メッキ鋼板11」二に単色化処理した波長λ
1.λ2のX線を入射角φ1.φ2で照射し、このとき
被測定メッキ鋼板11から発生するFeka線の強度お
よびZnka線の強度を受光角ψ1.ψ2で測定する。
That is, in this measurement method, as shown in FIG. 1 and FIG.
1. The X-ray of λ2 is incident at an angle of incidence φ1. φ2, and the intensity of the Feka line and the Znka line generated from the plated steel plate 11 to be measured at this time are determined at the receiving angle ψ1. Measure at ψ2.

そこで、この測定角(φ1.ψ1)の条件下で測定した
Feka線強度、Zn1ca線強度をそれぞれI 、I
 とPe   Zn し、また測定角(φ2.ψ2)の条件下でΔ1り定した
Fcka線強度、Znka線強度をI2.I2Pc  
   Zn とし、 X】=I /I 、Xl−Ii、。/Iン。なる演算F
e   Zn を行う(ステップS1.)。さらに、このXlX2を用
いて理論値Y1.Y2に変換する。ここで、Xl、Xl
を理論値Y1.Y2に変換するに際し、理論値とはホリ
定条件と同じX線波長、X線強度、幾何学的条件で測定
した場合に得られる蛍光X線強度を、メッキ鋼板のメッ
キ付着量およびメッキ被膜組成をパラメータとして理論
計算式により計算し、この値に基づいて前記X 1 、
 X 2に対応する値として求めたものである。実際の
測定値は検出器の感度特性、スリット系の影響等により
これらの理論強度とは異なった値となる。
Therefore, the Feka line intensity and Zn1ca line intensity measured under the conditions of this measurement angle (φ1.ψ1) are I and I, respectively.
and Pe Zn, and the Fcka line intensities and Znka line intensities determined by Δ1 under the conditions of the measurement angle (φ2.ψ2) are I2. I2Pc
Let Zn be X]=I/I, Xl-Ii,. /In. The operation F
e Zn is performed (step S1.). Furthermore, using this XlX2, the theoretical value Y1. Convert to Y2. Here, Xl, Xl
is the theoretical value Y1. When converting to Y2, the theoretical value is the fluorescent X-ray intensity obtained when measured under the same X-ray wavelength, X-ray intensity, and geometric conditions as the Hori constant conditions, and the amount of plating on the plated steel sheet and the plating film composition. is calculated by a theoretical calculation formula using as a parameter, and based on this value, the above-mentioned
This is obtained as a value corresponding to X2. Actual measured values differ from these theoretical intensities due to the sensitivity characteristics of the detector, the influence of the slit system, etc.

そこで、本発明方法では、以下の換算式を用いて実測値
X1.Xlを理論値Y、、Y2に変換する(ステップS
2)。
Therefore, in the method of the present invention, the actual measured value X1. Convert Xl to theoretical value Y,, Y2 (step S
2).

Yl−a1X1+b1 Y2− a 2 Xl +b 2 なお、」−式においてal、a2 、l)] 、  b
2は変換係数であって、これはメッキ付着量およびメ]
5 ツキ被膜組成を既知とする予め標準試料を用い、前記理
論計算式を求めたのと同じ条件で蛍光X線強度又は強度
比を実測し、前記理論計算式を用いて実測値を理論強度
又は強度比に換算することにより求める。すなわち、標
準試料のメッキ付着量およびメッキ被膜組成を用いて理
論計算式により計算した値をY、、Y2とし、実測蛍光
X線強度から計算したXl、Xlとの間に上記式が成立
するように2回帰分析等によって変換係数air82、
bl、b2を予め求めておく。
Yl-a1X1+b1 Y2- a 2
2 is a conversion coefficient, which is the amount of plating deposited and
5 Using a standard sample whose coating film composition is known in advance, measure the fluorescent X-ray intensity or intensity ratio under the same conditions as the one used to obtain the theoretical calculation formula, and use the theoretical calculation formula to convert the actual value into the theoretical intensity or intensity ratio. It is determined by converting it into an intensity ratio. In other words, the values calculated using the theoretical calculation formula using the plating deposition amount and plating film composition of the standard sample are Y, Y2, and the above formula is established between Xl and Xl calculated from the actually measured fluorescent X-ray intensity. The conversion coefficient air82 is calculated by 2 regression analysis etc.
bl and b2 are determined in advance.

このように理論計算式を使用し、実際の測定系との差を
標準試料を使用して構成する方法を採用したので、少な
い数の標準試料により、メッキ付着量およびメッキ被膜
組成と蛍光X線強度又は強度比の関係式を求めることが
できる。
In this way, we used a theoretical calculation formula and adopted a method of configuring the differences with the actual measurement system using standard samples, so we could calculate the amount of plating, the composition of the plating film, and the fluorescence X-rays using a small number of standard samples. A relational expression of intensity or intensity ratio can be obtained.

次に、ステップS2において理論値Y、、y2を求めた
ならば、引き続き、メッキ付’fJ ffiおよびFe
%を可変したパラメータP k(k−1)を用いて、既
存の蛍光X線強度計算式から上記Y1.Y2に対応する
Y1’、Y2を求める(ステップS3゜S4)。しかる
後、ステップS5に移行し、ここでは、 なる演算を行い、さらにパラメータPkを変えて同様な
演算を行い(ステップS6.S4.S5)、これら演算
値の中で最も小さくなる演算値のときのパラメータの値
を決定しくステップS7)、この決定パラメータ値をも
ってメッキ(=j前着間よびFe%とすることにより、
被測定メッキ鋼板11のメッキ付着量およびメッキ被覆
組成を得るものである。
Next, after calculating the theoretical values Y,, y2 in step S2, the plated 'fJ ffi and Fe
The above Y1. Y1' and Y2 corresponding to Y2 are determined (steps S3 and S4). After that, the process moves to step S5, where the following calculation is performed, and similar calculations are performed by changing the parameter Pk (steps S6, S4, and S5), and when the calculated value is the smallest among these calculated values, Determine the value of the parameter (Step S7), and use this determined parameter value to determine plating (=j between front coat and Fe%,
This is to obtain the coating amount and coating composition of the plated steel plate 11 to be measured.

次に、以上のような測定方法を用いたときの分析結果に
ついて具体的に説明する。今、Xlの測定条件として例
えば入射X線の波長λ1=1.26人、4111定角(
φ1.ψ、)=(15゜45°)とし、Xlの測定条件
として例えば入射X線の波長λ2=0.71人、測定角
(φ2゜ψ2)=(75°、60°)とする。なお、X
lに対してはタングステンターゲットを持つX線管を、
Xlに対してはモリブデンターゲットを持つX線管を用
いれば、波長λ1.λ2はそれぞれWLβ線、M、)l
cα線近傍の波長となり、前述した条件(イ)を満足さ
せることができる。
Next, analysis results obtained using the above measurement method will be specifically explained. Now, the measurement conditions for Xl are, for example, the wavelength of incident X-ray λ1 = 1.26 people, 4111 constant angle (
φ1. ψ, ) = (15° 45°), and the measurement conditions for Xl are, for example, the wavelength λ2 of the incident X-ray = 0.71 persons, and the measurement angle (φ2° ψ2) = (75°, 60°). In addition, X
For l, an X-ray tube with a tungsten target,
For Xl, if an X-ray tube with a molybdenum target is used, the wavelength λ1. λ2 is the WLβ line, M, )l, respectively
The wavelength is near the cα line, and the above-mentioned condition (a) can be satisfied.

一方、2つの測定角のうち低角度側の測定角(φ1.ψ
1)は、メッキ被膜に対する減衰が大きく侵入深さが小
さい波長λ]=1.26人を用いているために(15°
 45°)となり、前述した条件(ロ)を十分に満足す
る測定角とすることができ、その結果、メッキ鋼板11
面のバタツキによる測定距離変動およびmll定角度変
動の影響を小さくできる。
On the other hand, of the two measurement angles, the lower measurement angle (φ1.ψ
1) is because the wavelength λ] = 1.26 is used, which has a large attenuation to the plating film and a small penetration depth.
45°), which can be a measurement angle that fully satisfies the above-mentioned condition (b), and as a result, the plated steel plate 11
The influence of measurement distance fluctuations and mll constant angle fluctuations due to surface flapping can be reduced.

なお、XlとXlで、メッキ付着量およびFa%に対す
る特性に差があるほど精度は向上するので、λ2はλ1
に比べてメッキ被膜に対する減衰が小さい波長とし、測
定角(φ2.ψ2)も(φ1.ψ1)に比べて大きい角
度とし、蛍光X線を検出できる最大深さ、つまり分析深
さを大きくした。さらに、測定距離変動を小さくするた
めには、入射X線のビーム径を小さくし、かつ、検出器
の視野を大きくし、測定距離変動に拘らず入射X線を照
射している全ての部分からの蛍光X線を検出することが
望ましい。そこで、入射側はφ2、Om+nのピンホー
ルコリメータ、受光側は検出器の窓を開放とすることに
より実現できる。
Note that the accuracy improves as there is a difference between Xl and Xl in the characteristics with respect to the amount of plating and Fa%, so λ2 is equal to λ1.
The wavelength was set to have a smaller attenuation to the plating film compared to , the measurement angle (φ2.ψ2) was also set to a larger angle compared to (φ1.ψ1), and the maximum depth at which fluorescent X-rays could be detected, that is, the analysis depth was increased. Furthermore, in order to reduce measurement distance fluctuations, the beam diameter of the incident It is desirable to detect fluorescent X-rays. Therefore, this can be realized by using a pinhole collimator of φ2 and Om+n on the incident side and opening the window of the detector on the light receiving side.

さらに、もう1つの本発明方法としては、多数の標準試
料を使用することが可能な場合、前記理論計算式に代え
て、標準試料を使用してメッキ付着量およびメッキ被膜
組成と蛍光X線強度又は強度比の関係式すなわち検量線
を用いて、被測定メッキ鋼板11のメッキ付着量および
メッキ被膜組成を*めてもよい。
Furthermore, as another method of the present invention, when it is possible to use a large number of standard samples, instead of using the above-mentioned theoretical calculation formula, the standard sample is used to determine the amount of plating, the composition of the plating film, and the fluorescent X-ray intensity. Alternatively, the amount of plating and the composition of the plating film on the plated steel sheet 11 to be measured may be estimated using a relational expression of the intensity ratio, that is, a calibration curve.

次に、本発明装置の実施例について第3図を参照して説
明する。同図において11は被測定メッキ鋼板であって
、このメッキ鋼板11の」二部に測定系12が設置され
ている。この測定系12には所定の方向にX線を発生ず
る2個のX線管2131と、このX線管21.31から
スリットとじて機能するピンホールコリメータ22.3
2を介して入射される白色X線を単色化し、かつ、この
単色化処理したX線を所望の入射角度で被測定メ]9 ツキ鋼板11へ入射するモノクロメータ23゜33と、
被測定メッキ鋼板]1から得られた蛍光X線強度を幅可
変の平板スリット24.34を介して41す定する検出
器25.35とによって構成されている。26.36は
ピンホールコリメータである。また、これらX線管21
,31.モノクロメータ23.33、スリット22,2
4,32゜34、検出器25.35等は駆動制御部13
からの駆動制御信号で位置調整可能となっている。
Next, an embodiment of the device of the present invention will be described with reference to FIG. In the figure, reference numeral 11 denotes a plated steel plate to be measured, and a measurement system 12 is installed in the second part of the plated steel plate 11. This measurement system 12 includes two X-ray tubes 2131 that generate X-rays in a predetermined direction, and a pinhole collimator 22.3 that functions as a slit from the X-ray tubes 21.31.
A monochromator 23゜33 that monochromates the white X-rays incident through 2 and makes the monochromated X-rays incident on the measuring object at a desired angle of incidence.
[Measurement target plated steel plate] 1. The detector 25.35 measures the fluorescent X-ray intensity obtained from the plated steel plate 1 through a flat plate slit 24.34 whose width is variable. 26.36 is a pinhole collimator. In addition, these X-ray tubes 21
, 31. Monochromator 23.33, slit 22,2
4, 32° 34, detectors 25, 35, etc. are the drive control unit 13
The position can be adjusted using drive control signals from.

]4は信号処理手段であって、これは2個の検出器25
.35で測定された蛍光X線強度又は強度比を理論強度
又は強度比、つまり理論値に変換する理論値変換手段1
5、メッキ付着量およびFe%を可変パラメータとして
既存の蛍光X線強度計算式により理論値を計算する理論
値計算手段16、前記理論値変換手段15で得た理論値
と理論値計算手段16で得られた理論値とが等しくなる
パラメータを決定する決定するパラメータ値決定手段1
7等によって構成され、このパラメータ値をメッキ付着
量およびメッキ被膜組成とすることにより、被測定メッ
キ鋼板のメッキ(・1石針およびメッキ被膜組成を得る
ものである。
] 4 is a signal processing means, which consists of two detectors 25
.. Theoretical value conversion means 1 for converting the fluorescent X-ray intensity or intensity ratio measured in 35 into a theoretical intensity or intensity ratio, that is, a theoretical value.
5. A theoretical value calculation means 16 that calculates a theoretical value using an existing fluorescent X-ray intensity calculation formula using the plating adhesion amount and Fe% as variable parameters, and a theoretical value calculation means 16 that uses the theoretical value obtained by the theoretical value conversion means 15 and the theoretical value calculation means 16. Determining parameter value determining means 1 for determining a parameter that is equal to the obtained theoretical value
7, etc., and by using these parameter values as the amount of plating and the composition of the plating film, the plating of the plated steel sheet to be measured (1 stone needle and the composition of the plating film) can be obtained.

次に、以上のように構成された装置に動作を説明する。Next, the operation of the apparatus configured as described above will be explained.

2つのX線管2]、、31から白色X線を発生すると、
この白色X線はピンホールコリメタ22.32を通り、
モノクロメータ23.33で単色化された後、被測定メ
ッキ鋼板11にそれぞれ入射角φ1=10〜30°、φ
2=45〜90°なる角度で照射される。なお、X線管
2]としてタングステンターゲットを用い、これにより
モノクロメータ23からメッキ被膜に対して減衰が大き
いWLβ線近傍の波長のX線を取出して被測定メッキ鋼
板11への入射X線とし、一方、X線管31側ではモリ
ブデンターゲットを用い、これによりモノクロメータ3
3からWLβ線に比べてメッキ被膜に対して減衰がはる
かに小さいMokα線近傍の波長のX線を取出して被測
定メッキ鋼板11への入射X線とする。
When white X-rays are generated from the two X-ray tubes 2], 31,
This white X-ray passes through the pinhole collimator 22.32,
After being monochromated by the monochromator 23, 33, the plated steel plate 11 to be measured is subjected to an incident angle φ1=10 to 30°, φ
2 = irradiated at an angle of 45 to 90 degrees. Note that a tungsten target is used as the X-ray tube 2], and X-rays with a wavelength near the WL β ray, which is highly attenuated with respect to the plating film, are extracted from the monochromator 23 and used as incident X-rays on the plated steel plate 11 to be measured. On the other hand, a molybdenum target is used on the X-ray tube 31 side, which allows the monochromator 3
3, an X-ray having a wavelength near the Mokα ray, which is much less attenuated by the plating film than the WLβ ray, is extracted and used as the incident X-ray on the plated steel plate 11 to be measured.

そして、以」二のように単色化処理されたX線を照射後
、被測定メッキ鋼板1]から発生するZn。
After irradiating the monochromated X-rays as described below, Zn is generated from the plated steel sheet 1 to be measured.

2] Feのにα線強度をそれぞれ受光角ψ1=30〜60°
、ψ2−45〜90°の角度をもって検出器25.35
で検出する。しかる後、理論値変換手段15を用いて雨
検出器25.35で得られた蛍光X線強度等に基づいて
前記Xl + X 2を求めた後これを理論値に変換し
、パラメータ値決定手段17に送出する。一方、理論値
計算手段]6ではメッキイ・1着量およびFe%を順次
可変パラメータとしながら既存の蛍光X線強度計算式に
より理論値を求めながらパラメータ値決定手段17に送
出する。そこで、このパラメータ値決定手段17では、
理論値変換手段15から送られてくる理論値と順次理論
値計算手段16でパラメータを変えて得られる理論値と
を用いて所定の演算を実行し、両理論値が等しくなると
きのパラメータ値を決定し、このパラメータ値から被測
定メッキ鋼板11のメッキ付着量およびメッキ被膜組成
を得るものである。
2] α-ray intensity for Fe and acceptance angle ψ1 = 30 to 60°, respectively.
, detector 25.35 with an angle of ψ2-45~90°
Detect with. After that, the theoretical value converting means 15 is used to obtain the Xl + X 2 based on the fluorescent X-ray intensity etc. obtained by the rain detector 25.35, and this is converted to a theoretical value, and the parameter value determining means Send on 17th. On the other hand, the theoretical value calculation means]6 sends the theoretical value to the parameter value determination means 17 while determining the theoretical value using the existing fluorescent X-ray intensity calculation formula, using the plating quantity and Fe% as variable parameters in sequence. Therefore, in this parameter value determining means 17,
A predetermined calculation is performed using the theoretical value sent from the theoretical value converting means 15 and the theoretical value obtained by sequentially changing the parameters in the theoretical value calculating means 16, and the parameter value when both theoretical values become equal is calculated. The amount of plating deposited and the plating film composition of the plated steel sheet 11 to be measured are obtained from this parameter value.

因みに、第4図および第5図は第3図の装置を用いて得
られた分析結果を示す図である。この第4図および第5
図は上記装置を用いてモノクロメタ23.33で波長λ
]=]、、26人、λ2−0.71人とし、かつ、それ
ぞれの測定角を(φ1.ψ1)= (15°、45°)
、(φ2゜ψ2)=(75°、60°)とした例であっ
て、そのうち第4図はメッキ(=1石量、第5図はメッ
キ被膜組成を示す。従って、これらの図から明らかなよ
うに、測定距離変動、測定角度変動および温湿度変動等
を加わる実ラインであるにも拘らず、測定時間10秒と
いう短い時間で高粘度に測定できる。また、この分析値
はF (3またはZnの蛍光X線強度ではなく、Feお
よびZ nの蛍光X線の強度比から求めたが、この強度
比をとることにより温湿度変動、経時変化の影響を低減
できる。
Incidentally, FIGS. 4 and 5 are diagrams showing analysis results obtained using the apparatus shown in FIG. 3. This figure 4 and 5
The figure shows the wavelength λ with a monochromator of 23.33 using the above device.
] = ],, 26 people, λ2 - 0.71 people, and each measurement angle is (φ1.ψ1) = (15°, 45°)
, (φ2゜ψ2) = (75°, 60°), of which Figure 4 shows the plating (= 1 stone amount, and Figure 5 shows the plating film composition. Therefore, it is clear from these figures. As shown above, even though the actual line is subject to measurement distance fluctuations, measurement angle fluctuations, temperature and humidity fluctuations, etc., high viscosity can be measured in a short measurement time of 10 seconds.In addition, this analysis value is F (3 Alternatively, it was determined not from the fluorescent X-ray intensity of Zn but from the intensity ratio of the fluorescent X-rays of Fe and Zn, but by taking this intensity ratio, it is possible to reduce the influence of temperature/humidity fluctuations and changes over time.

なお、本発明装置は理論旧線式を用いて行ったか、この
理論計算式に代えて検量線を用いて行ってもよい。
It should be noted that the apparatus of the present invention was performed using a theoretical old curve equation, or may be performed using a calibration curve instead of this theoretical calculation equation.

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以」−説明したように本発明によれば次のような種々の
効果を奏する。
As described above, the present invention provides the following various effects.

先ず、請求項1,2においては、単色化処理によってメ
ッキ被膜による吸収の大きな波長のX線を取りだして被
測定メッキ鋼板に照射するので、従来に比べて大きな測
定角で蛍光X線強度を測定でき、被測定メッキ鋼板のバ
タツキによる測定距離変動および測定角変動の影響を低
減でき、かつ、入射X線のスペクトル変動の影響が少な
く、かつ、波長積分を必要としないので測定精度の向」
二および測定時間の短縮化を図ることができる。また、
測定上必要な標準試料は実測値から理論値への変換パラ
メータを求めるために数種類でよく、オンラインに適す
るものである。
First, in claims 1 and 2, X-rays with wavelengths that are largely absorbed by the plating film are extracted through monochromatic treatment and irradiated onto the plated steel plate to be measured, so the fluorescent X-ray intensity is measured at a larger measurement angle than in the past. It is possible to reduce the influence of measurement distance fluctuations and measurement angle fluctuations due to fluttering of the plated steel plate to be measured, and it is less affected by spectrum fluctuations of incident X-rays, and does not require wavelength integration, which improves measurement accuracy.
Second, the measurement time can be shortened. Also,
Several types of standard samples are required for measurement in order to obtain conversion parameters from actual measured values to theoretical values, and these are suitable for online measurement.

次に、請求項3,4においては、非常に簡単な構成で、
かつ、オンラインで被測定メッキ鋼板のメッキ付4’j
 MLおよびメッキ被膜組成を高精度に測定でき、メッ
キ製品の品質向」二に大きく貢献させることができる。
Next, in claims 3 and 4, with a very simple configuration,
And online measurement of the plated steel plate to be measured 4'j
The ML and plating film composition can be measured with high precision, making a significant contribution to improving the quality of plated products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を用いたときのX線と彼A11l定
メッキ鋼板との関係を表す図、第2図は同じく本発明方
法による分析動作を説明する図、第3図は本発明装置の
一実施例を示す構成図、第4図および第5図は本発明装
置“を用いて11¥られた分析結果図である。 ]1・・・被測定メッキ鋼板、12・・測定系、213
1・・X線管、2’3.33・・・モノクロメータ、2
5.35・・・検出器、13・・・駆動制御部、14・
・・信号処理手段、15・・理論値変換手段、16・・
・理論値計算手段、17・・・パラメータ値決定手段。 出願人代理人 弁理士 鈴rL武彦 謬弛攪佃7OIIC壷や戴駒
Fig. 1 is a diagram showing the relationship between X-rays and a fixed plated steel plate using the method of the present invention, Fig. 2 is a diagram illustrating the analysis operation by the method of the present invention, and Fig. 3 is a diagram showing the apparatus of the present invention. FIG. 4 and FIG. 5 are diagrams showing the results of analysis obtained using the apparatus of the present invention.] 1... Plated steel plate to be measured, 12... Measurement system, 213
1...X-ray tube, 2'3.33...monochromator, 2
5.35...Detector, 13...Drive control section, 14.
...Signal processing means, 15...Theoretical value conversion means, 16...
- Theoretical value calculation means, 17...Parameter value determination means. Applicant's agent Patent attorney SuzurL Takehiko Yukishu Tsukuda 7OIIC jar and daikoma

Claims (5)

【特許請求の範囲】[Claims] (1)以下の(a)、(b)、(c)、(d)の工程を
有してなるメッキ鋼板のメッキ付着量およびメッキ被膜
組成の測定方法。 (a)メッキ鋼板に所定の入射角で単色のX線を入射し
た場合に得られる、2種類の所定の測定角での、分析目
的元素のに系列の蛍光X線強度又は強度比の理論計算式
を予め定めておく工程、(b)メッキ付着量およびメッ
キ被膜組成が既知の標準試料を用い、前記理論計算式を
求めたのと同じ条件で、蛍光X線強度又は強度比を実測
し、この実測値と前記理論計算式より、前記実測値を理
論計算値に換算する変換係数を予め求めておく工程、 (c)前記理論計算式を求めたのと同じ条件で、メッキ
付着量およびメッキ被膜組成が未知の被測定メッキ鋼板
から得られる前記蛍光X線強度又は強度比を測定し、前
記変換係数を使用して理論強度又は強度比に変換する工
程、 (d)理論計算式より得られる理論強度又は強度比を、
前記変換された理論強度又は強度比に最も近づける、理
論計算式中のパラメーターであるメッキ付着量および被
膜組成を、前記被測定鋼板のメッキ付着量およびメッキ
被膜組成とする工程。
(1) A method for measuring the coating amount and coating composition of a plated steel sheet, which comprises the following steps (a), (b), (c), and (d). (a) Theoretical calculation of the fluorescent X-ray intensity or intensity ratio of the series of analysis target elements at two types of predetermined measurement angles obtained when monochromatic X-rays are incident on a plated steel plate at a predetermined incident angle. (b) actually measuring the fluorescent X-ray intensity or intensity ratio under the same conditions as those used to obtain the theoretical calculation formula using a standard sample with a known plating coating amount and plating film composition; A step of calculating in advance a conversion coefficient for converting the measured value into a theoretical calculation value from the actual measurement value and the theoretical calculation formula; a step of measuring the fluorescent X-ray intensity or intensity ratio obtained from a plated steel plate to be measured whose coating composition is unknown, and converting it to a theoretical intensity or intensity ratio using the conversion coefficient; (d) obtained from a theoretical calculation formula; The theoretical strength or strength ratio,
A step of setting the coating amount and coating composition, which are parameters in the theoretical calculation formula, that are closest to the converted theoretical strength or strength ratio, as the coating coating amount and coating coating composition of the steel sheet to be measured.
(2)以下の(a)、(b)、(c)の工程を有してな
るメッキ鋼板のメッキ付着量およびメッキ被膜組成の測
定方法。 (a)メッキ鋼板に所定の入射角で単色のX線を入射し
た場合に得られる、2種類の所定の測定角での、分析目
的元素のk系列の蛍光X線強度又は強度比の検量線をメ
ッキ付着量およびメッキ被膜組成をパラメータとして予
め求めておく工程、(b)前記検量線を求めたのと同じ
条件で、メッキ付着量およびメッキ被膜組成が未知の被
測定メッキ鋼板から得られる前記蛍光X線強度又は強度
比を測定する工程、 (c)検量線より得られる蛍光X線強度又は強度比を、
前記測定された蛍光X線強度又は強度比に最も近づける
、検量線中のパラメーターであるメッキ付着量およびメ
ッキ被膜組成を、前記被測定メッキ鋼板のメッキ付着量
およびメッキ被膜組成とする工程。
(2) A method for measuring the coating amount and coating composition of a plated steel sheet, which comprises the following steps (a), (b), and (c). (a) Calibration curve of k-series fluorescent X-ray intensity or intensity ratio of the target element for analysis at two types of predetermined measurement angles obtained when monochromatic X-rays are incident on a plated steel plate at a predetermined incident angle. (b) A process in which the amount of plating and the composition of the plating film are obtained from a plated steel sheet to be measured whose plating amount and composition of the plating film are unknown under the same conditions as those used to obtain the calibration curve. (c) measuring the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve;
A step of determining the coating amount and coating composition of the plated steel sheet to be the parameters in the calibration curve that are closest to the measured fluorescent X-ray intensity or intensity ratio.
(3)X線を発生するX線発生部と、このX線発生部か
ら発生するX線を単色化するモノクロメータと、X線の
パスラインを決めメッキ鋼板に所定の入射角で投射し所
定の受光角で受光するスリット系と、メッキ鋼板から発
生する分析目的元素のに系列蛍光X線強度を異なる角度
で測定する2個の検出器と、これらの測定系で得られる
べき理論強度又は強度比の理論計算式を記憶する手段と
、実際に測定された蛍光X線強度又は強度比を理論強度
又は強度比に変換する手段と、この変換された理論強度
又は強度比と理論計算式より得られる理論強度又は強度
比の差を最小にするメッキ付着量およびメッキ被膜組成
を求める手段とを有してなるメッキ鋼板のメッキ付着量
およびメッキ被膜組成の測定装置。
(3) An X-ray generation section that generates X-rays, a monochromator that monochromates the X-rays generated from this X-ray generation section, and a pass line for the X-rays that is determined and projected onto the plated steel plate at a predetermined angle of incidence. A slit system that receives light at an acceptance angle of A means for storing a theoretical calculation formula for the ratio, a means for converting an actually measured fluorescent X-ray intensity or intensity ratio into a theoretical intensity or intensity ratio, and a means for storing a theoretical calculation formula for the ratio. 1. An apparatus for measuring the coating amount and coating composition of a plated steel sheet, comprising means for determining the coating coating amount and coating coating composition that minimize the difference in theoretical strength or strength ratio.
(4)X線を発生するX線発生部と、このX線発生部か
ら発生するX線を単色化するモノクロメータと、X線の
パスラインを決めメッキ鋼板に所定の入射角で投射し所
定の受光角で受光するスリット系と、メッキ鋼板から発
生する分析目的元素のに系列蛍光X線強度を異なる角度
で測定する2個の検出器と、これらの測定系で得られる
べき理論強度又は強度比の検量線を記憶する手段と、実
際に測定される蛍光X線強度又は強度比と検量線より得
られる蛍光X線強度又は強度比の差を最小にするメッキ
付着量およびメッキ被膜組成を求める手段とを有してな
るメッキ鋼板のメッキ付着量およびメッキ被膜組成の測
定装置。
(4) An X-ray generation section that generates X-rays, a monochromator that monochromates the X-rays generated from this X-ray generation section, and a pass line for the X-rays that is determined and projected onto the plated steel plate at a predetermined angle of incidence. A slit system that receives light at an acceptance angle of Find a means for storing the calibration curve of the ratio, and the plating coating amount and plating film composition that minimize the difference between the fluorescent X-ray intensity or intensity ratio actually measured and the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve. An apparatus for measuring the amount of plating deposited on a plated steel sheet and the composition of the plating film, comprising means.
(5)スリット系は、入射側にピンホールコリメータ、
受光側に幅可変の平板スリットを有してなる請求項3又
は請求項4に記載のメッキ鋼板のメッキ付着量およびメ
ッキ被膜組成の測定装置。
(5) The slit system has a pinhole collimator on the input side,
5. The apparatus for measuring the coating amount and coating composition of a plated steel sheet according to claim 3 or 4, comprising a flat plate slit with a variable width on the light receiving side.
JP1079964A 1989-03-30 1989-03-30 Method and apparatus for measuring coating weight of plated steel sheet and plating film composition Expired - Fee Related JPH07109406B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1079964A JPH07109406B2 (en) 1989-03-30 1989-03-30 Method and apparatus for measuring coating weight of plated steel sheet and plating film composition
US07/476,251 US5081658A (en) 1989-03-30 1990-02-07 Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
CA002009698A CA2009698C (en) 1989-03-30 1990-02-09 Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
EP90102910A EP0389774B1 (en) 1989-03-30 1990-02-14 Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
DE69026748T DE69026748T2 (en) 1989-03-30 1990-02-14 Method of measuring the plating rate and the composition of a plating layer of a plated steel sheet, and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1079964A JPH07109406B2 (en) 1989-03-30 1989-03-30 Method and apparatus for measuring coating weight of plated steel sheet and plating film composition

Publications (2)

Publication Number Publication Date
JPH02257045A true JPH02257045A (en) 1990-10-17
JPH07109406B2 JPH07109406B2 (en) 1995-11-22

Family

ID=13704994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1079964A Expired - Fee Related JPH07109406B2 (en) 1989-03-30 1989-03-30 Method and apparatus for measuring coating weight of plated steel sheet and plating film composition

Country Status (1)

Country Link
JP (1) JPH07109406B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119000A (en) * 1991-10-23 1993-05-14 Horiba Ltd Fluorescent x-ray analyzing device
US7356114B2 (en) 2005-09-14 2008-04-08 Rigaku Industrial Corporation X-ray fluorescence spectrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119000A (en) * 1991-10-23 1993-05-14 Horiba Ltd Fluorescent x-ray analyzing device
US7356114B2 (en) 2005-09-14 2008-04-08 Rigaku Industrial Corporation X-ray fluorescence spectrometer

Also Published As

Publication number Publication date
JPH07109406B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
RU2390764C2 (en) X-ray fluorescence spectrometre
St-Onge et al. Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel
Kulow et al. A new experimental setup for time-and laterally-resolved X-ray absorption fine structure spectroscopy in a ‘single shot’
US5579362A (en) Method of and apparatus for the quantitative measurement of paint coating
JPH02257045A (en) Method and device for measuring plated deposit of plated steel sheet and composition of plated film
JPH0933455A (en) Method for measuring alloyed degree of alloying plated layer
JPH0576574B2 (en)
JP5962615B2 (en) Method for measuring the degree of alloying of galvannealed steel sheets
KR100489298B1 (en) Method of measuring alloying degree for galvannealed steels by XRD
JPH0375549A (en) Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film
JPH0335149A (en) Method and instrument for measuring plating deposition and plating film composition of plated steel sheet
JP6520865B2 (en) Method of measuring degree of alloying and / or plating adhesion of galvanized steel sheet
JPS6188128A (en) Method for measuring film thickness and composition of alloy coat
JPH02302654A (en) Method and appratus for measuring plated amount of double-layer plated steel plate and composition of plated film
KR100685024B1 (en) Device of Measuring Phase Fraction and Alloying Degree for Galvannealed Steels
JP2873125B2 (en) Method and apparatus for measuring coating weight
JP2002168811A (en) Method and apparatus for measuring alloy phase adhesion in plated layer using x-ray diffraction method
JPH056139B2 (en)
JPH04355313A (en) Method for measuring thickness of paint film on metal
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
JPH07167804A (en) Online analysis method of two-layer plated steel plate, and online analyzer therefor
JPH0440655B2 (en)
JPH03272441A (en) Composition for alloy film and measuring method for adhering amount
JPH0435028B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees