JPH0375549A - Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film - Google Patents

Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film

Info

Publication number
JPH0375549A
JPH0375549A JP1210643A JP21064389A JPH0375549A JP H0375549 A JPH0375549 A JP H0375549A JP 1210643 A JP1210643 A JP 1210643A JP 21064389 A JP21064389 A JP 21064389A JP H0375549 A JPH0375549 A JP H0375549A
Authority
JP
Japan
Prior art keywords
wavelength
rays
plated steel
intensity
theoretical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1210643A
Other languages
Japanese (ja)
Inventor
Katsuyuki Nishifuji
西藤 勝之
Kiyotaka Imai
清隆 今井
Hiroharu Katou
宏晴 加藤
Tadaaki Hattori
服部 忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1210643A priority Critical patent/JPH0375549A/en
Publication of JPH0375549A publication Critical patent/JPH0375549A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the amount of plating and the composition of plating highly accurately by correcting the shifted amount of a wavelength due to Compton scattering obtained by the incident angle and the received angle of monochromatic X rays. CONSTITUTION:At first, monochromatic X rays are projected on a scattering plate by using the same optical system as in the measurement of a plated steel plate. The wavelength of the monochromatic X rays is measured from a theoretical expression by using the wavelength of Compton scattering lines. An optical system is adjusted so as to obtain an intended wavelength. Then, the theoretical computing expression for fluoresence X-ray intensity or the intensity ratio of the element for intended analysis obtained by using said optical system is determined beforehand. Then, a standard sample is used, and a converting coefficient for converting the actually measured values into the theoretically computed value is obtained beforehand. The fluorescence X-ray intensity or the intensity ratio obtained from the plated steel plate whose plated amount and composition of the plated film are unknown is measured. The values are converted into the theoretical intensity or the intensity ratio by using the converting coefficient. The plated amount and the composition of the plated film of the plated steel plate to be measured are determined from the plated amount and the composition of the film which are the parameters in the theoretical computing expression that are most close to the converted theoretical intensity or intensity ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、メッキ鋼板のメッキ付@量及びメッキ被膜組
成をオンラインで測定するメッキ鋼板のメッキ付着量及
びメッキ被膜組成の測定方法およびその測定装置に係わ
り、特に簡便、かつ、高精度に所要とする波長の単色X
線を得ることにより精度良くメッキ鋼板のメッキ付着量
およびメッキ被膜組成の測定する方法およびその測定装
置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for measuring the amount of plating and the composition of the plating film on a plated steel sheet, in which the amount of plating and the composition of the plating film on a plated steel sheet are measured online. Monochromatic X of the wavelength required for equipment, especially simple and highly accurate
The present invention relates to a method and apparatus for accurately measuring the coating amount and coating composition of a plated steel plate by obtaining lines.

〔従来の技術〕[Conventional technology]

この種のメッキ鋼板のメッキ付着量やメッキ被膜組成を
測定する場合、蛍光X線分析法が用いられている。この
蛍光X線分析法は、メッキ鋼板にX線を照射した後、メ
ッキ厚さおよびメッキ被膜組成の関数となる蛍光X線の
強度を測定するとともにこの測定値を検量線と比較しな
がら求めるものであって、Znメッキ鋼板やZn−Ni
メッキ鋼板の如くメッキ被膜が下地金属を含まないもの
についてはオンラインでメッキ付着量やメッキ被膜組成
を測定することが可能である。
Fluorescent X-ray analysis is used to measure the coating amount and coating composition of this type of plated steel sheet. This fluorescent X-ray analysis method involves irradiating a plated steel sheet with X-rays, then measuring the intensity of the fluorescent X-rays, which is a function of the plating thickness and coating composition, and comparing this measured value with a calibration curve. Zn-plated steel sheet or Zn-Ni
For plated steel plates that do not contain a base metal, it is possible to measure the amount of plating and the composition of the plated film online.

しかし、近年、Zn−Fe合金メッキ鋼板が耐蝕性、加
工性等に優れた特性を有することが注目されてきている
が、蛍光X線分析法ではメッキ被膜中のFeによる蛍光
X線と下地金属であるFeによる蛍光X線との区別がつ
け難く、このため蛍光X線強度とメッキ付着量、メッキ
被膜組成との関係を対応づけることが困難であるばかり
でなく、オンラインで分析することが難しい。
However, in recent years, Zn-Fe alloy plated steel sheets have attracted attention for their excellent properties such as corrosion resistance and workability. It is difficult to distinguish the fluorescent X-rays from the fluorescent X-rays caused by Fe, which makes it difficult not only to correlate the fluorescent X-ray intensity with the amount of plating deposited and the composition of the plating film, but also to analyze it online. .

そこで、従来、以上のような不具合を改善するする方法
として、次の2つの分析法が提案されている。
Therefore, the following two analysis methods have been proposed as methods for improving the above-mentioned problems.

その1つは、Zn−Fe合金メッキ鋼板上に多数の波長
をもった。いわゆる白色X線を照射した後、そのメッキ
鋼板の下地金属からの蛍光X線がX線侵入深さの点から
実質的に検出できない第1の測定角と、下地金属からの
蛍光X線を検出できる第2の測定角とにそれぞれ検出器
を配置してそれぞれに系列の蛍光X線強度を測定し、こ
の両側定値に基づいてメッキ付着量およびメッキ被膜組
成を求めるオンライン分析法である(特開昭58−22
3047号公報)。
One of them had multiple wavelengths on a Zn-Fe alloy plated steel plate. After irradiating so-called white X-rays, the first measurement angle is such that the fluorescent X-rays from the base metal of the plated steel plate are virtually undetectable from the point of view of the X-ray penetration depth, and the fluorescent X-rays from the base metal are detected. This is an online analysis method that measures the fluorescent X-ray intensity of each series by placing a detector at each of the second measurement angles that can be measured, and determines the amount of plating and the composition of the plating film based on the constant values on both sides. Showa 58-22
Publication No. 3047).

他の1つは、Zn−Fe合金メッキ鋼板において被膜に
よる吸収を利用して下地金属のα−Feの回折X線から
メッキ付着量を求め、さらにメッキ被膜中のZn−Fe
合金相およびη相から選ばれた1つ以上の相の回折X線
強度からメッキ被膜組成を求める方法である(特開昭6
0−169553号公報)。
The other method is to use absorption by the coating on a Zn-Fe alloy plated steel sheet to determine the coating amount from the diffraction
This is a method of determining the plating film composition from the diffraction X-ray intensity of one or more phases selected from the alloy phase and the η phase.
0-169553).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、以上のように2つの分析法のうち、前者による
2つの測定角を用いた蛍光X線分析法では、入射X線と
して白色X線を用いているために次のような問題が指摘
されている。
However, as mentioned above, of the two analysis methods, the former fluorescent X-ray analysis method using two measurement angles uses white X-rays as the incident X-rays, so the following problems have been pointed out. ing.

■−1白色X線中の高エネルギーのXtIsは、メッキ
鋼板被膜中での減衰が小さいために侵入深さが深くなる
性質があり、このため下地金属からの蛍光X線を検出し
得ない第1の測定角度としては5°以内と非常に小さい
角度にする必要がある。
■-1 High-energy XtIs in white X-rays has a tendency to penetrate deep due to low attenuation in the coating of plated steel sheets, and for this reason, fluorescent X-rays from the underlying metal cannot be detected. The measurement angle of No. 1 needs to be very small, within 5 degrees.

その結果、メッキ鋼板面の上下動、つまりバタツキによ
る測定距離の変動および測定角の変動による蛍光X線強
度の変動が大きく、測定精度が低下する問題がある。
As a result, fluctuations in the measurement distance due to vertical movement of the surface of the plated steel plate, that is, fluctuations, and fluctuations in the fluorescent X-ray intensity due to fluctuations in the measurement angle are large, resulting in a problem that measurement accuracy is reduced.

■−2また、メッキ付着量およびメッキ被膜組成は、実
際にメッキ鋼板にX線を入射して得られる実測強度と予
め周知の理論強度計算式に与えて得られる理論強度とを
比較演算して求めることが考えられるが、理論強度の計
算の際にはX線管の経時変化などによる入射X線のスペ
クトル変動の影響を受けるので測定精度が低下する問題
がある。
■-2 In addition, the amount of plating deposited and the composition of the plating film are calculated by comparing the measured strength obtained by actually irradiating the plated steel plate with X-rays and the theoretical strength obtained by applying it in advance to a well-known theoretical strength calculation formula. However, when calculating the theoretical intensity, there is a problem in that the measurement accuracy decreases because it is affected by spectral fluctuations of incident X-rays due to changes in the X-ray tube over time.

■−3また、前記実測強度と周知の理論強度計算式から
計算される理論強度との比較演算により分析値を求める
場合、理論強度の計算の際に波長積分が必要になるため
に計算時間が長くなり、測定時間の増加は否めない。
■-3 In addition, when calculating the analytical value by comparing the above-mentioned measured intensity with the theoretical intensity calculated from the well-known theoretical intensity calculation formula, the calculation time is longer because wavelength integration is required when calculating the theoretical intensity. It is undeniable that the measurement time will increase.

■−4さらに、前記■−3で指摘した問題を回避するた
めに校正曲線を用いて行う方法があるが、この方法では
マトリクス効果を考慮したモデルの作成に20〜30種
類の標準試料が必要になり、非常に煩雑な分析法となら
ざるを得ない。
■-4 Furthermore, in order to avoid the problem pointed out in ■-3 above, there is a method using a calibration curve, but this method requires 20 to 30 types of standard samples to create a model that takes into account matrix effects. This necessitates a very complicated analysis method.

一方、後者の回折X線による分析法においては、■−1
下地金属のα−Feの回折X線強度は、メッキ付着量だ
けでなく、鋼板の鋼種や板厚、メッキ鋼板の製造条件等
による異なる集合組織やメッキ被膜組成等に依存するこ
とから測定精度の面で問題がある。
On the other hand, in the latter analysis method using diffraction X-rays, ■-1
The diffraction X-ray intensity of α-Fe in the base metal depends not only on the amount of plating deposited, but also on the different textures and plating film composition caused by the steel type and thickness of the steel sheet, the manufacturing conditions of the plated steel sheet, etc., and therefore the measurement accuracy is affected. There is a problem in terms of

■−2一方、合金相の回折X線強度は、メツキ条件によ
り異なり、また溶融メッキ材と電気メッキ材では合金の
構造や組成が異なり、この場合にも同様に十分な測定精
度が得られない。
■-2 On the other hand, the diffraction X-ray intensity of the alloy phase differs depending on the plating conditions, and the structure and composition of the alloy differ between hot-dip plated materials and electroplated materials, so sufficient measurement accuracy cannot be obtained in this case as well. .

本発明は上記実情;;鑑みてなされたもので、メッキ鋼
板被膜中慫動の影響を少なくしてオンラインでメッキ付
着量およびメッキ被膜組成を測定でき、かつ、分析精度
の向上および分析時間の短縮化が図れ、少ない標準試料
を用いて確実にメッキ付着量およびメッキ被膜組成を測
定しうるメッキ鋼板のメッキ付着量およびメッキ被膜組
成の測定方法を提供することを目的とする。
The present invention has been developed in view of the above-mentioned circumstances, and it is possible to measure the amount of coating and the composition of the coating on-line by reducing the influence of vibration in the coating of a plated steel plate, and to improve the accuracy of analysis and shorten the analysis time. It is an object of the present invention to provide a method for measuring the amount of plating deposit and the composition of the plating film on a plated steel sheet, which allows the amount of plating deposit and the composition of the plating film to be measured reliably using a small number of standard samples.

また、他の発明である測定装置の目的とするところは、
簡単な構成を用いてオンラインで正確にメッキ付着量お
よびメッキ被膜組成を測定することにある。
In addition, the purpose of the measuring device, which is another invention, is to
The object of the present invention is to accurately measure the amount of plating coating and the composition of the plating film online using a simple configuration.

〔課題を解決するための手段および作用〕そこで、請求
項1に対応する発明は上記課題を解決するために、メッ
キ鋼板の測定時と同じ光学系を用いるとともに単色X線
をメッキ鋼板の代りに高分子材料(例えばアクリルなど
)或いはガラスなどの如くコンプトン散乱の大きな散乱
板に照射し、かかる散乱板から得られるコンプトン散乱
線の波長を測定する。このとき、前記単色X線の入射角
および受光角から求まるコンプトン散乱による波長シフ
ト量を理論式により補正することにより、測定時に用い
る単色X線の波長を間接的に測定し、この測定値が所望
の波長に校正するように光学系を調整する。そして、こ
の調整された光学系を用いてメッキ鋼板に対し所定の入
射角で単色X線を入射した場合に得られる。2種類の所
定の測定角での分析目的元素のに系列の蛍光X線強度又
は強度比の理論計算式のほか、メッキ付着量およびメッ
キ被膜組成を既知とする標準試料を用いて前記理論計算
式を求めたと同じ条件で蛍光X線強度又は強度比を実測
し、この実測値と前記理論計算式とに基づいて実測値を
理論計算値に換算するための変換係数を予め求めておく
[Means and effects for solving the problem] Therefore, in order to solve the above problem, the invention corresponding to claim 1 uses the same optical system as when measuring a plated steel plate and uses monochromatic X-rays instead of the plated steel plate. A scattering plate with high Compton scattering, such as a polymeric material (eg, acrylic) or glass, is irradiated with light, and the wavelength of the Compton scattered radiation obtained from the scattering plate is measured. At this time, by correcting the amount of wavelength shift due to Compton scattering determined from the incident angle and acceptance angle of the monochromatic X-ray using a theoretical formula, the wavelength of the monochromatic X-ray used during measurement is indirectly measured, and this measured value is determined as the desired value. Adjust the optical system to calibrate to the wavelength of This is obtained when monochromatic X-rays are incident on the plated steel plate at a predetermined angle of incidence using this adjusted optical system. In addition to the theoretical calculation formula for the series fluorescent X-ray intensity or intensity ratio of the target element for analysis at two types of predetermined measurement angles, the above theoretical calculation formula can be calculated using a standard sample whose plating coating amount and plating film composition are known. The fluorescent X-ray intensity or intensity ratio is actually measured under the same conditions as those used to determine the value, and a conversion coefficient for converting the actual value into a theoretically calculated value is determined in advance based on the measured value and the theoretical calculation formula.

以上のようにして理論計算式および変換係数を求めた後
、メッキ付着量およびメッキ被膜組成を未知とするメッ
キ鋼板に対し、前記所望の波長となるように校正された
単色Xiを用い、かつ、前記理論計算式を求めたのと同
じ測定条件を用いて当該メッキ鋼板に照射し、かかるメ
ッキ鋼板から得られる蛍光X線強度又は強度比を測定し
、その後、この蛍光XR強度又は強度比を変換係数を用
いて理論強度又は強度比に変換する。そして、前記理論
計算式より得られる理論強度又は強度比を、前記変換さ
れた理論強度又は強度比に最も近づける、理論計算式中
のパラメータであるメッキ付着量およびメッキ被膜組成
をもって前記被測定メッキ鋼板のメッキ付着量およびメ
ッキ被膜組成とするものである。
After determining the theoretical calculation formula and conversion coefficient as described above, use monochromatic Xi calibrated to have the desired wavelength on a plated steel sheet whose coating amount and composition are unknown, and Irradiate the plated steel plate using the same measurement conditions as those used to obtain the theoretical calculation formula, measure the fluorescent X-ray intensity or intensity ratio obtained from the plated steel plate, and then convert this fluorescent XR intensity or intensity ratio. Convert to theoretical intensity or intensity ratio using coefficients. Then, the plated steel plate to be measured is determined using the plating coating amount and the plating film composition, which are parameters in the theoretical calculation formula, to bring the theoretical strength or strength ratio obtained from the theoretical calculation formula closest to the converted theoretical strength or strength ratio. The amount of plating deposited and the composition of the plating film are as follows.

次に、請求項2に対応する発明は、メッキ鋼板の測定時
と同じ光学系を用いるとともに単色X線をメッキ鋼板の
代りに高分子材料(例えばアクリルなど)或いはガラス
などの如くコンプトン散乱の大きな散乱板に照射し、か
かる散乱板から得られるコンプトン散乱線の波長を測定
する。このとき、前記単色X線の入射角および受光角か
ら求まるコンプトン散乱による波長シフト量の補正を、
予め求めておいた校正曲線により行うことにより、測定
時に用いる単色X線の波長を間接的に測定し、この測定
値が所望の波長に校正するように光学系を調整する。そ
して、上記調整された光学系を用いてメッキ鋼板に対し
所定の入射角で単色X線を入射した場合に得られる。2
種類の所定の測定角での分析目的元素のに系列の蛍光X
線強度又は強度比の理論計算式のほか、メッキ付着量お
よびメッキ被膜組成を既知とする標準試料を用いて前記
理論計算式を求めたと同じ条件で蛍光X線強度又は強度
比を実測し、この実測値を理論計算値に換算するための
変換計数を予め求めておく。
Next, the invention corresponding to claim 2 uses the same optical system as when measuring a plated steel plate, and uses a material with high Compton scattering such as a polymer material (such as acrylic) or glass instead of the plated steel plate to emit monochromatic X-rays. A scattering plate is irradiated, and the wavelength of Compton scattered radiation obtained from the scattering plate is measured. At this time, the amount of wavelength shift due to Compton scattering determined from the incident angle and acceptance angle of the monochromatic X-ray is corrected as follows:
By using a calibration curve determined in advance, the wavelength of monochromatic X-rays used during measurement is indirectly measured, and the optical system is adjusted so that this measured value is calibrated to the desired wavelength. This is obtained when monochromatic X-rays are incident on the plated steel plate at a predetermined angle of incidence using the optical system adjusted as described above. 2
Series of fluorescence X of the target element for analysis at a given measurement angle
In addition to the theoretical calculation formula for the linear intensity or intensity ratio, the fluorescent Conversion coefficients for converting actual measured values into theoretically calculated values are determined in advance.

以上のようにして理論計算式および変換係数を求めた後
、メッキ付着量およびメッキ被膜組成を未知とするメッ
キ鋼板に対し、前記所望の波長となるように校正された
単色X線を用い、かつ、前記理論計算式を求めたのと同
じ測定条件を用いて当該メッキ鋼板に照射し、かかるメ
ッキ鋼板から得られる蛍光X線強度又は強度比を測定し
、その後、この蛍光X線強度又は強度比を変換係数を用
いて理論強度又は強度比に変換する。そして、前記理論
計算式より得られる理論強度又は強度比を、前記変換さ
れた理論強度又は強度比に最も近づける、理論計算式中
のパラメータであるメッキ付着量およびメッキ被膜組成
をもって前記被測定メッキ鋼板のメッキ付着量およびメ
ッキ被膜組成とするものである。
After obtaining the theoretical calculation formula and conversion coefficient as described above, use monochromatic , irradiate the plated steel plate using the same measurement conditions as those used to obtain the theoretical calculation formula, measure the fluorescent X-ray intensity or intensity ratio obtained from the plated steel plate, and then measure the fluorescent X-ray intensity or intensity ratio. Convert to theoretical intensity or intensity ratio using a conversion coefficient. Then, the plated steel plate to be measured is determined using the plating coating amount and the plating film composition, which are parameters in the theoretical calculation formula, to bring the theoretical strength or strength ratio obtained from the theoretical calculation formula closest to the converted theoretical strength or strength ratio. The amount of plating deposited and the composition of the plating film are as follows.

次に、請求項3に対応する発明は、メッキ鋼板の測定時
と同じ光学系を用いるとともに単色X線をメッキ鋼板の
代りに高分子材料(例えばアクリルなど)或いはガラス
などの如くコンプトン散乱の大きな散乱板に照射し、か
かる散乱板から得られるコンプトン散乱線の波長を測定
する。このとき、前記単色X線の入射角および受光角か
ら求まるコンプトン散乱による波長シフト量を理論式に
より補正することにより、測定時に用いる単色X線の波
長を間接的に測定し、この測定値が所望の波長に校正す
るように光学系を調整する。
Next, the invention corresponding to claim 3 uses the same optical system as when measuring a plated steel plate, and uses a material with high Compton scattering such as a polymer material (such as acrylic) or glass instead of the plated steel plate to emit monochromatic X-rays. A scattering plate is irradiated, and the wavelength of Compton scattered radiation obtained from the scattering plate is measured. At this time, by correcting the amount of wavelength shift due to Compton scattering determined from the incident angle and acceptance angle of the monochromatic X-ray using a theoretical formula, the wavelength of the monochromatic X-ray used during measurement is indirectly measured, and this measured value is determined as the desired value. Adjust the optical system to calibrate to the wavelength of

一方、前記調整された光学系を用いて予めメッキ鋼板に
所定の入射角で単色X線を入射した場合に得られる、2
種類の所定の測定角での分析目的元素のに系列の蛍光X
線強度又は強度比の検量線をメッキ付着量およびメッキ
被膜組成をパラメータとして求めておき、しかる後、メ
ッキ付着量及びメッキ被膜組成を未知とするメッキ鋼板
に対し、前記所望の波長に校正された単色X線を用い、
かつ、前記検量線を求めたのと同じ測定条件を用いて照
射し、かかる被測定メッキ鋼板から得られる蛍光X線強
度又は強度比を測定する。さらに、検量線より得られる
蛍光X線強度又は強度比に最も近づける、検量線中のパ
ラメータであるメッキ付着量およびメッキ被膜組成をも
って前記被測定メッキ鋼板のメッキ付着量およびメッキ
被膜組成とするものである。
On the other hand, the 2
Series of fluorescence X of the target element for analysis at a given measurement angle
A calibration curve of linear intensity or intensity ratio is determined using the plating deposit amount and plating film composition as parameters, and then, the calibration curve is calibrated to the desired wavelength for a plated steel sheet whose plating deposit amount and plating film composition are unknown. Using monochromatic X-rays,
Then, the fluorescent X-ray intensity or intensity ratio obtained from the plated steel sheet to be measured is measured by irradiation using the same measurement conditions as those used to obtain the calibration curve. Furthermore, the plating coating amount and plating film composition of the plated steel sheet to be measured are defined as the plating coating amount and plating film composition, which are the parameters in the calibration curve, which are closest to the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve. be.

次に、請求項4に対応する発明は、メッキ鋼板の測定時
と同じ光学系を用いるとともに単色X線をメッキ鋼板の
代りに同じ位置に高分子材料(アクリルなど)或いはガ
ラスの如くコンプトン散乱の大きな散乱板に照射し、か
かる散乱板から得られるコンプトン散乱線の波長を測定
する。このとき、コンプトン散乱による波長シフト量の
補正を、予め求めておいた校正曲線により行うことによ
り、測定時に用いる単色X線の波長を間接的に測定し、
この測定値が所望の波長に校正するように光学系を調整
する。
Next, the invention corresponding to claim 4 uses the same optical system as when measuring the plated steel plate, and instead of the plated steel plate, the monochromatic A large scattering plate is irradiated with radiation, and the wavelength of the Compton scattered radiation obtained from the scattering plate is measured. At this time, by correcting the amount of wavelength shift due to Compton scattering using a calibration curve determined in advance, the wavelength of the monochromatic X-ray used during measurement is indirectly measured.
The optical system is adjusted so that this measured value is calibrated to the desired wavelength.

一方、ここで調整された光学系を用いて予めメッキ鋼板
に所定の入射角で単色X線を入射した場合に得られる、
2種類の所定の測定角での分析目的元素のに系列の蛍光
X線強度又は強度比の検量線をメッキ付着量又はメッキ
被膜組成をパラメータとして求めておき、しかる後、メ
ッキ付着量及びメッキ被膜組成を未知とするメッキ鋼板
に対し、前記所望とする波長に校正した単色X線を用い
、かつ、前記検量線を求めたのと同じ測定条件を用いて
照射し、かかるメッキ鋼板から得られる蛍光X線強度又
は強度比を測定する。さらに、検量線より得られる蛍光
X線強度又は強度比に最も近づける、検量線中のパラメ
ータであるメッキ付着量およびメッキ被膜組成をもって
前記被測定メッキ鋼板のメッキ付着量およびメッキ被膜
組成とするものである。
On the other hand, when monochromatic X-rays are incident on a plated steel plate at a predetermined angle of incidence using the optical system adjusted here,
Calibration curves of fluorescent X-ray intensities or intensity ratios of the target element for analysis at two types of predetermined measurement angles are determined using the amount of plating or the composition of the plating film as parameters, and then the amount of plating and the plating film composition are determined. Fluorescence obtained from a plated steel plate whose composition is unknown by irradiating it with monochromatic X-rays calibrated to the desired wavelength and using the same measurement conditions as those used to obtain the calibration curve. Measure the X-ray intensity or intensity ratio. Furthermore, the plating coating amount and plating film composition of the plated steel sheet to be measured are defined as the plating coating amount and plating film composition, which are the parameters in the calibration curve, which are closest to the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve. be.

次に、請求項5に対応する発明は、X線を発生するX線
発生装置と、このX線発生装置から発生するX線を単色
化するモノクロメータと、このモノクロメータで単色化
されたX線を前記メッキ鋼板に所定の入射角で入射する
とともに所定の受光角で受光するスリット系と、前記メ
ッキ鋼板から発生する分析目的元素のに系列蛍光X線強
度を異なる角度で測定する2個の検出器と、これらの測
定系を、強いコンプトン散乱線を発生する散乱板上と前
記メッキ鋼板上との間を適宜移動させるトラバース機構
と、このトラバース機構による前記測定系の前記散乱板
上への設定時、前記単色X線の入射によって前記散乱板
から散乱された散乱線の波長から理論式を用いて前記散
乱板に入射した単色X線の波長を求める波長変換手段と
、この波長変換手段によって求めた波長が所望の波長と
なるように前記測定系を構成する光学系を調整する波長
調整手段と、この波長調整手段によって調整声れた測定
系で得られるべき理論強度又は強度比の理論計算式を記
憶する手段と、前記波長調整手段によって光学系を調整
した前記測定系を用いて実際に測定された蛍光X線強度
又は強度比を理論強度又は強度比に変換する手段と、こ
の変換された理論強度又は強度比と理論計算式により得
られる理論強度又は強度比の差を最小にするメッキ付着
量およびメッキ被膜組成を求める手段とを備えたもので
ある。
Next, the invention corresponding to claim 5 includes an X-ray generator that generates X-rays, a monochromator that monochromates the X-rays generated from the X-ray generator, and A slit system that makes the beam incident on the plated steel plate at a predetermined incident angle and receives the light at a predetermined acceptance angle, and two systems that measure the intensity of series fluorescent X-rays of the analysis target element generated from the plated steel plate at different angles. a traverse mechanism for appropriately moving a detector and these measurement systems between a scattering plate that generates strong Compton scattered radiation and the plated steel plate; and a traverse mechanism for moving the measurement system onto the scattering plate by the traverse mechanism. At the time of setting, a wavelength converting means for determining the wavelength of the monochromatic X-rays incident on the scattering plate using a theoretical formula from the wavelength of the scattered rays scattered from the scattering plate due to the incidence of the monochromatic X-rays; A wavelength adjustment means for adjusting the optical system constituting the measurement system so that the determined wavelength becomes a desired wavelength, and a theoretical calculation of the theoretical intensity or intensity ratio that should be obtained by the measurement system adjusted by the wavelength adjustment means. means for storing a formula; means for converting a fluorescent X-ray intensity or intensity ratio actually measured using the measurement system whose optical system is adjusted by the wavelength adjustment means into a theoretical intensity or intensity ratio; The present invention is equipped with means for determining the amount of plating deposited and the composition of the plating film that minimizes the difference between the theoretical strength or strength ratio obtained by the theoretical calculation formula.

従って、以上のような手段を講じたことにより、メッキ
鋼板の測定時と同じ光学系を用いて、単色X線をコンプ
トン散乱の大きな散乱板に照射してコンプトン散乱線の
波長を測定し、その散乱角から求まるコンプトン散乱に
よる波長シフト量を理論式に基づいて補正することによ
り、測定時に用いるメッキ鋼板に照射する単色X線の波
長を間接的に測定し、その値に応じて前記光学系を調整
して所望の波長に校正する。しかる後、X線発生装置か
ら発生されたX線をスリットを通してモノクロメータで
前記校正された波長の単色X線を得、この単色X線を所
定の入射角でメッキ鋼板へ入射し、これによってメッキ
鋼板から発生する分析目的元素のに系列蛍光X線強度を
2個の検出器を用いて異なる所定の受光角で検出する。
Therefore, by taking the above measures, we can irradiate monochromatic X-rays onto a scattering plate with large Compton scattering, measure the wavelength of the Compton scattered rays, and measure the wavelength of the Compton scattered rays using the same optical system used when measuring plated steel sheets. By correcting the amount of wavelength shift due to Compton scattering determined from the scattering angle based on a theoretical formula, the wavelength of monochromatic X-rays irradiated to the plated steel plate used during measurement is indirectly measured, and the optical system is adjusted according to the measured value. Adjust and calibrate to the desired wavelength. After that, the X-rays generated from the X-ray generator are passed through a slit, and a monochromator is used to obtain monochromatic X-rays of the calibrated wavelength, and the monochromatic X-rays are incident on the plated steel plate at a predetermined angle of incidence. The fluorescent X-ray intensity of the analysis target element generated from the steel plate is detected using two detectors at different predetermined acceptance angles.

そして、この2個の検出器で測定した蛍光X線強度又は
強度比を理論強度又は強度比に変換し、またメッキ付着
量およびメッキ被膜組成を可変パラメータとして理論計
算式により理論強度又は強度比を計算し、この計算値が
前記変換値に最も近づくパラメータから被測定メッキ鋼
板のメッキ付着量およびメッキ被膜組成を得るものであ
る。
Then, the fluorescent X-ray intensity or intensity ratio measured by these two detectors is converted into a theoretical intensity or intensity ratio, and the theoretical intensity or intensity ratio is calculated using a theoretical calculation formula using the plating amount and the plating film composition as variable parameters. The amount of plating deposited and the plating film composition of the plated steel sheet to be measured are obtained from the parameters whose calculated values are closest to the converted values.

さらに、請求項6に対応する発明は、請求項5の散乱板
に入射した単色X線の波長を理論式に基づいて求める代
わりに、予め求めておいた校正曲線を用いて求める波長
変換手段を設けた構成であり、その他の点を除けば構成
および作用は請求項5と同じである。
Furthermore, the invention corresponding to claim 6 provides a wavelength conversion means for determining the wavelength of the monochromatic X-rays incident on the scattering plate according to claim 5 using a calibration curve determined in advance, instead of determining the wavelength of the monochromatic X-rays incident on the scattering plate based on a theoretical formula. The configuration and operation are the same as in claim 5 except for other points.

さらに、請求項7に対応する発明は、X線発生装置、モ
ノクロメータ、スリット系、2個の検出器および前記理
論式を用いた波長変換手段のほか、メッキ鋼板の測定系
で得られべき理論強度又は強度比の検量線を記憶する手
段と、実際に測定される蛍光X線強度又は強度比の差を
最小とするメッキ付着量およびメッキ被膜組成を求める
手段とを備えたものである。
Furthermore, the invention corresponding to claim 7 includes an X-ray generator, a monochromator, a slit system, two detectors, and a wavelength conversion means using the theoretical formula, as well as a theory that should be obtained in a measurement system for plated steel plates. The apparatus is equipped with means for storing a calibration curve of intensity or intensity ratio, and means for determining the plating coating amount and plating film composition that minimize the difference between the actually measured fluorescent X-ray intensities or intensity ratios.

この装置においては、理論計算式に代えて検量線を用い
て上記とほぼ同一の信号処理手段により、被測定メッキ
鋼板のメッキ付着量およびメッキ被膜組成を測定する。
In this apparatus, the amount of plating deposited and the plating film composition of the plated steel sheet to be measured are measured by using a calibration curve instead of the theoretical calculation formula and by using almost the same signal processing means as described above.

さらに、請求項8に対応する発明は、メッキ鋼板の測定
系で得られべき理論強度又は強度比の検量線を記憶する
手段を有する点は請求項7と同じであり、特に請求項7
と異なるところは理論式に代えて予め求めておいた校正
曲線を用いて求める波長変換手段を設けたことにあり、
その他の点を除けば構成および作用は請求項7と同じで
ある。
Furthermore, the invention corresponding to claim 8 is the same as claim 7 in that it includes means for storing a calibration curve of theoretical strength or intensity ratio that should be obtained by the measurement system for plated steel sheets, and in particular, claim 7.
The difference is that a wavelength conversion means is provided that uses a pre-determined calibration curve instead of a theoretical formula.
The configuration and operation are the same as in claim 7 except for other points.

〔実施例〕〔Example〕

以下、本発明の詳細な説明するに先立ち、オンライン測
定に適したものとするために、次のような条件を満たす
測定系で構成するものとする。
Hereinafter, prior to a detailed explanation of the present invention, it is assumed that the present invention is constructed with a measurement system that satisfies the following conditions in order to be suitable for on-line measurement.

(イ) 入射X線は市販のX線管を用いて十分な蛍光X
線強度が得られること。
(b) Incident X-rays are collected using a commercially available X-ray tube to generate sufficient fluorescent X-rays.
Obtain line strength.

(ロ) X線入射角、蛍光X線の受光角等の測定角はオ
ンラインで実現可能な測定角、つまり5゜以上とするこ
と。
(b) Measurement angles such as the X-ray incident angle and fluorescent X-ray acceptance angle must be achievable online, that is, 5° or more.

また、メッキ鋼板から発生する蛍光X線の強度は放射線
検出器で測定するが、望ましくは半導体検出器を用いて
測定する。
Further, the intensity of fluorescent X-rays generated from the plated steel plate is measured using a radiation detector, preferably using a semiconductor detector.

以下、Zn−Fe合金メッキ鋼板のメッキ付着量および
メッキ被膜′組成(F%)を測定する方法の実施例につ
いて説明する。
Hereinafter, an example of a method for measuring the coating amount and the coating film composition (F%) of a Zn--Fe alloy plated steel sheet will be described.

先ず、X線管から発生したX線をモノクロメータに照射
したとき、当該モノクロメータから所望とする波長の単
色X線を得る必要から、コンプトン散乱の大きな散乱板
を用いて測定時と同一の光学系を用いて当該光学系の各
要素の位置を調整設定する。この具体的方法は、トラバ
ース機構を用いてメッキ鋼板の測定に使用する光学系を
内蔵する測定ヘッドをメッキ鋼板上から散乱板上の所定
位置に移動設定する。この散乱板は高分子材料(例えば
アクリルなど)或いはガラスなどの如きコンプトン散乱
の大きな材料を用いる。
First, when a monochromator is irradiated with X-rays generated from an X-ray tube, it is necessary to obtain monochromatic X-rays of the desired wavelength from the monochromator, so a scattering plate with a large Compton scattering is used to set up the same optical system as used for measurement. The position of each element of the optical system is adjusted and set using the optical system. This specific method uses a traverse mechanism to move and set a measurement head containing an optical system used for measuring the plated steel plate from above the plated steel plate to a predetermined position on the scattering plate. This scattering plate uses a material with high Compton scattering, such as a polymer material (eg, acrylic) or glass.

このようにして光学系を設定した後、測定ヘッドのX線
管から発生したX線をモノクロメータに照射し、このと
きモノクロメータから得られる単色X線を前記散乱板に
照射する。そして、この散乱板から得られるコンプトン
散乱線の波長λCCλ]を測定する。しかる後、散乱板
への単色X線の入射角φおよび散乱線の散乱受光角ψを
用いて以下の理論式により、散乱板への入射X線の波長
λ [入]を求める。
After setting up the optical system in this manner, the monochromator is irradiated with X-rays generated from the X-ray tube of the measurement head, and at this time, the monochromatic X-rays obtained from the monochromator are irradiated onto the scattering plate. Then, the wavelength λCCλ] of the Compton scattered radiation obtained from this scattering plate is measured. Thereafter, the wavelength λ [input] of the incident X-rays on the scattering plate is determined by the following theoretical formula using the incident angle φ of the monochromatic X-rays on the scattering plate and the scattered acceptance angle ψ of the scattered rays.

λ−λc −0,0488sln21(φ十ψ)/2+
[λコ・・・(1) そして、この波長λと所望とする波長とのずれ量(波長
シフト量〉を求めた後、このλが所望とする波長となる
ように前記測定ヘッド内の光学系の構成要素であるX線
管、モノクロメータおよびスリット系等の角度および位
置等を調整する。ここで、λが所望とする波長となった
ならば、再びトラバース機構を用いて、前記測定ヘッド
を散乱板上からメッキ鋼板上の所定位置に移動設定し、
メッキ鋼板の本来のall定に入る。なお、説明の便宜
上、1測定角のみの光学系について述べたが、実際には
2つの測定角について所望の波長が得られるように光学
系を調整するものである。
λ−λc −0,0488sln21(φ10ψ)/2+
[λ Co... (1) After determining the amount of deviation (wavelength shift amount) between this wavelength λ and the desired wavelength, the optical system in the measurement head is adjusted so that this λ becomes the desired wavelength. Adjust the angles and positions of the system components, such as the X-ray tube, monochromator, and slit system.Here, once λ has reached the desired wavelength, use the traverse mechanism again to adjust the measurement head. from the scattering plate to a predetermined position on the plated steel plate,
Enter the original all specifications of plated steel sheets. Note that, for convenience of explanation, an optical system for only one measurement angle has been described, but in reality, the optical system is adjusted so that a desired wavelength can be obtained for two measurement angles.

しかして、以上のようにしてモノクロメータから所望の
波長の単色X線を発生するように光学系を調整した後、
X線管からモノクロメータにX線を照射する。そして、
第1図および第2図に示す如くモノクロメータから単色
化された所望の波長λ1.λ2のX線を得た後、被測定
メッキ鋼板11上に入射角φ1.φ2で入射し、このと
きメッキ鋼板11から発生するFeka線の強度および
Znkαの強度を受光角ψ1゜ψ2をもって測定する。
After adjusting the optical system so that the monochromator generates monochromatic X-rays of the desired wavelength as described above,
X-rays are irradiated from the X-ray tube to the monochromator. and,
As shown in FIGS. 1 and 2, the desired wavelength λ1. After obtaining X-rays of λ2, an incident angle of φ1. The light is incident at φ2, and the intensity of the Feka line and the intensity of Znkα generated from the plated steel plate 11 at this time are measured at a receiving angle of ψ1°ψ2.

そこで、この測定角(φ1.ψ1)の条件下で測定した
Feka線強度、Znka線強度をそれぞれI↓e+I
Zaとし、また測定角(φ2.ψ2)の条件下で測定し
たFeka線強度、Znka線強度をx、、、xLとし
、X、−1シ、/I)いX2−1≠、/I亜7なる演算
を行う(ステップS2)。さらに、このX、。
Therefore, the Feka line intensity and Znka line intensity measured under the conditions of this measurement angle (φ1.ψ1) are respectively I↓e+I
Za, and the Feka line intensity and Znka line intensity measured under the measurement angle (φ2.ψ2) are x, , xL, and X, -1 shi, /I) 7 is performed (step S2). Furthermore, this X.

X2を用いて理論値Y、、Y2に変換する。ここで、X
、、X2を理論値Y、、Y2に変換するに際し、この理
論値とは測定条件を同じくするX線波長、X線強度、幾
何学的条件等で測定した場合に得られる蛍光X線強度を
、メッキ鋼板のメッキ付着量およびメッキ被膜組成をパ
ラメータとして理論計算式により計算し、この値に基づ
いて前記X、、X2に対応する値として求めたものであ
る。
Convert to the theoretical value Y, , Y2 using X2. Here, X
,, When converting X2 into a theoretical value Y,, Y2, this theoretical value is the fluorescent , is calculated using a theoretical calculation formula using the coating amount of the plated steel sheet and the coating film composition as parameters, and based on these values, the values corresponding to the above-mentioned X, , and X2 are determined.

実際の測定値は検出器の感度特性、スリット系の影響等
によりこれら理論強度とは異なった値となる。
Actual measured values differ from these theoretical intensities due to the sensitivity characteristics of the detector, the influence of the slit system, etc.

そこで、本発明方法では、以下の理論計算式を用いて実
測値X、、X2を理論値Y、、Y2に変換する(ステッ
プS2)。
Therefore, in the method of the present invention, the measured values X, ., X2 are converted into theoretical values Y, ., Y2 using the following theoretical calculation formula (step S2).

Y、ma、X、+b。Y, ma, X, +b.

Y2mll、x2+b2 なお、上式においてal +  a2 r  bl r
  b2は変換係数であって、これは予めメッキ付着量
およびメッキ被膜組成を既知とする標準試料を用い、前
記理論計算式を求めたのと同じ条件で蛍光X線強度又は
強度比を実測し、この実測値を前記理論計算式を用いて
理論強度又は強度比に換算することにより求める。すな
わち、標準試料のメッキ付着量およびメッキ被膜組成を
用いて理論計算式で計算した値をY、、Ylとし、実測
蛍光X線強度から計算したX、、X、との間に上記式が
成立するように、回帰分析等によって変換係数a。
Y2mll, x2+b2 In addition, in the above formula, al + a2 r bl r
b2 is a conversion coefficient, which is determined by actually measuring the fluorescent X-ray intensity or intensity ratio under the same conditions as those used to obtain the theoretical calculation formula using a standard sample whose plating coating amount and plating film composition are known in advance. This measured value is obtained by converting it into a theoretical intensity or intensity ratio using the above-mentioned theoretical calculation formula. In other words, the above formula holds between Y, , Yl, which is the value calculated using the theoretical formula using the plating deposition amount and plating film composition of the standard sample, and X,, X, which is calculated from the actually measured fluorescent X-ray intensity. The conversion coefficient a is determined by regression analysis or the like.

”2 r  bl +  b2を予め求めておく。``2 r bl + b2 is determined in advance.

このように理論計算式を使用し、実際の測定系との差を
標準試料を使用して校正する方法を採用したので、少な
い標準試料を用いてメッキ付着量およびメッキ被膜組成
と蛍光X線強度又は強度比の関係式を求めることができ
る。
In this way, we used a theoretical calculation formula and calibrated the difference with the actual measurement system using a standard sample, so we used a small number of standard samples to calculate the amount of plating, the composition of the plating film, and the fluorescent X-ray intensity. Alternatively, a relational expression of intensity ratio can be obtained.

次に、ステップS2において理論値Y、、Y2を求めた
ならば、引き続き、メッキ付着量およびFe%を可変し
たパラメータPk(k−1)を用いて、既存の蛍光X線
強度計算式から上記Y、、Y2に対応するY、、Yl 
を求める(ステップS3゜S4)。しかる後、ステップ
S5に移行し、ここでは、 (Ys  −Yl  )  2 +  (Yl   Y
l   )  2なる演算を行い、さらにパラメータP
kを変えて同様な演算を行い(ステップS6.S4.S
5)、これら演算値の中で最も小さくなる演算値のとき
のパラメータの値を決定しくステップS7)、この決定
パラメータ値をもってメッキ付着量およびFe%とする
ことにより、メッキ鋼板11のメッキ付着量およびメッ
キ被膜組成を得るものである。
Next, once the theoretical values Y, , Y2 have been obtained in step S2, using the parameter Pk (k-1) in which the plating adhesion amount and Fe% are varied, the above formula is calculated from the existing fluorescent X-ray intensity calculation formula. Y,,Yl corresponding to Y,,Y2
(Steps S3 and S4). After that, the process moves to step S5, where (Ys − Yl ) 2 + (Yl Y
l) Perform the operation 2 and further set the parameter P
Perform similar calculations by changing k (step S6.S4.S
5) Determine the value of the parameter when the calculated value is the smallest among these calculated values. Step S7). By using this determined parameter value as the plating adhesion amount and Fe%, the plating adhesion amount of the plated steel sheet 11 is determined. and a plating film composition.

次に、以上ような測定方法を用いたときの分析結果につ
いて具体的に説明する。今、Xlの測定条件として例え
ば入射X線の波長λI −1,26入、測定角(φ1.
ψ、)−(15@、45’)とし、X2の測定条件とし
て例えば入射X線の波長λ2”0.71入、測定角(φ
2.ψ2)−(75”、60″)とする。なお、Xlに
対してはタングステンターゲットを持つX線管を、X2
に対してはモリブデンターゲットを持つX線管を用いれ
ば、波長λ1.λ2はそれぞれWLβ線。
Next, analysis results obtained using the above measurement method will be specifically explained. Now, the measurement conditions for Xl are, for example, the wavelength of the incident X-ray λI -1,26 input, the measurement angle (φ1.
ψ, ) - (15@, 45'), and the measurement conditions for X2 are, for example, the wavelength of the incident
2. ψ2)−(75″, 60″). Note that for Xl, an X-ray tube with a tungsten target is used, and for X2
If an X-ray tube with a molybdenum target is used, the wavelength λ1. λ2 is the WLβ line, respectively.

M o kα線近傍の波長となり、前述した条件(イ)
を満足させることができる。
The wavelength is near the M o kα line, and the above-mentioned condition (a) is met.
can be satisfied.

一方、2つの測定角のうち低角度側の測定角(φ1.ψ
1)は、メッキ被膜に対する減衰が大きく侵入深さが小
さい波長λ1−1.26入を用いているために(15’
 、45@)となり、前述した条件(ロ)を十分に満足
する測定角とすることができ、その結果、メッキ鋼板1
1のバタッキによる測定距離変動および測定角変動の影
響を小さくできる。
On the other hand, of the two measurement angles, the lower measurement angle (φ1.ψ
1) uses the wavelength λ1-1.26, which has a large attenuation to the plating film and a small penetration depth (15'
, 45@), and the measurement angle can be set to fully satisfy the above-mentioned condition (b). As a result, the plated steel plate 1
The influence of measurement distance fluctuation and measurement angle fluctuation due to the first flap can be reduced.

なお、XlとX2で、メッキ付着量およびFe%に対す
る特性に差があるほど精度が向上するので、λ2はλ1
に比べてメッキ被膜に対する減衰が小さい波長とし、測
定角(φ2.ψ2)も(φ1.ψ1)に比べて大きい角
度とし、蛍光X線を検出できる最大深さ、つまり分析深
さを大きくした。さらに、測定距離変動を小さくするた
めには、入射X線のビーム径を小さくシ、かつ、検出器
の視野を大きくし、測定距離変動に拘らず入射X線を照
射している全ての部分からの蛍光X線を検出することが
望ましい。そこで、入射側はφ2.0〜5.0+mのピ
ンホールコリメータ、受光側は検出器の窓を開放とする
ことにより実現できる。
Note that the accuracy improves as there is a difference between Xl and X2 in the characteristics with respect to the amount of plating and Fe%, so λ2 is equal to λ1.
The wavelength was set to have a smaller attenuation to the plating film compared to , the measurement angle (φ2.ψ2) was also set to a larger angle compared to (φ1.ψ1), and the maximum depth at which fluorescent X-rays could be detected, that is, the analysis depth was increased. Furthermore, in order to reduce the variation in measurement distance, the beam diameter of the incident It is desirable to detect fluorescent X-rays. Therefore, this can be realized by using a pinhole collimator with a diameter of 2.0 to 5.0+ m on the incident side and opening the window of the detector on the light receiving side.

さらに、他のもう1つの発明方法としては、理論式を用
いた波長校正に代えて、例えば後述する第8図に示す如
くコンプトン散乱線の波長と散乱前の入射X線の波長と
の関係を定めた校正曲線に基づいて波長校正を行っても
よい。また、多数の標準試料を使用することが可能な場
合、前記理論計算式に代えて標準試料を使用してメッキ
付着量およびメッキ被膜組成と蛍光X線強度又は強度比
の関係式、すなわち検量線を用いて被測定メッキ鋼板1
1のメッキ付着量およびメッキ被膜組成を求めてもよい
Furthermore, as another method of the invention, instead of wavelength calibration using a theoretical formula, for example, as shown in FIG. Wavelength calibration may be performed based on a defined calibration curve. In addition, when it is possible to use a large number of standard samples, the standard samples can be used in place of the above theoretical calculation formula to calculate the relationship between the plating amount, the plating film composition, and the fluorescent X-ray intensity or intensity ratio, that is, the calibration curve. Plated steel plate 1 to be measured using
The amount of plating deposited and the composition of the plating film of No. 1 may be determined.

次に、本発明装置の実施例について第3図及び第4図を
参照して説明する。第3図は単色X線の波長を所望の波
長となるように測定時の光学系と同一の光学系を調整す
る図であり、第4図はメッキ鋼板の測定の様子を示した
図である。なお、第3図は説明の便宜上、1つの測定角
の調整について示している。
Next, an embodiment of the apparatus of the present invention will be described with reference to FIGS. 3 and 4. Figure 3 is a diagram showing the adjustment of the same optical system used during measurement so that the wavelength of monochromatic X-rays becomes the desired wavelength, and Figure 4 is a diagram showing how a plated steel plate is measured. . Note that, for convenience of explanation, FIG. 3 shows adjustment of one measurement angle.

第3図において12は測定ヘッドであって、このヘッド
12には当該測定ヘッド12をメッキ鋼板ll上から校
正位置である散乱板13上へ、或いは散乱板13上から
測定位置であるメッキ鋼板11上へ移動させるトラバー
ス機構14と、X線管21から発生されたX線をコリメ
ータ22を通してモノクロメータ23へ入射して単色X
線を得た後、この単色X線をピンホールコリメータ24
を通して散乱板13に入射し、このとき散乱板13から
得られる散乱線の波長を平板スリット25および検出器
26を検出することにより散乱前の単色X線の波長を求
める波長変換手段15と、この波長変換手段15で得ら
れた波長を所望の波長となるように光学系、つまりX線
管21.コリメータ22.モノクロメータ23等々を位
置及び角度調整することにより波長校正を行う波長調整
機構16とが設けられている。
In FIG. 3, reference numeral 12 denotes a measuring head, and this head 12 moves the measuring head 12 from above the plated steel plate ll onto the scattering plate 13 which is the calibration position, or from above the scattering plate 13 to the plated steel plate 11 which is the measurement position. The traverse mechanism 14 moves the X-rays upward, and the X-rays generated from the X-ray tube 21 are incident on the monochromator 23 through the collimator 22 to produce monochromatic X-rays.
After obtaining the line, this monochromatic X-ray is passed through the pinhole collimator 24.
wavelength converting means 15 for determining the wavelength of the monochromatic X-rays before scattering by detecting the wavelength of the scattered rays obtained from the scattering plate 13 through the plate slit 25 and the detector 26; An optical system, that is, an X-ray tube 21. converts the wavelength obtained by the wavelength conversion means 15 into a desired wavelength. Collimator 22. A wavelength adjustment mechanism 16 is provided that performs wavelength calibration by adjusting the position and angle of the monochromator 23 and the like.

なお、測定ヘッド12には1つの光学系のみ示したが、
実際は第4図に示す如く2つの光学系が配置され、波長
校正後にトラバース機構14により第4図の如くメッキ
鋼板11上に移動させるようになっている。
Although only one optical system is shown in the measurement head 12,
Actually, two optical systems are arranged as shown in FIG. 4, and after wavelength calibration, they are moved onto a plated steel plate 11 by a traverse mechanism 14 as shown in FIG.

すなわち、この測定ヘッド12には所定の方向にX線を
発生する2個のX線管21.31と、このX線管21.
31からコリメータ22.32を介して入射される白色
X線を単色化し、かつ、この単色化処理したX線を所望
の入射角度でメッキ鋼板11へ入射するモノクロメータ
23,33と、この単色X線をメッキ鋼板11へ入射す
るコリメータ24.34と、メッキ鋼板11から得られ
た蛍光X線強度を幅可変の平板スリット25.35を介
して測定する検出器26.36とによって構成されてい
る。なお、コリメータ24は測定距離変動の影響を小さ
くするためにピンホールコリメータが望ましい。また、
これらX線管21,31、モノクロメータ23,33、
コリメータ22゜32.24.34、スリット25,3
5、検出器26.36等は駆動制御部17からの駆動制
御信号で位置調整可能となっている。
That is, this measurement head 12 includes two X-ray tubes 21.31 that generate X-rays in a predetermined direction, and this X-ray tube 21.31.
Monochromators 23 and 33 monochromatize the white X-rays incident from 31 via collimators 22 and 32, and make the monochromated X-rays incident on the plated steel plate 11 at a desired angle of incidence; It is composed of a collimator 24.34 that makes the radiation incident on the plated steel plate 11, and a detector 26.36 that measures the fluorescent X-ray intensity obtained from the plated steel plate 11 via a flat plate slit 25.35 whose width is variable. . Note that the collimator 24 is preferably a pinhole collimator in order to reduce the influence of measurement distance fluctuations. Also,
These X-ray tubes 21, 31, monochromators 23, 33,
Collimator 22゜32.24.34, slit 25,3
5. The positions of the detectors 26, 36, etc. can be adjusted using drive control signals from the drive control section 17.

18は信号処理手段であって、これは2個の検出器26
.36で測定された蛍光X線強度又は強度比を理論強度
又は強度比、つまり理論値に変換する理論値変換手段1
8a1メッキ付着量およびFe%を可変パラメータとし
て既存の蛍光X線強度計算式により理論値を計算して記
憶する理論値計算手段18b1前記理論値変換手段18
aで得た理論値と理論値計算手段18bで得られた理論
値とが等しくなるパラメータを決定するパラメータ値決
定手段18c等によって構成され、このパラメータ値を
メッキ付着量およびメッキ被膜組成とすることにより、
メッキ鋼板のメッキ付着量およびメッキ被膜組成を得る
ものである。
18 is a signal processing means, which includes two detectors 26
.. Theoretical value conversion means 1 for converting the fluorescent X-ray intensity or intensity ratio measured in 36 into a theoretical intensity or intensity ratio, that is, a theoretical value
8a1 Theoretical value calculation means 18b1 Theoretical value conversion means 18 which calculates and stores a theoretical value using an existing fluorescent X-ray intensity calculation formula using the plating adhesion amount and Fe% as variable parameters.
It is constituted by parameter value determining means 18c, etc., which determines the parameter at which the theoretical value obtained in step a is equal to the theoretical value obtained by the theoretical value calculating means 18b, and this parameter value is used as the plating deposit amount and the plating film composition. According to
This method is used to obtain the amount of plating and the composition of the plating film on a plated steel sheet.

次に、以上のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as above will be explained.

先ず、波長校正を行う場合には、トラバース機構14に
より測定ヘッド12全体を校正位置である第3図の散乱
板13上に設定した後、X線管21.31から散乱板1
3に照射し、このとき散乱板13から得られるコンプト
ン散乱線を検出器26.36で検出する。そして、この
コンブトン散乱線から波長変換手段15にて前記理論式
を適用してモノクロメータ23,33で単色化されたX
線の波長を求めた後、この波長が所望の波長になるよう
に波長調整機構16で光学系を調整する。この波長校正
終了後、トラバース機構14を用いて測定ヘッド12を
測定位置へ移動する。
First, when performing wavelength calibration, the entire measuring head 12 is set on the scattering plate 13 shown in FIG. 3, which is the calibration position, by the traverse mechanism 14, and then the scattering plate 1 is
3, and the Compton scattered radiation obtained from the scattering plate 13 at this time is detected by the detectors 26 and 36. Then, from this Combton scattered radiation, the wavelength converting means 15 applies the above-mentioned theoretical formula, and the monochromators 23 and 33 convert the X
After determining the wavelength of the line, the optical system is adjusted by the wavelength adjustment mechanism 16 so that this wavelength becomes a desired wavelength. After this wavelength calibration is completed, the measurement head 12 is moved to the measurement position using the traverse mechanism 14.

しかして、測定時においては、2つのX線管21.31
から白色X線を発生すると、この白色X線はコリメータ
22.32を通り、モノクロメータ23.33で単色化
された後、メッキ鋼板11にそれぞれ入射角φ、−10
°〜30゜φ2=45”〜90″なる角度で照射される
。なお、X線管21としてタングステンターゲットを用
い、これによりモノクロメータ23からメッキ被膜に対
して減衰が大きいWLβ線近傍の波長のX線を取り出し
てメッキ鋼板11への入射X線とし、一方、X線管31
側ではモリブデンターゲットを用い、これによりモノク
ロメータ33からWLβ線に比べてメッキ被膜に対して
減衰がはるかに小さいM o kα線近傍の波長のX線
を取り出してメッキ鋼板11への入射X線とする。
Therefore, during measurement, two X-ray tubes 21 and 31
When white X-rays are generated, the white X-rays pass through a collimator 22.32, are made monochromatic by a monochromator 23.33, and then strike the plated steel plate 11 at incident angles φ and -10, respectively.
It is irradiated at an angle of ˜30˚φ2=45″˜90″. Note that a tungsten target is used as the X-ray tube 21, and X-rays with a wavelength near the WL β line, which has a large attenuation with respect to the plating film, are taken out from the monochromator 23 and used as incident X-rays on the plated steel plate 11. Wire tube 31
On the side, a molybdenum target is used, which extracts from the monochromator 33 X-rays with a wavelength near the M o kα ray, which is much less attenuated by the plating film than the WLβ ray, and combines it with the incident X-rays on the plated steel plate 11. do.

そして、以上のように単色化処理されたX線を照射後、
メッキ鋼板11から発生するZn、Feのka線強度を
それぞれ受光角ψ1−30”〜60°、ψ2−45°〜
90″の角度をもって検出器26.36で検出する。し
かる後、理論値変換手段18aを用いて雨検出器26.
36で得られた蛍光X線強度等に基づいて前記X、、X
2を求めた後、これを理論値に変換し、パラメータ値決
定手段118Cに送出する。一方、理論値計算手段18
bではメッキ付着量およびFe%を順次可変パラメータ
としながら既存の蛍光X線強度計算式により理論値を求
めながらパラメータ値決定手段18cに送出する。そこ
で、このパラメータ値決定手段18cでは、理論値変換
手段18aから送られてくる理論値と理論値計算手段1
8bによってパラメータを変えて得られる理論値とを用
いて所定の演算を実行し、両理論値が等しくなるときの
パラメータ値を決定し、このパラメータ値からメッキ鋼
板11のメッキ付着量およびメッキ被膜組成を得るもの
である。
After irradiating the monochromatic X-rays as described above,
The ka-ray intensities of Zn and Fe generated from the plated steel plate 11 are determined by the acceptance angle ψ1-30" ~ 60° and ψ2-45° ~
The rain detector 26.36 detects the rain at an angle of 90''.Then, the rain detector 26.36 detects the rain using the theoretical value conversion means 18a.
Based on the fluorescent X-ray intensity etc. obtained in step 36, the
After determining 2, it is converted into a theoretical value and sent to the parameter value determining means 118C. On the other hand, the theoretical value calculation means 18
In b, the plating adhesion amount and Fe% are sequentially set as variable parameters, and theoretical values are determined using the existing fluorescent X-ray intensity calculation formula and sent to the parameter value determining means 18c. Therefore, this parameter value determining means 18c uses the theoretical value sent from the theoretical value converting means 18a and the theoretical value calculating means 1.
A predetermined calculation is performed using the theoretical values obtained by changing the parameters in step 8b, the parameter values are determined when both theoretical values are equal, and from this parameter values, the amount of plating deposited on the plated steel sheet 11 and the composition of the plating film are determined. This is what you get.

ちなみに、第5図はある特定の散乱角について、理論式
によるコンプトン散乱線の波長と散乱前の入射X線の波
長との関係を実測値と共に示した図であるが、この実測
値がほぼ適正値を示していることが分かる。また、第6
図および第7図は、第4図の装置を用いて得られた分析
結果を示す図である。なお、この第6図および第7図は
第3図の波長校正手段、つまりモノクロメータ23,3
3、散乱板13、波長変換手段15、波長調整機構16
等を用いることにより、波長λl−1.26入、λ2−
0.71λとし、かつ、それぞれのDJ定角を(φ1.
ψ、)−(15°、45°)(<62 、  ψ2)−
(75’ 、60’ )とシタ例であって、そのうち第
6図はメッキ付着量、第7図はメッキ被膜組成を示す。
By the way, Figure 5 shows the relationship between the wavelength of Compton scattered rays according to the theoretical formula and the wavelength of incident X-rays before scattering for a certain scattering angle, along with actual measured values. It can be seen that the value is shown. Also, the 6th
The figure and FIG. 7 are diagrams showing analysis results obtained using the apparatus of FIG. 4. Note that FIGS. 6 and 7 show the wavelength calibration means in FIG. 3, that is, the monochromators 23 and 3.
3, scattering plate 13, wavelength conversion means 15, wavelength adjustment mechanism 16
etc., the wavelength λl-1.26, λ2-
0.71λ, and each DJ constant angle is (φ1.
ψ, ) − (15°, 45°) (<62, ψ2) −
(75', 60'), of which FIG. 6 shows the amount of plating deposited and FIG. 7 shows the composition of the plating film.

従って、これらの図から明らかなように、測定距離変動
、測定角度変動および温湿度変動等を加わる実ラインで
あるにも拘らず、測定時間10秒という短い時間で高精
度に測定できる。また、この分析値はFeまたはZnの
蛍光X線強度ではなく、FeおよびZnの蛍光X線の強
度比から求めたが、この強度比を取ることにより温湿度
変動、経時変化の影響を低減できる。
Therefore, as is clear from these figures, highly accurate measurements can be made in a short measurement time of 10 seconds, even though this is an actual line in which measurement distance fluctuations, measurement angle fluctuations, temperature and humidity fluctuations, etc. are added. In addition, this analysis value was obtained from the intensity ratio of Fe and Zn fluorescent X-rays rather than the fluorescent X-ray intensity of Fe or Zn, but by taking this intensity ratio, it is possible to reduce the effects of temperature/humidity fluctuations and changes over time. .

なお、上記実施例の装置では、波長校正として理論式に
よりコンプトンシフトの補正を行ったが、この理論式に
代えて予め例えば第8図に示す如くコンプトン散乱線の
波長と散乱前の入射X線の波長との関係を定めた校正曲
線に基づいて波長校正を行ってもよい。また、上記実施
例の装置ではメッキ付着量およびメッキ被膜組成を求め
るに際して理論計算式を用いたが、それに代えて検量線
を用いて行ってもよい。
In the apparatus of the above embodiment, the Compton shift was corrected using a theoretical formula as wavelength calibration, but instead of using this theoretical formula, the wavelength of the Compton scattered ray and the incident X-ray before scattering were calculated in advance, for example, as shown in FIG. Wavelength calibration may be performed based on a calibration curve that defines the relationship between wavelength and wavelength. Further, in the apparatus of the above embodiment, theoretical calculation formulas were used to determine the amount of plating deposited and the composition of the plating film, but a calibration curve may be used instead.

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば次に述べるように種
々の効果を奏する。
As explained above, according to the present invention, various effects can be achieved as described below.

先ず、請求項1〜4の発明においては、波長校正手段を
用いて波長校正を行うようにしたので、オンライン測定
において単色X線の波長を高精度に設定でき、精度の良
い測定を行なうことが可能となり、また単色化処理によ
ってメッキ被膜による吸収の大きな波長のX線を取り出
してメッキ鋼板に照射するので、従来に比べて大きな測
定角で蛍光xI11強度を測定でき、メッキ鋼板のバタ
ッキによる測定距離変動および測定角変動の影響が少な
く、かつ、入射X線のスペクトル変動の影響が小さく、
また波長積分を必要としないので測定精度の向上および
測定時間の短縮化を図ることができる。また、測定上必
要な標準試料は実測値から理論値への変換パラメータを
求めるために数種類でよく、オンラインに適するものと
することができる。
First, in the inventions of claims 1 to 4, since the wavelength calibration is performed using the wavelength calibration means, the wavelength of the monochromatic X-ray can be set with high accuracy in online measurement, and accurate measurement can be performed. In addition, since the monochromatic treatment extracts X-rays with wavelengths that are largely absorbed by the plating film and irradiates them onto the plated steel sheet, it is possible to measure the fluorescence The influence of fluctuations and measurement angle fluctuations is small, and the influence of spectral fluctuations of incident X-rays is small.
Furthermore, since wavelength integration is not required, measurement accuracy can be improved and measurement time can be shortened. Further, several types of standard samples are required for measurement in order to obtain conversion parameters from actual measured values to theoretical values, and the standard sample can be suitable for online measurement.

次に、請求項5〜8の発明においては、単色X線の波長
を簡単、かつ、精度よく校正でき、しかも非常に簡単な
構成によりオンラインでメッキ鋼板のメッキ付着量およ
びメッキ被膜組成を高精度に測定でき、メッキ製品の品
質向上に大きく貢献させることができる。
Next, in the inventions of claims 5 to 8, the wavelength of monochromatic X-rays can be easily and accurately calibrated, and the coating amount and coating composition of a plated steel sheet can be calibrated online with high accuracy using a very simple configuration. can be measured, making a significant contribution to improving the quality of plated products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を用いたときのXfiとメッキ鋼板
との関係を示す図、第2図は同じく本発明方法による分
析動作を説明する図、第3図は本発明装置による波長校
正時の構成を示す図、第4図は測定時の本発明装置の構
成を示す図、第5図はある特定の散乱角におけるコンプ
トン散乱線の波長と単色化された入射X線の波長との理
論的関係を示す図、第6図および第7図は本発明装置を
用いて得られる分析結果を示す図、第8図はコンプトン
散乱線の波長から単色化された入射X線の波長を求める
校正曲線図である。 11・・・メッキ鋼板、12・・・測定ヘッド、21゜
31−X II管(X線発生装置)  23.33−・
・モノクロメータ、26.36・・・検出器、14・・
・トラバース機構、15・・・波長変換手段、16・・
・波長調整機構、17・・・駆動制御部、18・・・信
号処理手段、18a・・・理論値変換手段、18b・・
・理論値計算手段、18c・・・パラメータ値決定手段
Fig. 1 is a diagram showing the relationship between Xfi and a plated steel plate when using the method of the present invention, Fig. 2 is a diagram illustrating the analysis operation according to the method of the present invention, and Fig. 3 is a diagram showing wavelength calibration using the apparatus of the present invention. Figure 4 is a diagram showing the configuration of the device of the present invention during measurement, and Figure 5 is a theory of the wavelength of Compton scattered radiation and the wavelength of monochromated incident X-rays at a certain scattering angle. Figures 6 and 7 are diagrams showing the analysis results obtained using the device of the present invention, and Figure 8 is a diagram showing the calibration to determine the wavelength of monochromatic incident X-rays from the wavelength of Compton scattered rays. It is a curve diagram. 11... Plated steel plate, 12... Measuring head, 21° 31-X II tube (X-ray generator) 23.33-.
・Monochromator, 26.36...Detector, 14...
・Traverse mechanism, 15...Wavelength conversion means, 16...
- Wavelength adjustment mechanism, 17... Drive control section, 18... Signal processing means, 18a... Theoretical value conversion means, 18b...
- Theoretical value calculation means, 18c...Parameter value determination means.

Claims (9)

【特許請求の範囲】[Claims] (1)以下の(a)〜(e)の工程から成る被測定メッ
キ鋼板のメッキ付着量およびメッキ被膜組成の測定方法
。 (a)メッキ鋼板の測定時と同じ光学系を用いて、コン
プトン散乱の大きな材料の散乱板に単色X線を照射し、
このとき散乱板から散乱するコンプトン散乱線の波長か
ら理論式に基づいて前記単色X線の波長を間接的に測定
し、この測定波長が所望の波長となるように前記光学系
を調整する波長校正工程、 (b)この波長校正工程で調整された光学系を用いてメ
ッキ鋼板に所定の入射角で単色のX線を入射した場合に
得られる2種類の所定の測定角での、分析目的元素のK
系列の蛍光X線強度又は強度比の理論計算式を予め定め
ておく工程、 (c)メッキ付着量およびメッキ被膜組成が既知の標準
試料を用い、前記理論計算式を求めたのと同じ条件で、
蛍光X線強度又は強度比を実測し、この実測値と前記理
論計算式とから前記実測値を理論計算値に換算する変換
係数を予め求めておく工程、 (d)前記理論計算式を求めたのと同じ条件で、メッキ
付着量およびメッキ被膜組成が未知のメッキ鋼板から得
られる前記蛍光X線強度又は強度比を測定し、前記変換
係数を使用して理論強度又は強度比に変換する工程、 (e)前記理論計算式から得られる理論強度又は強度比
を、前記変換された理論強度又は強度比に最も近づける
、理論計算式中のパラメータであるメッキ付着量および
被膜組成を、前記被測定メッキ鋼板のメッキ付着量およ
びメッキ被膜組成とする工程。
(1) A method for measuring the coating amount and coating composition of a plated steel sheet to be measured, which comprises the following steps (a) to (e). (a) Using the same optical system as when measuring the plated steel plate, a scattering plate made of a material with large Compton scattering is irradiated with monochromatic X-rays,
At this time, the wavelength of the monochromatic X-ray is indirectly measured based on a theoretical formula from the wavelength of the Compton scattered rays scattered from the scattering plate, and wavelength calibration is performed in which the optical system is adjusted so that the measured wavelength becomes a desired wavelength. (b) Analysis of the target element for analysis at two types of predetermined measurement angles obtained when monochromatic X-rays are incident on a plated steel plate at a predetermined angle of incidence using the optical system adjusted in this wavelength calibration step. K of
A step of predetermining a theoretical calculation formula for the fluorescent X-ray intensity or intensity ratio of the series, (c) using a standard sample with a known plating coating amount and plating film composition, under the same conditions as those used to obtain the theoretical calculation formula. ,
a step of actually measuring the fluorescent X-ray intensity or intensity ratio, and calculating in advance a conversion coefficient for converting the measured value into a theoretical calculation value from the actual measurement value and the theoretical calculation formula; (d) determining the theoretical calculation formula; A step of measuring the fluorescent X-ray intensity or intensity ratio obtained from a plated steel sheet with unknown plating amount and plating film composition under the same conditions as in the above, and converting it into a theoretical intensity or intensity ratio using the conversion coefficient, (e) The plating adhesion amount and film composition, which are parameters in the theoretical calculation formula, that bring the theoretical strength or intensity ratio obtained from the theoretical calculation formula closest to the converted theoretical strength or strength ratio, are used for the measured plating. A process to determine the amount of plating on a steel plate and the composition of the plating film.
(2)以下の(a)〜(e)の工程から成る被測定メッ
キ鋼板のメッキ付着量およびメッキ被膜組成の測定方法
。 (a)メッキ鋼板の測定時と同じ光学系を用いて、コン
プトン散乱の大きな材料の散乱板に照射し、このとき散
乱板から散乱するコンプトン散乱線の波長から予め求め
ておいた校正曲線に基づいて前記単色X線の波長を間接
的に測定し、この測定波長が所望の波長となるように前
記光学系を調整する波長校正工程、 (b)この波長校正工程で調整された光学系を用いてメ
ッキ鋼板に所定の入射角で単色のX線を入射した場合に
得られる2種類の所定の測定角での、分析目的元素のK
系列の蛍光X線強度又は強度比の理論計算式を予め定め
ておく工程、 (c)メッキ付着量およびメッキ被膜組成が既知の標準
試料を用い、前記理論計算式を求めたのと同じ条件で、
蛍光X線強度又は強度比を実測し、この実測値と前記理
論計算式とから前記実測値を理論計算値に換算する変換
係数を予め求めておく工程、 (d)前記理論計算式を求めたのと同じ条件で、メッキ
付着量およびメッキ被膜組成が未知のメッキ鋼板から得
られる前記蛍光X線強度又は強度比を測定し、前記変換
係数を使用して理論強度又は強度比に変換する工程、 (e)理論計算式から得られる理論強度又は強度比を、
前記変換された理論強度又は強度比に最も近づける、理
論計算式中のパラメータであるメッキ付着量および被膜
組成を、前記被測定メッキ鋼板のメッキ付着量およびメ
ッキ被膜組成とする工程。
(2) A method for measuring the coating amount and coating composition of a plated steel sheet to be measured, which comprises the following steps (a) to (e). (a) Using the same optical system used to measure the plated steel plate, irradiate the scattering plate made of a material with large Compton scattering, based on the calibration curve determined in advance from the wavelength of the Compton scattered radiation scattered from the scattering plate. (b) using the optical system adjusted in this wavelength calibration step; The K of the target element for analysis at two types of predetermined measurement angles obtained when monochromatic X-rays are incident on a plated steel plate at a predetermined angle of incidence.
A step of predetermining a theoretical calculation formula for the fluorescent X-ray intensity or intensity ratio of the series, (c) using a standard sample with a known plating coating amount and plating film composition, under the same conditions as those used to obtain the theoretical calculation formula. ,
a step of actually measuring the fluorescent X-ray intensity or intensity ratio, and calculating in advance a conversion coefficient for converting the measured value into a theoretical calculation value from the actual measurement value and the theoretical calculation formula; (d) determining the theoretical calculation formula; A step of measuring the fluorescent X-ray intensity or intensity ratio obtained from a plated steel sheet with unknown plating amount and plating film composition under the same conditions as in the above, and converting it into a theoretical intensity or intensity ratio using the conversion coefficient, (e) The theoretical intensity or intensity ratio obtained from the theoretical calculation formula,
A step of setting the coating amount and coating composition, which are parameters in the theoretical calculation formula, that are closest to the converted theoretical strength or strength ratio, as the coating coating amount and coating coating composition of the plated steel sheet to be measured.
(3)以下の(a)〜(d)の工程から成る被測定メッ
キ鋼板のメッキ付着量およびメッキ被膜組成の測定方法
。 (a)メッキ鋼板の測定時と同じ光学系を用いて、コン
プトン散乱の大きな材料の散乱板に単色X線を照射し、
このとき散乱板から散乱するコンプトン散乱線の波長か
ら理論式に基づいて前記単色X線の波長を間接的に測定
し、この測定波長が所望の波長となるように前記光学系
を調整する波長校正工程、 (b)この波長校正工程で調整された光学系を用いてメ
ッキ鋼板に所定の入射角で単色のX線を入射した場合に
得られる2種類の所定の測定角での、分析目的元素のK
系列の蛍光X線強度又は強度比の検量線をメッキ付着量
およびメッキ被膜組成をパラメータとして予め求めてお
く工程、(c)前記検量線を求めたのと同じ条件で、メ
ッキ付着量およびメッキ被膜組成が未知のメッキ鋼板か
ら得られる前記蛍光X線強度又は強度比を測定する工程
、 (d)前記検量線から得られる蛍光X線強度又は強度比
を、前記測定された蛍光X線強度又は強度比に最も近づ
ける、検量線中のパラメータであるメッキ付着量および
メッキ被膜組成を、前記被測定メッキ鋼板のメッキ付着
量およびメッキ被膜組成とする工程。
(3) A method for measuring the coating amount and coating composition of a plated steel sheet to be measured, which comprises the following steps (a) to (d). (a) Using the same optical system as when measuring the plated steel plate, a scattering plate made of a material with large Compton scattering is irradiated with monochromatic X-rays,
At this time, the wavelength of the monochromatic X-ray is indirectly measured based on a theoretical formula from the wavelength of the Compton scattered rays scattered from the scattering plate, and wavelength calibration is performed in which the optical system is adjusted so that the measured wavelength becomes a desired wavelength. (b) Analysis of the target element for analysis at two types of predetermined measurement angles obtained when monochromatic X-rays are incident on a plated steel plate at a predetermined angle of incidence using the optical system adjusted in this wavelength calibration step. K of
(c) Calculating the plating amount and plating film composition under the same conditions as those used to obtain the calibration curve. (d) measuring the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve; (d) measuring the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve; A step of determining the coating amount and coating composition of the plated steel sheet to be measured as the parameters in the calibration curve that most closely approximate the ratio.
(4)以下の(a)〜(d)の工程から成る被測定メッ
キ鋼板のメッキ付着量およびメッキ被膜組成の測定方法
。 (a)メッキ鋼板の測定時と同じ光学系を用いて、コン
プトン散乱の大きな材料の散乱板に照射し、このとき散
乱板から散乱するコンプトン散乱線の波長から予め求め
ておいた校正曲線に基づいて前記単色X線の波長を間接
的に測定し、この測定波長が所望の波長となるように前
記光学系を調整する波長校正工程、 (b)この波長校正工程で調整された光学系を用いてメ
ッキ鋼板に所定の入射角で単色のX線を入射した場合に
得られる2種類の所定の測定角での、分析目的元素のK
系列の蛍光X線強度又は強度比の検量線をメッキ付着量
およびメッキ被膜組成をパラメータとして予め求めてお
く工程、(c)前記検量線を求めたのと同じ条件で、メ
ッキ付着量およびメッキ被膜組成が未知の被測定メッキ
鋼板から得られる前記蛍光X線強度又は強度比を測定す
る工程、 (d)前記検量線から得られる蛍光X線強度又は強度比
を、前記測定された蛍光X線強度又は強度比に最も近づ
ける、検量線中のパラメータであるメッキ付着量および
メッキ被膜組成を、前記被測定メッキ鋼板のメッキ付着
量およびメッキ被膜組成とする工程。
(4) A method for measuring the coating amount and coating composition of a plated steel sheet to be measured, which comprises the following steps (a) to (d). (a) Using the same optical system used to measure the plated steel plate, irradiate the scattering plate made of a material with large Compton scattering, based on the calibration curve determined in advance from the wavelength of the Compton scattered radiation scattered from the scattering plate. (b) using the optical system adjusted in this wavelength calibration step; The K of the target element for analysis at two types of predetermined measurement angles obtained when monochromatic X-rays are incident on a plated steel plate at a predetermined angle of incidence.
(c) Calculating the plating amount and plating film composition under the same conditions as those used to obtain the calibration curve. (d) measuring the fluorescent X-ray intensity or intensity ratio obtained from the plated steel sheet of unknown composition; (d) converting the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve to the measured fluorescent Alternatively, a step of setting the coating amount and coating composition of the plated steel sheet to be the parameters in the calibration curve that most closely approximate the intensity ratio.
(5)X線を発生するX線発生装置と、このX線発生装
置から発生するX線を単色化するモノクロメータと、こ
のモノクロメータで単色化されたX線を前記メッキ鋼板
に所定の入射角で入射するとともに所定の受光角で受光
するスリット系と、前記メッキ鋼板から発生する分析目
的元素のK系列蛍光X線強度を異なる角度で測定する2
個の検出器と、これらの測定系を、強いコンプトン散乱
線を発生する散乱板上と前記メッキ鋼板上との間を適宜
移動させるトラバース機構と、このトラバース機構によ
る前記測定系の前記散乱板上への設定時、前記単色X線
の入射によって前記散乱板から散乱された散乱線の波長
から理論式を用いて前記散乱板に入射した単色X線の波
長を求める波長変換手段と、この波長変換手段によって
求めた波長が所望の波長となるように前記測定系を構成
する光学系を調整する波長調整手段と、この波長調整手
段によって調整された測定系で得られるべき理論強度又
は強度比の理論計算式を記憶する手段と、前記波長調整
手段によって光学系を調整した前記測定系を用いて実際
に測定された蛍光X線強度又は強度比を理論強度又は強
度比に変換する手段と、この変換された理論強度又は強
度比と理論計算式により得られる理論強度又は強度比の
差を最小にするメッキ付着量およびメッキ被膜組成を求
める手段とを有してなるメッキ鋼板のメッキ付着量およ
びメッキ被膜組成の測定装置。
(5) An X-ray generator that generates X-rays, a monochromator that monochromates the X-rays generated from the X-ray generator, and a predetermined incidence of the monochromatic X-rays on the plated steel plate. A slit system that makes light incident at an angle and receives light at a predetermined acceptance angle, and 2 that measures the K-series fluorescent X-ray intensity of the analysis target element generated from the plated steel plate at different angles.
a traverse mechanism for appropriately moving these measurement systems between a scattering plate that generates strong Compton scattered rays and the plated steel plate; a wavelength conversion means for determining the wavelength of the monochromatic X-rays incident on the scattering plate using a theoretical formula from the wavelength of the scattered rays scattered from the scattering plate due to the incidence of the monochromatic X-rays; A wavelength adjustment means for adjusting an optical system constituting the measurement system so that the wavelength determined by the means becomes a desired wavelength, and a theory of the theoretical intensity or intensity ratio that should be obtained by the measurement system adjusted by the wavelength adjustment means. means for storing a calculation formula; means for converting a fluorescent X-ray intensity or intensity ratio actually measured using the measurement system whose optical system is adjusted by the wavelength adjustment means into a theoretical intensity or intensity ratio; and this conversion. Plating coating amount and plating coating of a plated steel sheet, comprising means for determining the plating coating amount and plating coating composition that minimize the difference between the theoretical strength or strength ratio obtained by a theoretical calculation formula. Composition measuring device.
(6)X線を発生するX線発生装置と、このX線発生装
置から発生するX線を単色化するモノクロメータと、こ
のモノクロメータで単色化されたX線を前記メッキ鋼板
に所定の入射角で入射するとともに所定の受光角で受光
するスリット系と、前記メッキ鋼板から発生する分析目
的元素のK系列蛍光X線強度を異なる角度で測定する2
個の検出器と、これらの測定系を、強いコンプトン散乱
線を発生する散乱板上と前記メッキ鋼板上との間を適宜
移動させるトラバース機構と、このトラバース機構によ
る前記測定系の前記散乱板上への設定時、前記単色X線
の入射によって前記散乱板から散乱された散乱線の波長
から予め求めておいた校正曲線を用いて前記散乱板に入
射した単色X線の波長を求める波長変換手段と、この波
長変換手段によって求めた波長が所望の波長となるよう
に前記測定系を構成する光学系を調整する波長調整手段
と、この波長調整手段によって調整された測定系で得ら
れるべき理論強度又は強度比の理論計算式を記憶する手
段と、前記波長調整手段によって光学系を調整した前記
測定系を用いて実際に測定された蛍光X線強度または強
度比を理論強度又は強度比に変換する手段と、この変換
された理論強度又は強度比と理論計算式により得られる
理論強度又は強度比との差を最小にするメッキ付着量お
よびメッキ被膜組成を求める手段とを有してなるメッキ
鋼板のメッキ付着量およびメッキ被膜組成の測定装置。
(6) An X-ray generator that generates X-rays, a monochromator that monochromates the X-rays generated from the X-ray generator, and a predetermined incidence of the monochromatic X-rays on the plated steel plate. A slit system that makes light incident at an angle and receives light at a predetermined acceptance angle, and 2 that measures the K-series fluorescent X-ray intensity of the analysis target element generated from the plated steel plate at different angles.
a traverse mechanism for appropriately moving these measurement systems between a scattering plate that generates strong Compton scattered rays and the plated steel plate; wavelength conversion means for determining the wavelength of the monochromatic X-rays incident on the scattering plate using a calibration curve determined in advance from the wavelength of the scattered rays scattered from the scattering plate due to the incidence of the monochromatic X-rays; a wavelength adjustment means for adjusting the optical system constituting the measurement system so that the wavelength determined by the wavelength conversion means becomes a desired wavelength; and a theoretical intensity that should be obtained by the measurement system adjusted by the wavelength adjustment means. or converting the actually measured fluorescent X-ray intensity or intensity ratio into a theoretical intensity or intensity ratio using means for storing a theoretical calculation formula for the intensity ratio and the measurement system whose optical system is adjusted by the wavelength adjustment means. and means for determining the coating amount and coating composition that minimize the difference between the converted theoretical strength or strength ratio and the theoretical strength or strength ratio obtained by the theoretical calculation formula. Measuring device for plating deposition amount and plating film composition.
(7)X線を発生するX線発生装置と、このX線発生装
置から発生するX線を単色化するモノクロメータと、こ
のモノクロメータで単色化されたX線を前記メッキ鋼板
に所定の入射角で投射するとともに所定の受光角で受光
するスリット系と、前記メッキ鋼板から発生する分析目
的元素のK系列蛍光X線強度を異なる角度で測定する2
個の検出器と、これらの測定系を、強いコンプトン散乱
線を発生する散乱板上と前記メッキ鋼板上との間を適宜
移動させるトラバース機構と、このトラバース機構によ
る前記測定系の前記散乱板上への設定時、前記単色X線
の入射によって前記散乱板から散乱された散乱線の波長
から理論式を用いて前記散乱板に入射した単色X線の波
長を求める波長変換手段と、この波長変換手段によって
求めた波長が所望の波長となるように前記測定系を構成
する光学系を調整する波長調整手段と、この波長調整手
段によって調整された測定系で得られるべき理論強度又
は強度比の検量線を記憶する手段と、前記波長調整手段
によって光学系を調整した前記測定系を用いて実際に測
定された蛍光X線強度又は強度比と検量線より得られる
蛍光X線強度又は強度比の差を最小にするメッキ付着量
およびメッキ被膜組成を求める手段とを有してなるメッ
キ鋼板のメッキ付着量およびメッキ被膜組成の測定装置
(7) An X-ray generator that generates X-rays, a monochromator that monochromates the X-rays generated from the X-ray generator, and a predetermined incidence of the monochromatic X-rays on the plated steel plate. A slit system that projects light at an angle and receives light at a predetermined receiving angle, and 2 that measures the K-series fluorescent X-ray intensity of the analysis target element generated from the plated steel plate at different angles.
a traverse mechanism for appropriately moving these measurement systems between a scattering plate that generates strong Compton scattered rays and the plated steel plate; a wavelength conversion means for determining the wavelength of the monochromatic X-rays incident on the scattering plate using a theoretical formula from the wavelength of the scattered rays scattered from the scattering plate due to the incidence of the monochromatic X-rays; A wavelength adjustment means for adjusting the optical system constituting the measurement system so that the wavelength determined by the means becomes a desired wavelength, and a calibration of the theoretical intensity or intensity ratio that should be obtained by the measurement system adjusted by the wavelength adjustment means. the difference between the fluorescence X-ray intensity or intensity ratio actually measured using the measurement system in which the optical system is adjusted by the wavelength adjustment means and the fluorescence X-ray intensity or intensity ratio obtained from a calibration curve; A measuring device for measuring the amount of plating and the composition of the plating film on a plated steel sheet, comprising means for determining the amount of plating and the composition of the plating film that minimize the amount of plating and the composition of the plating film.
(8)X線を発生するX線発生装置と、このX線発生装
置から発生するX線を単色化するモノクロメータと、こ
のモノクロメータで単色化されたX線を前記メッキ鋼板
に所定の入射角で投射するとともに所定の受光角で受光
するスリット系と、前記メッキ鋼板から発生する分析目
的元素のK系列蛍光X線強度を異なる角度で測定する2
個の検出器と、これらの測定系を、強いコンプトン散乱
線を発生する散乱板上と前記メッキ鋼板上との間を適宜
移動させるトラバース機構と、このトラバース機構によ
る前記測定系の前記散乱板上への設定時、前記単色X線
の入射によって前記散乱板から散乱された散乱線の波長
から予め求めておいた校正曲線を用いて前記散乱板に入
射した単色X線の波長を求める波長変換手段と、この波
長変換手段によって求めた波長が所望の波長となるよう
に前記測定系を構成する光学系を調整する波長調整手段
と、この波長調整手段によって調整された測定系で得ら
れるべき理論強度又は強度比の検量線を記憶する手段と
、前記波長調整手段によって光学系を調整した前記測定
系を用いて実際に測定される蛍光X線強度又は強度比と
検量線より得られる蛍光X線強度又は強度比の差を最小
にするメッキ付着量及びメッキ被膜組成を求める手段と
を有してなるメッキ鋼板のメッキ付着量およびメッキ被
膜組成の測定装置。
(8) An X-ray generator that generates X-rays, a monochromator that monochromates the X-rays generated from the X-ray generator, and a predetermined incidence of the monochromatic X-rays on the plated steel plate. A slit system that projects light at an angle and receives light at a predetermined receiving angle, and 2 that measures the K-series fluorescent X-ray intensity of the analysis target element generated from the plated steel plate at different angles.
a traverse mechanism for appropriately moving these measurement systems between a scattering plate that generates strong Compton scattered rays and the plated steel plate; wavelength conversion means for determining the wavelength of the monochromatic X-rays incident on the scattering plate using a calibration curve determined in advance from the wavelength of the scattered rays scattered from the scattering plate due to the incidence of the monochromatic X-rays; a wavelength adjustment means for adjusting the optical system constituting the measurement system so that the wavelength determined by the wavelength conversion means becomes a desired wavelength; and a theoretical intensity that should be obtained by the measurement system adjusted by the wavelength adjustment means. or a means for storing a calibration curve of intensity ratios, and a fluorescent X-ray intensity actually measured using the measurement system whose optical system is adjusted by the wavelength adjustment means, or a fluorescent X-ray intensity obtained from the intensity ratio and the calibration curve. Alternatively, a device for measuring the coating amount and coating composition of a plated steel sheet, comprising means for determining the coating coating amount and the coating coating composition that minimize the difference in strength ratio.
(9)スリット系は、入射側にピンホールコリメータ、
受光側に幅可変の平板スリットを有してなる請求項5な
いし請求項8の何かに記載のメッキ鋼板のメッキ付着量
およびメッキ被膜組成の測定装置。
(9) The slit system has a pinhole collimator on the incident side,
9. The apparatus for measuring the coating amount and coating composition of a plated steel sheet according to any one of claims 5 to 8, comprising a flat plate slit with a variable width on the light receiving side.
JP1210643A 1989-08-17 1989-08-17 Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film Pending JPH0375549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1210643A JPH0375549A (en) 1989-08-17 1989-08-17 Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1210643A JPH0375549A (en) 1989-08-17 1989-08-17 Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film

Publications (1)

Publication Number Publication Date
JPH0375549A true JPH0375549A (en) 1991-03-29

Family

ID=16592707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1210643A Pending JPH0375549A (en) 1989-08-17 1989-08-17 Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film

Country Status (1)

Country Link
JP (1) JPH0375549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521437A (en) * 1993-07-05 1996-05-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor power module having an improved composite board and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521437A (en) * 1993-07-05 1996-05-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor power module having an improved composite board and method of fabricating the same

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
RU2390764C2 (en) X-ray fluorescence spectrometre
EP0389774B1 (en) Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
US5280176A (en) X-ray photoelectron emission spectrometry system
CN107110798B (en) Grazing incidence fluorescence x-ray analysis equipment and method
Kulow et al. A new experimental setup for time-and laterally-resolved X-ray absorption fine structure spectroscopy in a ‘single shot’
US8011830B2 (en) Method and system for calibrating an X-ray photoelectron spectroscopy measurement
TWI329736B (en) X-ray scattering with a polychromatic source
US5579362A (en) Method of and apparatus for the quantitative measurement of paint coating
JPH0660879B2 (en) Simultaneous analysis of coating thickness and composition
JPH0375549A (en) Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP2006313132A (en) Sample analyzing method and x-ray analyzing system
JPH02257045A (en) Method and device for measuring plated deposit of plated steel sheet and composition of plated film
JPS61210932A (en) Method and instrument for fluorescent x-ray analysis of laminated body
JPH0576574B2 (en)
JPH0288952A (en) Method and device for analyzing tissue
JPS649575B2 (en)
JPS6188128A (en) Method for measuring film thickness and composition of alloy coat
JPH02302654A (en) Method and appratus for measuring plated amount of double-layer plated steel plate and composition of plated film
JPH0335149A (en) Method and instrument for measuring plating deposition and plating film composition of plated steel sheet
JP2563016B2 (en) Fluorescent X-ray analysis method and apparatus using effective wavelength
JPH07167804A (en) Online analysis method of two-layer plated steel plate, and online analyzer therefor
JPH06331576A (en) Analysis of iron zinc alloy plating layer on iron
JPH04355313A (en) Method for measuring thickness of paint film on metal