JPH0335149A - Method and instrument for measuring plating deposition and plating film composition of plated steel sheet - Google Patents
Method and instrument for measuring plating deposition and plating film composition of plated steel sheetInfo
- Publication number
- JPH0335149A JPH0335149A JP16938489A JP16938489A JPH0335149A JP H0335149 A JPH0335149 A JP H0335149A JP 16938489 A JP16938489 A JP 16938489A JP 16938489 A JP16938489 A JP 16938489A JP H0335149 A JPH0335149 A JP H0335149A
- Authority
- JP
- Japan
- Prior art keywords
- intensity
- plated steel
- measured
- rays
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 title claims abstract description 106
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 85
- 239000010959 steel Substances 0.000 title claims abstract description 85
- 239000000203 mixture Substances 0.000 title claims description 49
- 238000000034 method Methods 0.000 title claims description 22
- 230000008021 deposition Effects 0.000 title abstract description 8
- 238000005259 measurement Methods 0.000 claims abstract description 51
- 238000004364 calculation method Methods 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 230000001678 irradiating effect Effects 0.000 claims abstract description 11
- 239000011248 coating agent Substances 0.000 claims description 40
- 238000000576 coating method Methods 0.000 claims description 40
- 238000011088 calibration curve Methods 0.000 claims description 20
- 238000004458 analytical method Methods 0.000 claims description 19
- 239000008199 coating composition Substances 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 239000010953 base metal Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910000640 Fe alloy Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 230000005260 alpha ray Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、被測定メッキ鋼板のメッキ付着量及びメッキ
被膜組成をオンラインで測定するメッキ鋼板のメッキ付
着量及びメッキ被膜組成の測定方法およびその測定装置
に係わり、特にメ・ソキ被膜が下地金属と同じ成分を含
む場合の分析に有効なメッキ鋼板のメッキ付着量および
メッキ被膜組成の測定方法およびその測定装置に関する
。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for measuring the coating weight and coating composition of a plated steel sheet by online measuring the coating weight and coating composition of a plated steel plate to be measured, and the method thereof. The present invention relates to a measuring device, and in particular to a method and device for measuring the amount of plating deposited on a plated steel sheet and the composition of the plating film, which is effective for analysis when the metal/sodium coating contains the same components as the underlying metal.
この種の被測定メッキ鋼板のメッキ付着量やメッキ被膜
組成を測定する場合、蛍光X線分析法が用いられている
。この蛍光X線分析法は、被測定メッキ鋼板にX線を照
射した後、メッキ厚さに比例して放射される蛍光X線を
測定するとともにこの測定値を検量線と比較しながら求
めるものであって、znメッキ鋼板やZn −Ni メ
ッキ鋼板の如くメッキ被膜が下地金属を含まないものに
ついてはオンラインでメッキ付着量やメッキ被膜組成を
測定することが可能である。Fluorescent X-ray analysis is used to measure the coating amount and coating composition of this type of plated steel sheet to be measured. This fluorescent X-ray analysis method irradiates the plated steel plate to be measured with X-rays, then measures the fluorescent X-rays emitted in proportion to the plating thickness, and compares this measured value with a calibration curve. Therefore, it is possible to measure the amount of plating and the composition of the plating film online for those whose plating film does not contain a base metal, such as a Zn-plated steel sheet or a Zn-Ni-plated steel sheet.
しかし、近年、Zn−Fe合金メッキ鋼板が耐蝕性、加
工性等で優れた特性を有することが注目されてきている
が、蛍光X線分析法ではメ・ノキ被膜中のFeによる蛍
光X線と下地金属であるFeによる蛍光X線との区別が
つけ難く、このため蛍光X線強度とメッキ付着量、メッ
キ被膜組成との関係を対応づけることが困難であるばか
りでなく、オンラインで分析することができない。However, in recent years, Zn-Fe alloy plated steel sheets have attracted attention for their excellent properties such as corrosion resistance and workability. It is difficult to distinguish it from the fluorescent X-rays caused by Fe, which is the base metal, and therefore it is not only difficult to correlate the fluorescent X-ray intensity with the amount of plating deposited and the composition of the plating film, but it is also difficult to analyze it online. I can't.
そこで、従来、以上のような不具合を改善するする方法
として、次の2つの分析法が提案されている。Therefore, the following two analysis methods have been proposed as methods for improving the above-mentioned problems.
その1つは、Zn−Fe合金メッキ鋼板上に多数の波長
をもった。いわゆる白色X線を照射した後、そのメッキ
鋼板の下地金属からの蛍光X線がX線侵入深さの点から
実質的に検出できない第1の測定角と、下地金属からの
蛍光X線を検出できる第2の1#1定角とζそそれぞれ
検出器を配置してそれぞれに系列の蛍光X線強度を測定
しこの両側定値に基づいてメッキ付着量およびメッキ被
膜組成を求めるオンライン分析法である(特開昭58−
223047号公報)。One of them had multiple wavelengths on a Zn-Fe alloy plated steel plate. After irradiating so-called white X-rays, the first measurement angle is such that the fluorescent X-rays from the base metal of the plated steel plate are virtually undetectable from the point of view of the X-ray penetration depth, and the fluorescent X-rays from the base metal are detected. This is an online analysis method that measures the fluorescence X-ray intensity of each series by arranging detectors for the second 1#1 constant angle and ζ, and determines the amount of plating and the composition of the plating film based on the constant values on both sides. (Unexamined Japanese Patent Publication No. 58-
223047).
他の1つは、Zn−Fe合金メッキ鋼板において被膜に
よる吸収を利用して下地金属のα−Feの回折X!Iか
らメッキ付tffiを求め、さらにメッキ被膜中のZn
−Fe合金相およη相から選ばれた1つ以上の相の回折
X線強度からメ被膜組成を求める方法である(特開昭6
0−169553号公報)。The other method is to use the absorption by the coating on a Zn-Fe alloy plated steel plate to detect the diffraction of α-Fe in the base metal (X!). Find the plated tffi from I, and further calculate the Zn in the plated film.
- This is a method for determining the coating composition from the diffraction X-ray intensity of one or more phases selected from the Fe alloy phase and the η phase (Japanese Patent Laid-Open No.
0-169553).
しかし、以上のように2つの分析法のうち、前者による
2つの測定角を用いた蛍光X線分析法では、入射X線と
して白色XvAを用いているために次のような問題が指
摘されている。However, as mentioned above, of the two analysis methods, the former fluorescent X-ray analysis method using two measurement angles uses white XvA as the incident X-ray, so the following problems have been pointed out. There is.
■−1白色X線中の高エネルギーのX!!!は、メッキ
鋼板被膜中での減衰が小さいために侵入深さが深くなる
性質があり、このため下地金属からの蛍光X線を検出し
得ない第1の測定角度としては5°以内と非常に小さい
角度にする必要がある。■-1 High energy X in white X-rays! ! ! has the property that the penetration depth is deep due to low attenuation in the coating of the plated steel sheet, and for this reason, the first measurement angle at which fluorescent X-rays from the underlying metal cannot be detected is extremely limited to within 5 degrees. It needs to be at a small angle.
その結果、メッキ鋼板面の上下動、つまりバタツキによ
る測定距離の変動および測定角の変動等が発生し易く、
測定精度が低下する問題がある。As a result, fluctuations in the measurement distance and measurement angle due to vertical movement of the plated steel plate surface, that is, flapping, are likely to occur.
There is a problem that measurement accuracy decreases.
■−2また、メッキ付着量およびメッキ被膜組成は、実
際にメッキ鋼板にX線を入射して得られる実測強度と予
め周知の理論強度計算式に与えて得られる理論強度とを
比較演算して求めることが考えられるが、理論強度の計
算の際にはX線管の経時変化などによる入射X線のスペ
クトル変動の影響を受けるので測定精度が低下する問題
がある。■-2 In addition, the amount of plating deposited and the composition of the plating film are calculated by comparing the measured strength obtained by actually irradiating the plated steel plate with X-rays and the theoretical strength obtained by applying it in advance to a well-known theoretical strength calculation formula. However, when calculating the theoretical intensity, there is a problem in that the measurement accuracy decreases because it is affected by spectral fluctuations of incident X-rays due to changes in the X-ray tube over time.
■−3また、前記実測強度と周知の理論強度計算式から
計算される理論強度との比較演算により分析値を求める
場合、理論強度の計算の際に波長積分が必要になるため
に計算時間が長くなり、測定時間の増加は否めない。■-3 In addition, when calculating the analytical value by comparing the above-mentioned measured intensity with the theoretical intensity calculated from the well-known theoretical intensity calculation formula, the calculation time is longer because wavelength integration is required when calculating the theoretical intensity. It is undeniable that the measurement time will increase.
■−4さらに、前記■−2で指摘した問題を回避するた
めに校正曲線を用いる方法があるが、この方法ではマト
リクス効果を考慮したモデルの作成に20〜30種類の
標準試料が必要になり、非常に煩雑な分析法とならざる
を得ない。■-4 Furthermore, there is a method of using a calibration curve to avoid the problem pointed out in ■-2 above, but this method requires 20 to 30 types of standard samples to create a model that takes matrix effects into consideration. However, this is a very complicated analysis method.
一方、後者の回折X線による分析法においては、■−l
下地金属のα−Feの回折X線強度は、メッキ付着量
だけでなく、鋼板の鋼種や板厚、メッキ鋼板の製造条件
等による異なる集合組織やメッキ被膜組成等に依存する
ことから測定精度の面で問題がある。On the other hand, in the latter analysis method using diffraction X-rays,
The diffraction X-ray intensity of α-Fe in the base metal depends not only on the coating amount but also on the different textures and plating film compositions caused by the steel type and thickness of the steel sheet, the manufacturing conditions of the plated steel sheet, etc., and therefore the measurement accuracy is affected. There is a problem in terms of
■−2一方、合金相の回折X線強度は、メツキ条件によ
り異なり、また溶融メッキ材と電気メッキ材では合金の
構造や組成が異なり、この場合にも同様に十分な測定精
度が得られない。■-2 On the other hand, the diffraction X-ray intensity of the alloy phase differs depending on the plating conditions, and the structure and composition of the alloy differ between hot-dip plated materials and electroplated materials, so sufficient measurement accuracy cannot be obtained in this case as well. .
本発明は上記実情に鑑みてなされたもので、メッキ鋼板
表面の変動の影響を少なくしてオンラインでメッキ付着
量およびメッキ被膜組成を測定でき、かつ、分析精度の
向上および分析時間の短縮化が図れ、少ない標準試料を
用いて確実にメッキ付着量およびメッキ被膜組成を測定
しうるメッキ鋼板のメッキ付着量およびメッキ被膜組成
の測定方法を提供することを目的とする。The present invention has been made in view of the above circumstances, and it is possible to measure the amount of plating and the composition of the plating film online while reducing the influence of fluctuations on the surface of the plated steel sheet, and also to improve the accuracy of analysis and shorten the analysis time. It is an object of the present invention to provide a method for measuring the amount of plating deposit and the composition of the plating film on a plated steel sheet, which can reliably measure the amount of plating deposit and the composition of the plating film using a small number of standard samples.
また、他の発明である測定装置の目的とするところは、
簡単な構成を用いてオンラインで正確にメッキ付着量お
よびメッキ被膜組成を測定することにある。In addition, the purpose of the measuring device, which is another invention, is to
The object of the present invention is to accurately measure the amount of plating coating and the composition of the plating film online using a simple configuration.
〔課題を解決するための手段および作用〕そこで、請求
項1に対応する発明は上記課題を解決するために、X線
発生装置から発生するX線を2種類の2次ターゲットに
照射し、それぞれの2次ターゲットから発生する特性X
線をそれぞれ所定の入射角でメッキ鋼板に照射した場合
にメッキ鋼板から発生する分析目的元素のに系列の所定
の受光角における強度または強度比の理論計算式を予め
求めておき、メッキ付着量およびメッキ被膜組成を既知
とする標準試料を用いて前記理論計算式を求めたと同じ
条件で蛍光X線強度又は強度比を実測しこの実測値と前
記理論計算式とに基づいて実測値を理論計算値に換算す
るための変換係数を予め求めておく。[Means and effects for solving the problem] Therefore, in order to solve the above problem, the invention corresponding to claim 1 irradiates two types of secondary targets with X-rays generated from an X-ray generator, and The characteristic X generated from the secondary target of
A theoretical formula for the intensity or intensity ratio of the target element to be analyzed generated from the plated steel plate when the beam is irradiated onto the plated steel plate at a predetermined angle of incidence is determined in advance, and the amount of plating deposited and the intensity ratio are determined in advance. The fluorescent X-ray intensity or intensity ratio is actually measured using a standard sample whose plating film composition is known under the same conditions as those used to obtain the theoretical calculation formula, and the actual value is converted to the theoretical calculation value based on this actual measurement value and the theoretical calculation formula. The conversion coefficient for converting to is determined in advance.
以上のようにして理論計算式および変換係数を求めた後
、メッキ付着量およびメッキ被膜組成を未知とする被測
定メッキ鋼板に対し、前記理論計算式を求めたのと同じ
測定条件を用いて当該被測定メッキ鋼板から得られる蛍
光X線強度又は強度比を測定し、その後、この蛍光X線
強度又は強度比を変換係数を用いて理論強度又は強度比
に変換する。そして、前記理論計算式より得られる理論
強度又は強度比を、前記変換された理論強度又は強度比
に最も近づける、理論計算式中のパラメータであるメッ
キ付着量およびメッキ被膜組成をもって前記被測定メッ
キ鋼板のメッキ付着量およびメッキ被膜組成とするもの
である。After determining the theoretical calculation formula and conversion coefficient as described above, use the same measurement conditions as those used to determine the theoretical calculation formula for a plated steel sheet to be measured whose coating weight and coating film composition are unknown. The fluorescent X-ray intensity or intensity ratio obtained from the plated steel plate to be measured is measured, and then this fluorescent X-ray intensity or intensity ratio is converted into a theoretical intensity or intensity ratio using a conversion coefficient. Then, the plated steel plate to be measured is determined using the plating coating amount and the plating film composition, which are parameters in the theoretical calculation formula, to bring the theoretical strength or strength ratio obtained from the theoretical calculation formula closest to the converted theoretical strength or strength ratio. The amount of plating deposited and the composition of the plating film are as follows.
次に、請求項2に対応する発明は、X線発生装置から発
生するX線を2種類の2次ターゲットに照射し、それぞ
れの2次ターゲットから発生する特性X線をそれぞれ所
定の入射角でメッキ鋼板に照射した場合にメッキ鋼板か
ら発生する分析目的元素のに系列の蛍光Xl!の所定の
受光角における強度又は強度比の検量線をメッキ付着量
およびメッキ被膜組成をパラメータとし、て求めておき
、しかる後、メッキ付着量およびメッキ被膜組成を未知
とする被測定メッキ鋼板に対し、前記検量線を求めたの
と同じ測定条件で当該被測定メッキ鋼板から得られる蛍
光X線強度または強度比を測定する。さらに、検量線よ
り得られる蛍光X線強度又は強度比を、前記測定された
蛍光X線強度又は強度比に最も近づける、検量線中のパ
ラメータであるメッキ付着量およびメッキ被膜組成をも
って前記被測定メッキ鋼板のメッキ付着量およびメッキ
被膜組成とするものである。Next, the invention corresponding to claim 2 irradiates two types of secondary targets with X-rays generated from an X-ray generator, and transmits characteristic X-rays generated from each secondary target at a predetermined angle of incidence. Fluorescence Xl of the series of analysis target elements generated from the plated steel plate when irradiated with the plated steel plate! A calibration curve of the intensity or intensity ratio at a predetermined acceptance angle is determined using the plating amount and the plating film composition as parameters, and then the calibration curve is calculated for the plated steel sheet to be measured whose plating amount and plating film composition are unknown. The fluorescent X-ray intensity or intensity ratio obtained from the plated steel sheet to be measured is measured under the same measurement conditions as those used to obtain the calibration curve. Further, the measured plating is determined using the plating coating amount and plating film composition, which are parameters in the calibration curve, which bring the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve closest to the measured fluorescent X-ray intensity or intensity ratio. The amount of plating deposited on the steel plate and the composition of the plating film.
次に、請求項3に対応する発明は、X線を発生するX線
発生装置と、このX線発生装置から発生するX線を照射
して発生する特性X線を被測定メッキ鋼板への入射X線
とする反射型の2次ターゲット部と、XI!のパスライ
ンを決めて被測定メッキ鋼板に所定の入射角で投IIす
るとともに所定の受光角で受光するスリット系と、被測
定メッキ鋼板から発生する分析目的元素のに系列蛍光強
度をそれぞれ所定の角度で測定する2個の検出器と、こ
れらの測定系で得られるべき理論強度又は強度、比の理
論計算式を記憶する手段と、実際に測定された蛍光X線
強度又は強度比を理論強度又は強度比に変換する手段と
、この変換された理論強度又は強度比と理論計算式より
得られ・る理論強度又は強度比の差を最小にするメッキ
付着量およびメッキ被膜組成を求める手段とを備えたも
のである。Next, the invention corresponding to claim 3 includes an X-ray generator that generates X-rays, and a method for irradiating the X-rays generated from the X-ray generator to make the characteristic X-rays generated to be incident on a plated steel plate to be measured. A reflective secondary target part that emits X-rays, and XI! A slit system that determines a pass line and projects the light onto the plated steel plate to be measured at a predetermined incident angle and receives the light at a predetermined reception angle, and a series fluorescence intensity of the target element to be analyzed generated from the plated steel plate to be measured at a predetermined value. Two detectors that measure angles, a means for storing theoretical calculation formulas for the theoretical intensities or intensities and ratios that should be obtained with these measurement systems, and a means for storing the actually measured fluorescent X-ray intensities or intensity ratios as the theoretical intensities. or a means for converting it into an intensity ratio, and a means for determining the plating coating amount and plating film composition that minimize the difference between the converted theoretical strength or strength ratio and the theoretical strength or strength ratio obtained from the theoretical calculation formula. It is prepared.
従って、以上のような手段を講じたことにより、X線発
生装置から発生されたX線を2次ターゲットに照射して
得られる特性X線を所定の入射角で被測定メッキ鋼板へ
入射し、これによって被測定メッキ鋼板から発生する分
析目的元素のに系列蛍光X線強度を2個の検出器を用い
て所定の受光角で検出する。Therefore, by taking the above measures, the characteristic X-rays obtained by irradiating the secondary target with X-rays generated from the X-ray generator are incident on the plated steel plate to be measured at a predetermined incident angle, As a result, the series fluorescent X-ray intensity of the analysis target element generated from the plated steel plate to be measured is detected at a predetermined acceptance angle using two detectors.
そして、この2個の検出器で測定した蛍光X線強度又は
強度比を理論強度又は強度比に変換し、またメッキ付H
mおよびメッキ被膜組成を可変パラメータとして理論計
算式により理論強度又は強度比を計算しこの計算値が前
記変換値にづくパラメータから被測定メッキ鋼板のメッ
キ付着量およびメッキ被膜組成を得るものである。Then, the fluorescent X-ray intensity or intensity ratio measured by these two detectors is converted to the theoretical intensity or intensity ratio, and the plated H
The theoretical strength or strength ratio is calculated using a theoretical calculation formula using m and the plating film composition as variable parameters, and this calculated value is used to obtain the plating adhesion amount and plating film composition of the plated steel sheet to be measured from the parameters based on the converted values.
また、請求項4に対応する発明は、請求項3に対応する
発明に記載する反射型の2次ターゲット部に代えて透過
型の2次ターゲットを設けた構成である。Further, the invention corresponding to claim 4 is a configuration in which a transmission type secondary target is provided in place of the reflective type secondary target section described in the invention corresponding to claim 3.
さらに、請求項5に対応する発明は、X線発生装置、反
射型2次ターゲット部、スリット系および2個の検出器
等からなる測定系のほか、これらの測定系で得られるべ
き理論強度又は強度比の検量線を記憶する記憶手段と、
実際に測定される蛍光X線強度又は強度比と検量線によ
り得られる蛍光X線強度又は強度比の差を最小にするメ
ッキ付着量およびメッキ被膜組成を求める手段とを備え
たものである。Furthermore, the invention corresponding to claim 5 includes a measurement system consisting of an X-ray generator, a reflective secondary target section, a slit system, two detectors, etc., as well as the theoretical intensity or a storage means for storing a calibration curve of intensity ratio;
This apparatus is equipped with means for determining the amount of plating deposited and the plating film composition that minimizes the difference between the actually measured fluorescent X-ray intensity or intensity ratio and the fluorescent X-ray intensity or intensity ratio obtained from a calibration curve.
この装置においては、理論計算式に代えて検量線を用い
て上記とほぼ同一の信号処理手段により、被測定メッキ
鋼板のメッキ付着量およびメッキ被膜組成を測定する。In this apparatus, the amount of plating deposited and the plating film composition of the plated steel sheet to be measured are measured by using a calibration curve instead of the theoretical calculation formula and by using almost the same signal processing means as described above.
さらに、請求項6に対応する発明は、前記請求項5に対
応する発明の反射型2次ターゲット部に代えて透過型2
次ターゲット部を設けた構成である。Furthermore, the invention corresponding to claim 6 provides a transmissive type secondary target section in place of the reflective secondary target section of the invention corresponding to claim 5.
This configuration includes a second target section.
以下、本発明の詳細な説明するに先立ち、オンライン測
定に適したものとするために、次のような条件を満たす
測定系で構成するものとする。Hereinafter, prior to a detailed explanation of the present invention, it is assumed that the present invention is constructed with a measurement system that satisfies the following conditions in order to be suitable for on-line measurement.
(イ) 入射X線は市販のX線管を用いて十分な蛍光X
線強度が得られること。(b) Incident X-rays are collected using a commercially available X-ray tube to generate sufficient fluorescent X-rays.
Obtain line strength.
(ロ) X線入射角、蛍光X線の受光角等の測定角はオ
ンラインで実現可能な測定角、っまり5@以上とするこ
と。(b) Measurement angles such as the X-ray incident angle and the fluorescent
また、メッキ鋼板から発生する蛍光X線の強度は放射線
検出器で測定するが、望ましくは半導体検出器を用いて
測定する。Further, the intensity of fluorescent X-rays generated from the plated steel plate is measured using a radiation detector, preferably using a semiconductor detector.
次に、Zn−Fe合金メッキ鋼板のメッキ付着量および
メッキ被膜組成(Fe%)を測定する方法の実施例につ
いて説明する。Next, an example of a method for measuring the coating amount and coating film composition (Fe%) of a Zn--Fe alloy plated steel sheet will be described.
すなわち、この測定方法は、第1図および第2図に示す
如く被測定メッキ鋼板11上に2wi類の異なる2次タ
ーゲットから発生する特性X@1.。That is, this measurement method uses the characteristic X@1. .
■2を入射角φ1.φ2で照射しこのとき被測定メッキ
鋼板11から発生するFeka線の強度およびZnka
線の強度を受光角ψ1.ψ2で測定する。そこで、この
測定角(φ1.ψ、)の条件下で測定したFeka線強
度、Znka線強度をそれぞれI’P#J I’za
とし、また測定角(φ2゜ψ2)の条件下で測定したF
eka線強度。■2 is the incident angle φ1. The intensity of the Feka wire and Znka generated from the plated steel plate 11 to be measured at this time is irradiated with φ2.
The intensity of the line is determined by the acceptance angle ψ1. Measure at ψ2. Therefore, the Feka line intensity and Znka line intensity measured under the conditions of this measurement angle (φ1.ψ, ) are respectively I'P#J I'za
and F measured under the conditions of measurement angle (φ2゜ψ2)
eka line intensity.
Znka線強度をそれぞれ12P @ l I2Z
mとし、X t ” I’P−/ I’Z。Znka line intensity is 12P @ l I2Z respectively
m, and X t ”I'P-/I'Z.
X 2 ” Fp*/ FZa
なる演算を行う(Sl)。さらに、Xl、X2を用いて
理論値Y、、Y2に変換する。ここで、X、、X2を理
論値Y、、Y2に変換するに際し、理論値とは測定条件
と同じ入射X線、幾何学的条件で測定した場合に得られ
る蛍光X線強度を、メッキ鋼板のメッキ付着量およびメ
ッキ被膜組成をパラメータとして理論計算式により計算
しこの値に基づいて前記X t 、 X 2に対応する
値として求めたものである。実際の測定値は検出器の感
度特性、スリット系の影響等によりこれらの理論強度と
は異なった値となる。Perform the calculation (Sl): In this case, the theoretical value is the fluorescence X-ray intensity obtained when measuring under the same incident X-ray and geometric conditions as the measurement conditions, calculated using a theoretical formula using the coating amount of the plated steel sheet and the coating film composition as parameters. Based on this value, the values corresponding to X t and X 2 are determined.Actual measured values may differ from these theoretical intensities due to the sensitivity characteristics of the detector, the influence of the slit system, etc. .
そこで、本発明方法では、以下の換算式を用いて実測値
Xl、X2を理論値Y、、Y2に変換する(S2)。Therefore, in the method of the present invention, the measured values Xl and X2 are converted into theoretical values Y, Y2 using the following conversion formula (S2).
Y、−al x1+bl
Yz =a2 X2 +b2
なお、上式においてa l + a 2 r b
l + b2は変換係数であって、これは予めメッキ付
着量およびメッキ被膜組成を既知とする標準試料を用い
、前記理論計算式を求めたのと同じ条件で蛍光X線強度
又は強度比を実測しこの実測値を前記理論計算式を用い
て理論強度又は強度比に換算することにより求める。す
なわち、標準試料のメッキ付着量およびメッキ被膜組成
を用いて理論計算式で計算した値をY、、Y2とし、実
測蛍光X線強度から計算したX、、I2との間に上記式
が成立するように、回帰分析等によって変換係数al。Y, -al x1 + bl Yz = a2 X2 + b2 In addition, in the above formula, a l + a 2 r b
l + b2 is a conversion coefficient, which is obtained by actually measuring the fluorescent X-ray intensity or intensity ratio under the same conditions as those used to obtain the theoretical calculation formula using a standard sample whose plating coating amount and plating film composition are known in advance. It is determined by converting the actual measured value of the strength into a theoretical intensity or intensity ratio using the above-mentioned theoretical calculation formula. In other words, the above formula holds between Y, Y2, which is calculated using the theoretical calculation formula using the plating deposition amount and plating film composition of the standard sample, and X,, I2, which is calculated from the actually measured fluorescent X-ray intensity. As such, the conversion coefficient al is determined by regression analysis or the like.
a2.bl、b2を予め求めておく。a2. bl and b2 are determined in advance.
このように理論計算式を使用し・、実際の測定系との差
を標準試料を使用して構成する方法を採用したので、少
ない標準試料を用いてメッキ付着量およびメッキ被膜組
成と蛍光X線強度又は強度比の関係式を求めることがで
きる。In this way, we used a theoretical calculation formula and adopted a method of configuring the differences with the actual measurement system using standard samples. A relational expression of intensity or intensity ratio can be obtained.
次に、S2において理論値Ys、Yzを求めたならば、
引き続き、メッキ付着量およびFe%を可変したパラメ
ータPk(k−1)を用いて、既存の蛍光X線強度計算
式から上記Yl、Y2に対応するY、、Y2を求める(
93.S4)。しかる後、S5に移行し、ここでは、
(Y+ Yl ) 2+ (Y2 +Y2 ) 2な
る演算をを行い、さらにパラメータPkを変えて同様な
演算を行い(S6.S4.S5)、これら演算値のψで
最も小さくなる演算値のときのパラメータの値を決定し
くS7)、この決定パラメータ値をもってメッキ付H1
tおよびFe%とすることにより、被測定メッキ鋼板1
1のメッキ付着量およびメッキ被膜組成を得るものであ
る。Next, if the theoretical values Ys and Yz are found in S2,
Subsequently, using the parameter Pk (k-1) in which the plating adhesion amount and Fe% are varied, Y, , Y2 corresponding to the above Yl, Y2 are determined from the existing fluorescent X-ray intensity calculation formula (
93. S4). After that, the process moves to S5, where the calculation (Y+ Yl ) 2+ (Y2 +Y2 ) 2 is performed, and the same calculation is performed by changing the parameter Pk (S6.S4.S5), and these calculation values are Determine the value of the parameter when the calculated value is the smallest in ψ (S7), and use this determined parameter value to select H1 with plating.
By setting t and Fe%, the plated steel plate 1 to be measured
This results in a plating coating weight and a plating film composition of 1.
次に、以上ような測定方法を用いたときの分析結果につ
いて具体的に説明する。今、Xlの測定条件として入射
X線11、測定角(φ1.ψ1)、I2の測定条件とし
て入射X線I2、測定角(φ2.ψ2)とする。Next, analysis results obtained using the above measurement method will be specifically explained. Now, the measurement conditions for Xl are incident X-ray 11 and measurement angle (φ1.ψ1), and the measurement conditions for I2 are incident X-ray I2 and measurement angle (φ2.ψ2).
なお、荊述した(イ)の条件を満足させるためにX線管
、2次ターゲットとしては、例えば入射X線11を得る
ためにタングステン・フィラメントX線管およびタング
ステン板を用い、また入射X線I2を得るためにタング
ステン・フィラメントX線管およびモリブデン板を用い
る。そして、このようなX線管、2次ターゲットを用い
れば、低角側の測定角(φ1 (≦φ2)ψ、(≦φ2
))を15°以上とすることができ、前記(ロ)の条件
を充分に満足させることができる。その結果、メッキ鋼
板11面のバタツキによる測定距離および測定角の変動
の影響を小さくできる。In addition, in order to satisfy the condition (a) mentioned above, a tungsten filament X-ray tube and a tungsten plate are used as the X-ray tube and the secondary target, for example, to obtain the incident X-rays 11. A tungsten filament X-ray tube and a molybdenum plate are used to obtain I2. If such an X-ray tube and secondary target are used, the measurement angle on the low angle side (φ1 (≦φ2)ψ, (≦φ2
)) can be set to 15° or more, and the condition (b) above can be fully satisfied. As a result, the influence of fluctuations in the measurement distance and measurement angle due to the fluttering of the surface of the plated steel plate 11 can be reduced.
なお、XlとI2によりメッキ付着量およびFe%に対
する特性に差があるほど精度が向上するので、I2は1
1に比べてメッキ被膜に対する減衰が小さい入射X線と
し、測定角(φ2.φ2)も(φ1.ψ1〉に比べて大
きい角度とし、蛍光X線を検出できる最大深さ、つまり
分析深さを大きくした。さらに、測定距離変動を小さく
するためには、入射X線のビーム径を小さくし、かつ、
検出器の視野を大きくし、測定距離変動に拘らず入射x
vAを検出することが望ましい。そこで、入射側はφ2
〜5■のピンホールコリメータ、受光側は検出器の窓を
開放とすることにより実現できる。Note that the accuracy improves as there is a difference between Xl and I2 in the characteristics with respect to the amount of plating and Fe%, so I2 is set to 1.
The incident X-rays have a smaller attenuation to the plating film compared to 1, and the measurement angle (φ2.φ2) is also larger than (φ1.ψ1〉), and the maximum depth at which fluorescent Furthermore, in order to reduce measurement distance fluctuations, the beam diameter of the incident X-rays must be made small, and
The field of view of the detector is enlarged, and the incident x
It is desirable to detect vA. Therefore, the incident side is φ2
A pinhole collimator of ~5■ can be realized by opening the window of the detector on the light receiving side.
次に、他のもう1つの発明方法としては、多数の標準試
料を使用することが可能な場合、前記理論計算式に代え
て標準試料を使用してメッキ付着量およびメッキ被膜組
成と蛍光X線強度又は強度比の関係式、すなわち検量線
を用いて被測定メッキ鋼板11のメッキ付着量およびメ
ッキ被膜組成を求めてもよい。Next, as another method of the invention, when it is possible to use a large number of standard samples, the standard samples are used instead of the theoretical calculation formula to determine the amount of plating, the composition of the plating film, and the fluorescent X-rays. The amount of plating deposited and the composition of the plating film on the plated steel sheet 11 to be measured may be determined using a relational expression of the strength or the strength ratio, that is, a calibration curve.
次に、本発明装置の実施例について第3図を用いて説明
する。同図において11は被測定メッキ鋼板であって、
このメッキ鋼板11の上部に測定系12が設置されてい
る。この測定系12には所定の方向にX線を発生する2
個のX線管21゜31と、このX線管21.31からス
リットとして機能するピンホールコリメータ22.32
を介して入射される白色X線によって特性X線を発生し
、かつ、この発生された特性X線を所望の入It角度で
被測定メッキ鋼板11へ入射する反射型2次ターゲット
23.33と、被測定メッキ鋼板11から得られた°蛍
光X線強度を幅可変の平板スリット24.34を介して
測定する検出器25゜35とによって構成されている。Next, an embodiment of the device of the present invention will be described using FIG. 3. In the figure, 11 is a plated steel plate to be measured,
A measurement system 12 is installed above the plated steel plate 11. This measurement system 12 includes two systems that generate X-rays in a predetermined direction.
X-ray tubes 21.31 and pinhole collimators 22.32 that function as slits from the X-ray tubes 21.31.
A reflective secondary target 23.33 generates characteristic X-rays from white X-rays incident through the target and makes the generated characteristic X-rays incident on the plated steel plate 11 to be measured at a desired angle of incidence It. , a detector 25, and a detector 25, which measures the fluorescence X-ray intensity obtained from the plated steel plate 11 to be measured through a flat plate slit 24, 34 whose width is variable.
26.36はピンホールコリメータである。また、これ
らX線管21.31、反射型2次ターゲット23.33
、スリット22.24.32,34、検出器25゜35
等は駆動制御部13からの駆動制御信号で位置調整可能
となっている。26.36 is a pinhole collimator. In addition, these X-ray tubes 21.31, reflective secondary targets 23.33
, slit 22.24.32,34, detector 25°35
etc. can be adjusted in position using a drive control signal from the drive control section 13.
14は信号処理手段であって、これは2個の検出器25
.35で測定された蛍光X線強度又は強度比を理論強度
又は強度比、つまり理論値に変換する理論値変換手段1
5、メッキ付着量およびFc%を可変パラメータとして
既存の蛍光X線強度計算式により理論値を計算する理論
値計算手段16、前記理論値変換手段15で褥た理論値
と理論値計算手段16で得られた理論値とが等しくなる
パラメータを決定するパラメータ値決定手段17等によ
って構成され、このパラメータ値をメッキ付着量および
メッキ被膜組成とすることにより、被測定メッキコウハ
ンのメッキ付着量およびメッキ被膜組成を得るものであ
る。14 is a signal processing means, which includes two detectors 25
.. Theoretical value conversion means 1 for converting the fluorescent X-ray intensity or intensity ratio measured in 35 into a theoretical intensity or intensity ratio, that is, a theoretical value.
5. Theoretical value calculation means 16 that calculates a theoretical value using an existing fluorescent X-ray intensity calculation formula using the plating adhesion amount and Fc% as variable parameters, and the theoretical value calculated by the theoretical value conversion means 15 and the theoretical value calculation means 16. The parameter value determining means 17 determines a parameter that is equal to the obtained theoretical value, and by using this parameter value as the plating amount and plating film composition, the plating amount and plating film composition of the plated kohan to be measured are determined. The composition is obtained.
次に、以上のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as above will be explained.
2つのX線管21.31から発生された白色X線はピン
ホールコリメータ22.32を通り、さらに反射型2次
ターゲット23.33に当たって特性X線を発生する。White X-rays generated from the two X-ray tubes 21.31 pass through a pinhole collimator 22.32 and further strike a reflective secondary target 23.33 to generate characteristic X-rays.
この2次ターゲット23.33から発生された特性X線
は被測定メ・ソキ鋼板11に対しそれぞれ入射角φ3.
φ2なる角度で照射される。なお、X線管21から発生
される白色X線を反射型2次ターゲット23に照射し、
これからメッキ被膜に対して減衰が大きい入射x!II
+を取り出して被測定メッキ鋼板11への入射X線とし
、一方、X線管31側で発生される白色X線を反射型2
次ターゲット33に照射し、これから入射X線11に比
べてメッキ被膜に対して減衰がはるかに小さい入射X線
I2を取り出して被測定メッキ鋼板11への入射X線と
する。The characteristic X-rays generated from the secondary targets 23 and 33 have an incident angle of φ3.
It is irradiated at an angle of φ2. Note that the reflective secondary target 23 is irradiated with white X-rays generated from the X-ray tube 21,
From now on, the incident x will have a large attenuation against the plating film! II
+ is taken out and used as the incident X-ray to the plated steel plate 11 to be measured, and on the other hand, the white X-ray generated on the X-ray tube 31 side is taken out from the reflective type 2
Next, the target 33 is irradiated, and incident X-rays I2, which are much less attenuated with respect to the plating film than the incident X-rays 11, are taken out and used as incident X-rays on the plated steel plate 11 to be measured.
そして、入射X線I、、12を照射後、被測定メッキ鋼
板11から発生するZn、Feのにα線強度をそれぞれ
受光角ψ1.ψ2の角度をもって検出器25.35で検
出する。しかる後、理論値変換手段15を用いて雨検出
器25.35で得ら。After irradiating the incident X-rays I, , 12, the α-ray intensity of Zn and Fe generated from the plated steel plate 11 to be measured is measured at the acceptance angle ψ1. It is detected by the detector 25.35 at an angle of ψ2. Thereafter, it is obtained by the rain detector 25.35 using the theoretical value conversion means 15.
れた蛍光X線強度等に基づいて前記XI、X2を求めた
後、これを理論値に変換し、パラメータ値決定手段17
に送出する。一方、理論値計算手段16ではメッキ付着
量およびFe%を順次可変パラメータとしながら既存の
蛍光X線強度計算式により理論値を求めながらパラメー
タ値決定手段17に送出する。そこで、このパラメータ
値決定手段17では、理論値変換手段15から送られて
くる理論値と順次理論値計算手段16でパラメータを変
えて得られる理論値とを用いて所定の演算を実行し、両
理論値が等しくなるときのパラメータ値を決定しこのパ
ラメータ値から被測定メ・ソキ鋼板11のメッキ付着量
およびメッキ被膜組成を得るものである。After determining the XI and X2 based on the fluorescent X-ray intensity etc. obtained, the values are converted to theoretical values and the parameter value determining means 17
Send to. On the other hand, the theoretical value calculation means 16 sequentially uses the plating deposition amount and Fe% as variable parameters and sends the theoretical values to the parameter value determination means 17 while calculating them using the existing fluorescent X-ray intensity calculation formula. Therefore, this parameter value determining means 17 executes a predetermined calculation using the theoretical value sent from the theoretical value converting means 15 and the theoretical value obtained by sequentially changing the parameters in the theoretical value calculating means 16, and Parameter values at which the theoretical values become equal are determined, and from these parameter values, the amount of plating deposited and the composition of the plating film on the steel plate 11 to be measured are obtained.
ちなみに、第4図および第5図は第3図の装置を用いて
得られた分析結果を示す図である。そのうち、第4図は
メッキ付着量、第5図はメッキ被膜組成を示す。これら
の図から明らかなように、測定距離変動、測定角度変動
および温湿度変動等を加わる実ラインであるにも拘らず
、測定時間10秒という短い時間で高精度に測定できる
。また、この分析値はFeまたはZnの蛍光X線強度で
はなく、FeおよびZnの蛍光X線の強度比から求めた
が、この強度比を取ることにより温湿度変動、経時変化
の影響を低減できる。Incidentally, FIGS. 4 and 5 are diagrams showing analysis results obtained using the apparatus shown in FIG. 3. Of these, FIG. 4 shows the amount of plating deposited, and FIG. 5 shows the composition of the plating film. As is clear from these figures, even though this is an actual line that includes measurement distance fluctuations, measurement angle fluctuations, temperature and humidity fluctuations, etc., highly accurate measurements can be made in a short measurement time of 10 seconds. In addition, this analysis value was obtained from the intensity ratio of Fe and Zn fluorescent X-rays rather than the fluorescent X-ray intensity of Fe or Zn, but by taking this intensity ratio, it is possible to reduce the effects of temperature/humidity fluctuations and changes over time. .
なお、本発明装置は理論計算式を用いて行ったか、この
理論計算式に代えて検量線を用いて行ってもよい。Note that the apparatus of the present invention was performed using a theoretical calculation formula, or may be performed using a calibration curve in place of this theoretical calculation formula.
また、第3図では、2管球方式を用いたが、通常のX線
管は複数のX線取り出し窓を持つので、1管球方式とす
ることも可能である。Further, in FIG. 3, a two-tube system is used, but since a normal X-ray tube has a plurality of X-ray extraction windows, it is also possible to use a one-tube system.
その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。In addition, the present invention can be implemented with various modifications without departing from the gist thereof.
以上説明したように本発明によれば次に述べるように種
々の効果を奏する。As explained above, according to the present invention, various effects can be achieved as described below.
先ず、請求項1,2の発明においては、2次ターゲット
を用いることによってメッキ被膜による吸収の大きな波
長のX線を取り出して被測定メッキ鋼板に照射するので
、従来に比べて大きな測定角で蛍光X線強度を測定でき
、被測定メッキ鋼板のバタツキによる測定距離変動およ
び測定角変動の影響を低減でき、かつ、入t4.I X
線のスペクトル変動の影響を小さくできる。また、入射
X線として2次ターゲットから発生する特性X線を用い
ているために波長積分を必要とせず、測定精度の向上お
よび測定時間の短縮化を図ることができる。First, in the inventions of claims 1 and 2, by using a secondary target, X-rays with wavelengths that are largely absorbed by the plating film are extracted and irradiated onto the plated steel plate to be measured, so that fluorescence can be detected at a larger measurement angle than in the past. It is possible to measure X-ray intensity, reduce the influence of measurement distance fluctuations and measurement angle fluctuations due to fluttering of the plated steel plate to be measured, and enter t4. IX
The influence of line spectrum fluctuations can be reduced. Further, since characteristic X-rays generated from the secondary target are used as incident X-rays, wavelength integration is not required, and measurement accuracy can be improved and measurement time can be shortened.
また、測定上必要な標準試料は実測値から理論値への変
換パラメータを求めるために数種類でよく、オンライン
に適するものとすることができる。Further, several types of standard samples are required for measurement in order to obtain conversion parameters from actual measured values to theoretical values, and the standard sample can be suitable for online measurement.
次に、請求項3〜6の発明では、非常に簡単な構成で実
現でき、かつ、オンラインで被測定メッキ鋼板のメッキ
付着量およびメッキ被膜組成を高精度で測定でき、メッ
キ製品の品質向上に大きく貢献させることができる。Next, the inventions of claims 3 to 6 can be realized with a very simple configuration, and the coating amount and coating composition of the plated steel sheet to be measured can be measured with high precision online, which improves the quality of plated products. It can make a big contribution.
第1図は本発明方法を用いたときのX線と被測定メッキ
鋼板との関係を示す図、第2図は同じく本発明方法によ
る分析動作を説明する図、第3図は本発明装置の一実施
例を示す構成図、第4図および第5図は本発明装置を用
いて得られる分析結果の図である。
11・・・被測定メッキ鋼板、12・・・測定系、21
゜31・・・X線管(X線発生装置)、23.33・・
・2次ターゲット、25.35・・・検出器、13・・
・駆動制御部、14・・・信号処理手段、15・・・理
論値変換手段、16・・・理論値計算手段、17・・・
パラメータ値決定手段。Fig. 1 is a diagram showing the relationship between X-rays and a plated steel plate to be measured when using the method of the present invention, Fig. 2 is a diagram illustrating the analysis operation by the method of the present invention, and Fig. 3 is a diagram of the apparatus of the present invention. A configuration diagram showing one embodiment, and FIGS. 4 and 5 are diagrams of analysis results obtained using the apparatus of the present invention. 11... Plated steel plate to be measured, 12... Measurement system, 21
゜31...X-ray tube (X-ray generator), 23.33...
・Secondary target, 25.35...detector, 13...
- Drive control section, 14... Signal processing means, 15... Theoretical value conversion means, 16... Theoretical value calculation means, 17...
Parameter value determination means.
Claims (6)
キ鋼板のメッキ付着量およびメッキ被膜組成の測定方法
。 (a)X線発生装置から発生するX線を2種類の2次タ
ーゲットに照射し、それぞれの2次ターゲットから発生
する特性X線をそれぞれ所定の入射角でメッキ鋼板に照
射した場合にメッキ鋼板から得られる分析目的元素のK
系列の蛍光X線の所定の受光角における強度又は強度比
の理論計算式を予め定めておく工程、 (b)メッキ付着量およびメッキ被膜組成が既知の標準
試料を用い、前記理論計算式を求めたのと同じ条件で、
蛍光X線強度又は強度比を実測しこの実測値を前記理論
計算式により理論計算値に換算する変換係数を予め求め
ておく工程、 (c)前記理論計算式を求めたのと同じ条件で、メッキ
付着量およびメッキ被膜組成が未知の被測定メッキ鋼板
から得られる前記蛍光X線強度又は強度比を測定し、前
記変換係数を使用して理論強度又は強度比に変換する工
程、 (d)理論計算式より得られる理論強度又は強度比を、
前記変換された理論強度又は強度比に最も近づける、理
論計算式中のパラメータであるメッキ付着量および被膜
組成を、前記被測定メッキ鋼板のメッキ付着量およびメ
ッキ被膜組成とする工程。(1) A method for measuring the coating amount and coating composition of a plated steel sheet to be measured, which comprises the following steps (a) to (d). (a) When two types of secondary targets are irradiated with X-rays generated from an X-ray generator, and the characteristic X-rays generated from each secondary target are irradiated onto the plated steel plate at a predetermined angle of incidence, K of the target element for analysis obtained from
a step of predetermining a theoretical calculation formula for the intensity or intensity ratio of a series of fluorescent X-rays at a predetermined acceptance angle; (b) determining the theoretical calculation formula using a standard sample with a known plating amount and plating film composition; Under the same conditions as
a step of actually measuring the fluorescent X-ray intensity or intensity ratio and calculating in advance a conversion coefficient for converting this measured value into a theoretically calculated value using the theoretical calculation formula; (c) under the same conditions as those used to calculate the theoretical calculation formula; a step of measuring the fluorescent X-ray intensity or intensity ratio obtained from a plated steel sheet to be measured whose coating amount and coating film composition are unknown, and converting it into a theoretical intensity or intensity ratio using the conversion coefficient; (d) theory The theoretical strength or strength ratio obtained from the calculation formula,
A step of setting the coating amount and coating composition, which are parameters in the theoretical calculation formula, that are closest to the converted theoretical strength or strength ratio, as the coating coating amount and coating coating composition of the plated steel sheet to be measured.
キ鋼板のメッキ付着量およびメッキ被膜組成の測定方法
。 (a)X線発生装置から発生するX線を2種類の2ター
ゲットに照射し、それぞれの2次ターゲットから発生す
る特性X線をそれぞれ所定の入射角で、メッキ付着量お
よびルメッキ被膜組成が既知の標準試料に照射した場合
に標準試料から得られる分析目的元素のK系列の蛍光X
線の所定の受光角における強度又は強度比の検量線をメ
ッキ付着量およびメッキ被膜組成をパラメータとして予
め求めておく工程、 (b)前記検量線を求めたのと同じ条件で、メッキ付着
量およびメッキ被膜組成が未知の被測定メッキ鋼板から
得られる前記蛍光X線強度又は強度比を測定する工程、 (c)検量線より得られる蛍光X線強度又は強度比を、
前記測定された蛍光X線強度または強度比に最も近づけ
る、検量線中のパラメータであるメッキ付着量およびメ
ッキ被膜組成を、前記被測定メッキ鋼板のメッキ付着量
およびメッキ被膜組成とする工程。(2) A method for measuring the coating amount and coating composition of a plated steel sheet to be measured, which comprises the following steps (a) and (b). (a) Two types of two targets are irradiated with X-rays generated from an X-ray generator, and the characteristic X-rays generated from each secondary target are applied at a predetermined angle of incidence, and the amount of plating deposited and the composition of the plating film are known. K-series fluorescence X of the target element for analysis obtained from the standard sample when irradiated with
(b) determining the amount of plating and the amount of plating and the composition of the plating film under the same conditions as those used to determine the calibration curve; (c) measuring the fluorescent X-ray intensity or intensity ratio obtained from a plated steel sheet to be measured whose plating film composition is unknown; (c) measuring the fluorescent X-ray intensity or intensity ratio obtained from a calibration curve;
A step of setting the plating coating amount and plating film composition, which are parameters in the calibration curve, which are closest to the measured fluorescent X-ray intensity or intensity ratio, as the plating coating amount and plating film composition of the plated steel sheet to be measured.
置から発生するX線を照射して発生する特性X線を被測
定メッキ鋼板への入射X線とする反射型の2次ターゲッ
ト部と、X線のパスラインを決めて被測定メッキ鋼板に
所定の入射角で投射するとともに所定の受光角で受光す
るスリット系と、被測定メッキ鋼板から発生する分析目
的元素のK系列蛍光X線強度をそれぞれ所定の角度で測
定する2個の検出器と、これらの測定系で得られるべき
理論強度又は強度比の理論計算式を記憶する手段と、実
際に測定された蛍光X線強度又は強度比を理論強度又は
強度比に変換する手段と、この変換された理論強度又は
強度比と理論計算式により得られる理論強度又は強度比
の差を最小にするメッキ付着量およびメッキ被膜組成を
求める手段とを備えたメッキ鋼板のメッキ付着量および
メッキ被膜組成の測定装置。(3) An X-ray generator that generates X-rays, and a reflection-type secondary system that uses the characteristic X-rays generated by irradiating the X-rays generated by this X-ray generator as the incident X-rays on the plated steel plate to be measured. A target part, a slit system that determines the path line of the X-rays, projects them onto the plated steel plate to be measured at a predetermined angle of incidence, and receives the light at a predetermined acceptance angle, and the K-series fluorescence of the target element for analysis generated from the plated steel plate to be measured. Two detectors that measure the X-ray intensity at predetermined angles, a means for storing the theoretical intensity or the theoretical calculation formula for the intensity ratio that should be obtained by these measurement systems, and the actually measured fluorescent X-ray intensity. or a means for converting the strength ratio into a theoretical strength or strength ratio, and a plating coating amount and a plating film composition that minimize the difference between the converted theoretical strength or strength ratio and the theoretical strength or strength ratio obtained by a theoretical calculation formula. A measuring device for measuring the amount of plating deposited on a plated steel sheet and the composition of the plating film, comprising a means for determining the coating amount and the composition of the plating film on a plated steel sheet.
置から発生するX線を照射して発生する特性X線を被測
定メッキ鋼板への入射X線とする透過型の2次ターゲッ
ト部と、X線のパスラインを決めて被測定メッキ鋼板に
所定の入射角で投射するとともに所定の受光角で受光す
るスリット系と、メッキ鋼板から発生する分析目的元素
のK系列蛍光X線強度をそれぞれ所定の角度で測定する
2個の検出器と、これらの測定系で得られべき理論強度
又は強度比の理論計算式を記憶する手段と、実際に測定
された蛍光X線強度または強度比を理論強度又は強度比
に変換する手段と、この変換された理論強度又は強度比
の差を最小にするメッキ付着およびメッキ被膜組成を求
める手段とを備えたメッキ鋼板のメッキ付着量およびメ
ッキ被膜組成の測定装置。(4) An X-ray generator that generates X-rays, and a transmission-type secondary system that uses the characteristic X-rays generated by irradiating the X-rays generated from this X-ray generator as the incident X-rays on the plated steel plate to be measured. A target section, a slit system that determines the X-ray pass line and projects it onto the plated steel plate to be measured at a predetermined incident angle and receives the light at a predetermined acceptance angle, and K-series fluorescent X-rays of the target element to be analyzed generated from the plated steel plate. Two detectors each measuring the intensity at a predetermined angle, means for storing the theoretical intensity or the theoretical calculation formula for the intensity ratio that should be obtained with these measurement systems, and the actually measured fluorescent X-ray intensity or intensity. Plating coverage and plating film of a plated steel sheet, comprising means for converting the ratio into theoretical strength or strength ratio, and means for determining plating adhesion and plating film composition that minimize the difference between the converted theoretical strength or strength ratio. Composition measuring device.
置から発生するX線を照射して発生する特性X線を被測
定メッキ鋼板への入射X線とする反射型の2次ターゲッ
ト部と、X線のパラインを決めて被測定メッキ鋼板に所
定の入射角で投射するとともに所定の受光角で受光する
スリット系と、被測定メッキ鋼板から発生する分析目的
元素のK系列蛍光X線強度をそれぞれ所定の角度で測定
する2個の検出器と、これらの測定系で得られるべき理
論強度又は強度比の検量線を記憶する手段と、実際に測
定される蛍光X線強度又は強度比と検量線より得られる
蛍光X線強度又は強度比の差を最小にするメッキ付着量
およびメッキ被膜組成を求める手段とを備えたメッキ鋼
板のメッキ付着量およびメッキ被膜組成の測定装置。(5) An X-ray generator that generates X-rays, and a reflection-type secondary system that uses the characteristic X-rays generated by irradiating the X-rays generated from this X-ray generator as the incident X-rays on the plated steel plate to be measured. A target section, a slit system that determines the para-line of the X-rays and projects them onto the plated steel plate to be measured at a predetermined angle of incidence and receives the light at a predetermined acceptance angle, and a K-series fluorescent X-ray of the element to be analyzed generated from the plated steel plate to be measured. Two detectors each measuring the line intensity at a predetermined angle, means for storing a calibration curve of the theoretical intensity or intensity ratio to be obtained with these measurement systems, and fluorescent X-ray intensity or intensity actually measured. A measuring device for measuring the coating amount and coating composition of a plated steel sheet, comprising means for determining the coating coating amount and coating coating composition that minimize the difference between the fluorescent X-ray intensity or the intensity ratio obtained from the ratio and the calibration curve.
置から発生するX線を照射して発生する特性X線を被測
定メッキ鋼板への入射X線とする透過型の2次ターゲッ
ト部と、X線のパスラインを決めて被測定メッキ鋼板に
所定の入射角で投射するとともに所定の受光角で受光す
るスリット系と、被測定メッキ鋼板から発生する分析目
的元素のK系列蛍光X線強度をそれぞれ所定の角度で測
定する2個の検出器と、これらの測定系で得られるべき
理論強度又は強度比の検量線を記憶する手段と、実際に
測定される蛍光X線強度又は強度比と検量線より得られ
る蛍光X線強度又は強度比の差を最小にするメッキ付着
量及びメッキ被膜組成を求める手段とを備えたメッキ鋼
板のメッキ付着量及びメッキ被膜組成の測定装置。(6) An X-ray generator that generates X-rays, and a transmission type secondary system that uses the characteristic X-rays generated by irradiating the X-rays generated from this X-ray generator as the incident X-rays on the plated steel plate to be measured. A target part, a slit system that determines the path line of the X-rays, projects them onto the plated steel plate to be measured at a predetermined angle of incidence, and receives the light at a predetermined acceptance angle, and the K-series fluorescence of the target element for analysis generated from the plated steel plate to be measured. Two detectors each measure X-ray intensity at a predetermined angle, a means for storing a calibration curve of the theoretical intensity or intensity ratio to be obtained with these measurement systems, and a means for storing a calibration curve of the theoretical intensity or intensity ratio to be obtained with these measurement systems, and a means for storing the fluorescent A measuring device for measuring the coating amount and coating composition of a plated steel sheet, comprising means for determining the coating coating amount and coating coating composition that minimize the difference between the intensity ratio and the fluorescent X-ray intensity or intensity ratio obtained from a calibration curve.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16938489A JPH0335149A (en) | 1989-06-30 | 1989-06-30 | Method and instrument for measuring plating deposition and plating film composition of plated steel sheet |
US07/476,251 US5081658A (en) | 1989-03-30 | 1990-02-07 | Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor |
CA002009698A CA2009698C (en) | 1989-03-30 | 1990-02-09 | Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor |
EP90102910A EP0389774B1 (en) | 1989-03-30 | 1990-02-14 | Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor |
DE69026748T DE69026748T2 (en) | 1989-03-30 | 1990-02-14 | Method of measuring the plating rate and the composition of a plating layer of a plated steel sheet, and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16938489A JPH0335149A (en) | 1989-06-30 | 1989-06-30 | Method and instrument for measuring plating deposition and plating film composition of plated steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0335149A true JPH0335149A (en) | 1991-02-15 |
Family
ID=15885598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16938489A Pending JPH0335149A (en) | 1989-03-30 | 1989-06-30 | Method and instrument for measuring plating deposition and plating film composition of plated steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0335149A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2114490A1 (en) * | 1996-05-07 | 1998-05-16 | Acerinox Sa | Method for the quantitative X-ray microanalysis of metal alloys based on a set of standard samples of the alloy and a mathematical adjustment model. |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58223047A (en) * | 1982-06-18 | 1983-12-24 | Sumitomo Metal Ind Ltd | Method for x ray fluorescence analysis |
JPS6184511A (en) * | 1984-10-03 | 1986-04-30 | Seiko Instr & Electronics Ltd | Simultaneous measurement of component ratio and film thickness of two-component alloy film |
-
1989
- 1989-06-30 JP JP16938489A patent/JPH0335149A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58223047A (en) * | 1982-06-18 | 1983-12-24 | Sumitomo Metal Ind Ltd | Method for x ray fluorescence analysis |
JPS6184511A (en) * | 1984-10-03 | 1986-04-30 | Seiko Instr & Electronics Ltd | Simultaneous measurement of component ratio and film thickness of two-component alloy film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2114490A1 (en) * | 1996-05-07 | 1998-05-16 | Acerinox Sa | Method for the quantitative X-ray microanalysis of metal alloys based on a set of standard samples of the alloy and a mathematical adjustment model. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2009698C (en) | Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor | |
EP0197157B1 (en) | Method of determining thickness and composition of alloy film | |
RU2390764C2 (en) | X-ray fluorescence spectrometre | |
US7848483B2 (en) | Magnesium silicide-based multilayer x-ray fluorescence analyzers | |
US3980568A (en) | Radiation detection system | |
EP0422017B1 (en) | Method for measuring the thickness of a coating on a substrate | |
Urbach et al. | Calculation of intensities in grazing-emission X-ray fluorescence | |
Boiko et al. | Investigation of the atomic, crystal, and domain structures of materials based on X-ray diffraction and absorption data: A review | |
US8011830B2 (en) | Method and system for calibrating an X-ray photoelectron spectroscopy measurement | |
TWI329736B (en) | X-ray scattering with a polychromatic source | |
US5579362A (en) | Method of and apparatus for the quantitative measurement of paint coating | |
JPH0335149A (en) | Method and instrument for measuring plating deposition and plating film composition of plated steel sheet | |
JP2000146874A (en) | Analytical method for plated steel sheet, and analyzer therefor | |
JPH02257045A (en) | Method and device for measuring plated deposit of plated steel sheet and composition of plated film | |
JPH0619268B2 (en) | Method for measuring thickness of coating film on metal | |
JPH0375549A (en) | Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film | |
JPH0576574B2 (en) | ||
JPH02302654A (en) | Method and appratus for measuring plated amount of double-layer plated steel plate and composition of plated film | |
JPH0610660B2 (en) | Method for measuring film thickness and composition of alloy film | |
JPH06331576A (en) | Analysis of iron zinc alloy plating layer on iron | |
JPS6014109A (en) | Measuring device of buld-up quantity of plating of galvanized steel plate | |
JPH07167804A (en) | Online analysis method of two-layer plated steel plate, and online analyzer therefor | |
JPH03272441A (en) | Composition for alloy film and measuring method for adhering amount | |
JPH04355313A (en) | Method for measuring thickness of paint film on metal | |
JPH0510743A (en) | Measuring method for thickness of coat on plating layer |