JPS58223047A - Method for x ray fluorescence analysis - Google Patents

Method for x ray fluorescence analysis

Info

Publication number
JPS58223047A
JPS58223047A JP10570982A JP10570982A JPS58223047A JP S58223047 A JPS58223047 A JP S58223047A JP 10570982 A JP10570982 A JP 10570982A JP 10570982 A JP10570982 A JP 10570982A JP S58223047 A JPS58223047 A JP S58223047A
Authority
JP
Japan
Prior art keywords
fluorescent
rays
angle
ray
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10570982A
Other languages
Japanese (ja)
Other versions
JPH0541940B2 (en
Inventor
Yoshiro Matsumoto
松本 義朗
Masakatsu Fujino
藤野 允克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10570982A priority Critical patent/JPS58223047A/en
Publication of JPS58223047A publication Critical patent/JPS58223047A/en
Publication of JPH0541940B2 publication Critical patent/JPH0541940B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Abstract

PURPOSE:To determine the thickness of a film of plated metal, wherein a substrate metal component is included in the components of the plated film, by measuring the intensity of fluorescent X rays at an angle the fluorescent X rays from the substrate metal are not detected and at an angle the X rays are detected. CONSTITUTION:X rays are irradiated from an exciting source 10 for a low angle and an exciting source 20 for a high angle over a plated metal. Fluorescent rays generated from a plated film 1 and a substrate metal 2 are converted into electric signals by detectors 11 and 12. The output of the detector 11 is inputted to a wave height analyzer 13 and a counter 14 through an amplifier 14 and converted into the intensity of the fluorescent X rays of the metal in the plated film. Meanwhile, the output of the detector 21 is inputted to a wave height analyzer 23 and a counter 24 through an amplifier 22, and converted into the intensity of the substrate metal 2. The outputs of the counter 14 and 24 are guided to an operator 30. The weight concentration and coating weight per unit area corresponding to the intensity of the fluroescent X rays are computed and displayed on a display device 31. Thus, the thickness or composition of the plated film of a Fe-Zn alloy plated steel plate can be accurately determined.

Description

【発明の詳細な説明】 本発明はメッキ被膜の成分中に下地金属成分が含−zn
るメッキ金属、例えばFe合金メッキ鋼板におけるメッ
キ被膜の厚さく目付量)及び/又は組成を螢光X@分析
にて定量する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that the base metal component is included in the components of the plating film.
The present invention relates to a method for quantifying the thickness, basis weight, and/or composition of a plating film on a plated metal, such as an Fe alloy plated steel plate, by fluorescence X@ analysis.

従来のNi −Zn (ニッケた亜鉛)合金メッキ鋼板
に替って溶接性、塗装性及び経済性に優nたFeメッキ
鋼板、例え・ばFe−Znメッキ鋼板が開発さ扛、自動
車車体用の新素材として注目されている。
Fe-plated steel sheets, such as Fe-Zn plated steel sheets, which are superior in weldability, paintability, and cost efficiency, have been developed to replace conventional Ni-Zn (nickel zinc) alloy-plated steel sheets, and are used for automobile bodies. It is attracting attention as a new material.

上記メッキ鋼板の品質管理にも従来のメッキ鋼板同様、
メッキ被膜の厚さ及び組成を定量する必要があることは
勿論である。Znメッキ鋼板等、メッキ被膜が下地金属
となるFe以外の単一成分からなるものについては螢光
X線分析によシメッキ被膜厚さを定量する方法が実用化
さ扛ている。即ち、メッキ被膜から発生するZnKα並
びに下地金属から発生するFeKαの螢光X線強度を測
定し、このFeにα螢光X線強度とメッキ被膜厚さとの
予め求めおいた関係(検量線)からメッキ被膜厚さを求
めることとしてい7jOところが、Fe−Zn合金メッ
キ鋼板の場合はメッキ被膜がFe 、 Znの2成分よ
りなるので、1成分のメッキ鋼板における如き螢光X線
強度とメッキ被膜厚さとの関係が容易には得らnず、ま
たメッキ被膜成分中に下地金属と同一のFeが含まnる
ために従来の螢光X線分析法にてメッキ被膜厚さを測定
することは不可能であり、ま7C組成についての定量も
不可能であった。
As with conventional plated steel sheets, the quality control of the above plated steel sheets is carried out as well.
Of course, it is necessary to quantify the thickness and composition of the plating film. For materials such as Zn-plated steel sheets, in which the plating film is made of a single component other than Fe as the base metal, a method of quantifying the thickness of the plating film by fluorescent X-ray analysis has been put into practical use. That is, the fluorescent X-ray intensity of ZnKα generated from the plating film and FeKα generated from the base metal is measured, and this Fe is calculated based on the predetermined relationship (calibration curve) between the α fluorescent X-ray intensity and the plating film thickness. However, in the case of a Fe-Zn alloy plated steel sheet, the plating film consists of two components, Fe and Zn, so the fluorescent It is not easy to obtain a relationship between the thickness of the plating film and the plating film component contains Fe, which is the same as the underlying metal, so it is impossible to measure the plating film thickness using conventional fluorescent X-ray analysis. However, it was also impossible to quantify the 7C composition.

本発明は斯かる事情に鑑みなさfしたものであつて、そ
の目的とするところはメッキ被膜の成分中に下地金属成
分が含ま扛るメッキ金属、例えばFe合金メッキ鋼板に
おけるメッキ被膜厚さ及び/又は組成を螢光X線分析に
て定量する方法を提供するぽある。
The present invention has been developed in view of the above circumstances, and its purpose is to improve the thickness and/or thickness of the plating film on plated metals, such as Fe alloy plated steel sheets, in which the base metal component is included in the components of the plating film. Alternatively, there is a point that provides a method for quantifying the composition using fluorescent X-ray analysis.

本発明に係る螢光X線分析方法は、下地金属成分を含む
メッキ被膜の厚さ及び/又は組成を螢光X線分析にて定
量する方法において、下地金属からの螢光X線が実質的
に検出されない第1の励起線入射角及び螢光X線取出角
による螢光X線強度測定と、1地1′金属からの螢光X
線が検出さnる第2の励起線入射角及び螢光X線取出角
による螢光X線強度測定と全行い、両側定地に基き前記
定量を行うことを特徴とする。
The fluorescent X-ray analysis method according to the present invention is a method for quantifying the thickness and/or composition of a plating film containing a base metal component by fluorescence X-ray analysis, in which the fluorescence X-rays from the base metal are substantially Fluorescent X-ray intensity measurement using the first excitation ray incident angle and fluorescent X-ray extraction angle that are not detected in
The present invention is characterized in that the fluorescent X-ray intensity is measured based on the second excitation ray incident angle and the fluorescent X-ray extraction angle at which the rays are detected, and the quantification is performed based on fixed positions on both sides.

以下本発明方法の原理について説明する。第1図は本発
明方法の原理説明図であって、下地金属となるFeの土
K Fe −ZnがメッキさnているFe”Zn合金メ
ッキ鋼板に、入射角ψで励起X線を入射させ取出角ψで
螢光X線を取出してFeの螢光X線強度を測定する。こ
の場合のFeの螢光X線強度とメッキ被膜中のFeの重
量濃度との間には下MI″fl+式の関係がある。
The principle of the method of the present invention will be explained below. FIG. 1 is a diagram explaining the principle of the method of the present invention, in which excited X-rays are made incident at an incident angle ψ onto a Fe''Zn alloy-plated steel plate plated with Fe-Zn, which serves as the base metal. Fluorescent X-rays are taken out at an extraction angle ψ and the fluorescent X-ray intensity of Fe is measured. In this case, the difference between the fluorescent X-ray intensity of Fe and the weight concentration of Fe in the plating film is below MI"fl+ There is a relationship between formulas.

但し、■ア。□:Feの螢光X線強度 に:単位質量の分析元素Feが励起#f螢光X@Kg換
−tル*J−= 16 : I!iヵ起線790度          
 ゛°□W、8:メッキ被膜中のFe被膜製度 (−F)、 :励起線に対するFe−2nメッキMM層
の貴所吸収係数 (J’)、;螢光X線に対するFe−Znメッキ被被 膜層の濁馴吸収係数 ()+:励起線に対する下地金属の質量吸IP舅5イ糸
数 (!!−)::螢光X線に対する下地全組の買値吸収係
数 ’Fe−Zn :メツキ被膜層の密度 d:メッキ被膜厚さ ψ:励起線入射角 ψ:螢螢光線取出角 さて、励起線の入射角ψ及び螢光X線の取出角ψを小さ
くすると上記(1)式は、 となり、この関係式ニジFeの螢光x1t#強度I、。
However, ■A. □: Fluorescence X-ray intensity of Fe: unit mass of analytical element Fe is excited #f fluorescence i-ca line 790 degrees
゛°□W, 8: Degree of Fe coating in the plating film (-F); Absorption coefficient (J') of the Fe-2n plating MM layer for excitation rays; Fe-Zn plating for fluorescent X-rays Turbidity absorption coefficient of the coating layer () +: Mass absorption of the base metal for excitation rays (!!-): Purchase price absorption coefficient of the entire base set for fluorescent X-rays 'Fe-Zn: Plated coating Layer density d: Plating film thickness ψ: Excitation ray incident angle ψ: Fluorescence ray extraction angle Now, if the excitation ray incidence angle ψ and the fluorescence X-ray extraction angle ψ are made smaller, the above equation (1) becomes as follows. , this relational expression: rainbow Fe fluorescence x1t#intensity I.

よとメッキ被膜中のFQ重葉濃度WFeとは一義対応の
関係にあることが分かる0即ち、下地金属からの螢光X
線強度が検出さnない低角度の入射角ψ及び取出角ψに
て螢光X線強度を測定することにより、Feの螢光X線
強度I  からメッキ被膜中のFeのFeにα 重量濃度WFeが求まる。
It can be seen that there is a unique relationship with the FQ heavy leaf concentration WFe in the plating film.
By measuring the fluorescent X-ray intensity at a low incident angle ψ and extraction angle ψ where the linear intensity is not detected, we can calculate the Fe fluorescent X-ray intensity I from the Fe weight concentration of Fe in the plating film. Find WFe.

次に実験結果に基き上記関係を明らかにする。Next, the above relationship will be clarified based on experimental results.

実験の供試料としては]%” 、 Zn2+から構成さ
扛ているメッキ液中で電気メッキを行ったものを使用す
る。測定条件は励起源のX線管球としてはW(タングス
テン)を用い、励起条件としての管電圧−管電流は30
 KV −39mAとし測定時間は10秒とした。第2
図は目付量が19〜53g/m”の範囲で、低角度の入
射角ψ=取出角ψ=5°の条件にて測定したFe螢光X
線強度IFoK(xCCp日〕を縦軸に、また化学分析
で得らnたメッキ被膜中のFeの重量濃度WF8(%l
を横軸にとって示したものであってその場合の検量線も
図示している0この図に示さnる工うに■  とW と
は−義対応の関係にあるFeKα    Fe。
The sample used in the experiment was one that was electroplated in a plating solution containing Zn2+.The measurement conditions were as follows: W (tungsten) was used as the excitation source X-ray tube; Tube voltage-tube current as excitation condition is 30
The measurement time was 10 seconds at KV -39mA. Second
The figure shows Fe fluorescence
The linear strength IFoK (xCCp days) is plotted on the vertical axis, and the weight concentration of Fe in the plating film obtained by chemical analysis WF8 (%l
In this figure, the calibration curve is also shown. The values shown in this figure are FeKα Fe, which are in a positive correspondence relationship.

ことが実証さnた。That has been proven.

こ扛に対して、下地金属からの螢光X線強度が検出さn
る高角度の入射角ψで励起線全入射させ取出角ψで螢光
X線金地出す場合には、上記(1)式に見ら扛る工うに
メッキ被膜厚さdの影響を受けることになる。しかしな
がら、前述のように入射角ψを小とする条件で求めりW
F8を一定とするとFe螢光X線強度IFeKヶとメッ
キ被膜厚さdとの間には一義対応の関係が見られる。第
3図は高角度の入射角ψ=取出角φ=600の条件にて
測定したFe螢光X線強度IFeK、yCcp日〕と化
学分析で得ら扛た目付量〔67m2〕との関係をwFe
を変数として示したものであって、縦軸にI  を、ま
た横軸にFeにα 目付量をとって示している。この図によりIFeや。
For this device, the intensity of fluorescent X-rays from the underlying metal is detected.
When the excitation beam is completely incident at a high incident angle ψ and the fluorescent X-ray gold is extracted at an extraction angle ψ, as shown in equation (1) above, the process is affected by the thickness d of the plating film. Become. However, as mentioned above, W
When F8 is held constant, there is a unique relationship between the Fe fluorescence X-ray intensity IFeK and the plating film thickness d. Figure 3 shows the relationship between the Fe fluorescence X-ray intensity IFeK, yCcp days] measured under the conditions of high incidence angle ψ = extraction angle φ = 600 and the area weight [67 m2] obtained by chemical analysis. wFe
is shown as a variable, with I on the vertical axis and α for Fe on the horizontal axis. According to this figure, IFe.

WFe及びメッキ被膜厚さく目付量)dの間に対応関係
があることが解かる。なお第3図において、0点(実線
連結)はwFeが0%(R1)ちZnのみ)、X点(破
線連結)は同じ<5.7〜6.3%、Δ点喚線連結)は
同じ(12,1〜15.8%、0点(破線連結)は同じ
< 33.5〜36.7%、X点(実線連結)は同U 
< 44.0〜47.5%の試料片についての結果を示
している。以上詳述したように、低角度の螢光X線測定
で得ら扛るWア。全変数として高角度で螢光X線強度全
測定することにより、該測定値に対応する目付量が得ら
nることが分かる。
It can be seen that there is a correspondence relationship between WFe and plating film thickness (fabric weight) d. In Fig. 3, the 0 point (solid line connection) indicates that wFe is 0% (R1) (Zn only), the X point (broken line connection) has the same <5.7 to 6.3%, and the Same (12.1-15.8%, 0 point (broken line connection) is the same < 33.5-36.7%, X point (solid line connection) is the same U
Results are shown for specimens with <44.0-47.5%. As described in detail above, the W-A obtained by low-angle fluorescent X-ray measurement. It can be seen that by measuring all the fluorescent X-ray intensities at high angles as all variables, the basis weight corresponding to the measured values can be obtained.

次に本発明を、その実施状態を示す図面に基いて具体的
に説明する。第4図は本発明方法を実施するための模式
図であって、メッキ金属の上方適宜位置に配さnている
低角度用の励起源10及び高角度用の励起源2oから夫
々X線を照射させてメッキ被膜l及び下地金属2がら発
生する螢光X線を取出し、こ扛ら螢光X線を公知の検出
器11゜21等に導いて重量濃度または目付量が測定1
表示さ1.るように構成さ九ている。励起源10のX線
は低角度の入射角ψ1でメッキ被膜1に照射され、メッ
キ被膜lから取出角ψ1で取出さr−た螢光X線は検出
器11に導かれて電気信号に変換される。
Next, the present invention will be specifically explained based on drawings showing its implementation state. FIG. 4 is a schematic diagram for carrying out the method of the present invention, in which X-rays are emitted from a low-angle excitation source 10 and a high-angle excitation source 2o, which are placed at appropriate positions above the plated metal. The fluorescent X-rays generated from the plating film 1 and the base metal 2 are extracted by irradiation, and the fluorescent X-rays are guided to a known detector 11, 21, etc., and the weight concentration or basis weight is measured 1.
Displayed 1. It has nine configurations. The X-rays from the excitation source 10 are irradiated onto the plating film 1 at a low incident angle ψ1, and the fluorescent X-rays extracted from the plating film l at an extraction angle ψ1 are guided to the detector 11 and converted into electrical signals. be done.

検出器]lの出力電気信号は増幅器12[入って増幅さ
れた後に、波高分析器13及び計数器14によってメッ
キ被膜中の金属の螢光X線強度に変換さnる。
The output electric signal from the detector is input to an amplifier 12, where it is amplified and then converted into the fluorescent X-ray intensity of the metal in the plating film by a pulse height analyzer 13 and a counter 14.

一方、励起源2oOX線は高角度の入射角ψ2で下地金
属2に照射さ扛、下地金属2がら取出角ψ。
On the other hand, the excitation source 2OOX rays are irradiated onto the base metal 2 at a high incident angle ψ2, and taken out from the base metal 2 at a high angle ψ.

で取出さ1.た螢光X線は、上述の低角度!lll定の
場合と同様に構成さ扛ている検出器21.増幅器22゜
波高分析器23及び計数器24によって下地金属2の螢
光X線強度に変換さ扛る。計数器14.24の螢光X線
強度に対応する出力は演算器30に導かれる。この演算
器30には、第2図で示さ扛る如きI  とW の関係
式W−f(1)及びFeK(r    Fe     
      Fe       FeKα第3図で示さ
扛る如きI   、W  及び目付量(厚Fθにα  
  Fe さ)dの関係式d=f(IFoKff、WFo)が予め
設定されており、上述の如くして得らnる螢光X線強度
に対応する重量濃度及び目付量が演算さ扛表示器31に
表示さ扛る。なお、検出器11.21としてはFe及び
Zrlの螢光強度が容易に分離測定できる半導体検出器
を用いるのがよい。
Take out with 1. The fluorescent X-rays are at the low angle mentioned above! A detector 21. The amplifier 22 is converted into the fluorescent X-ray intensity of the base metal 2 by the wave height analyzer 23 and counter 24. The output of the counter 14.24 corresponding to the fluorescence X-ray intensity is led to the calculator 30. This arithmetic unit 30 has the relational expressions W-f(1) and FeK(r Fe
Fe FeKα I, W and basis weight (α to thickness Fθ) as shown in Fig. 3
The relational expression d=f (IFoKff, WFo) of Fe(S)d is set in advance, and the weight concentration and basis weight corresponding to the fluorescent X-ray intensity obtained as described above are calculated. 31 is displayed. As the detectors 11 and 21, it is preferable to use semiconductor detectors that can easily separate and measure the fluorescence intensities of Fe and Zrl.

次に本発明方法と従来より行わnている化学分析方法と
による測定結果を比較して本発明方法の効果を明らかに
する0基5図は縦軸に本発明方法の螢光X線分析による
WFoC%〕を、また横軸に従来の化学分析方法で得ら
扛るWF。C%)’を示している。
Next, the results of measurements by the method of the present invention and conventional chemical analysis methods are compared to clarify the effects of the method of the present invention. WFoC%], and the horizontal axis shows WF obtained by conventional chemical analysis methods. C%)' is shown.

第6図は縦l1IK本発明方法の螢光X線分析による目
付量Cg/m2〕k、捷た横軸に従来の化学分析方法で
得ら扛る目付量Cg/m2〕f示している。第5゜6図
に示すようにいす扛も本発明方法にて得ら扛る螢光X線
分析値は化学分析値と一致し、本発明方法を実施するこ
とによりメッキ被膜の重量濃度及び目付量を得ることが
できる。なお、前述の実施例では低角度及び高角度の測
定を2基の装置で同時測定することとしたが、1基の装
置で2回に分けて測定してもよいことは勿論である。さ
らにまた、本実施例では下地金属をFeとしメッキ被膜
組成をFe−Znとしたが、下地金属をFe以外の金属
例えばCuとしメッキ被膜をcuを含む組成としてもよ
いことは勿論である。
In FIG. 6, the vertical axis shows the basis weight Cg/m2]k obtained by fluorescent X-ray analysis using the method of the present invention, and the horizontal axis shows the basis weight Cg/m2]f obtained by the conventional chemical analysis method. As shown in Figure 5.6, the fluorescent X-ray analysis values obtained by the method of the present invention also match the chemical analysis values, and the weight concentration and basis weight of the plating film can be improved by implementing the method of the present invention. You can get the amount. In the above-mentioned embodiment, low angle and high angle measurements were performed simultaneously using two devices, but it is of course possible to perform the measurement twice using one device. Furthermore, in this example, the base metal is Fe and the plating film composition is Fe-Zn, but it goes without saying that the base metal may be a metal other than Fe, such as Cu, and the plating film may have a composition containing Cu.

このように本発明方法による場合は、経済性及び溶接性
等に優れているFe−Zn合金メッキ鋼板のメッキ被膜
の厚さ又は組成を自朝的且つ正確に定量することが可能
となるので、この測定結果を用いてのメッキ被膜の厚さ
制御あるいはメッキ浴の組成制御をオンライン化して実
施することが可能となり、本発明がFe−Zn合金メッ
キ鋼板の品質向上に寄与する処は多大である。
As described above, when using the method of the present invention, it is possible to independently and accurately quantify the thickness or composition of the plating film of Fe-Zn alloy plated steel sheets, which are excellent in economy and weldability. Using this measurement result, it becomes possible to control the thickness of the plating film or the composition of the plating bath online, and the present invention greatly contributes to improving the quality of Fe-Zn alloy plated steel sheets. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の原理説明図であり、第2図は■F
oK、z−WFo1第3図はwFoを変数とした’Fe
Ka−目付量の相関関係を夫々示すグラフ′tちり、第
4図は本発明方法を実施するための膜式図、第5,6図
は本発明方法と化学分析法とで得らnたWFe及び目付
箪の関係を夫々示すグラフである。 10.20・・励起源 11.21・・・検出器30・
・・演算器 31・・・表示器 特許出願人 住友金属工業株式会社 代理人 弁理士 河  野  登  大菊1図 〆、■〜躊咽乏団賭中6ワFe の重1」シ農度 (/
、 )第2図 g  +oct 〇− と )     +0    211)     30  
  40    50日  イー11    < 外/
7□Z〕第 3 目 Fe2 第 4 図 yS 5 図 目イオ量(イ乙学分析*>CりA2) $6  図 手続補正書(方式) 1、事件の表示 昭和57年 特 許 願第105709  号2、発I
EJ1の名称   蛍光X線分析力法3、 補正をする
者 41件との関係   特許出願人 4、代理人 6 補正により増加する発明の数 7、補正の対象 8−1明細書 り]細沓第3頁17行目にr Feの上にFe−Znが
」とあるのを[Fe2の上にFe−Zn1が]と訂正す
る。 8−2図面 別紙のとおり
Figure 1 is an explanatory diagram of the principle of the method of the present invention, and Figure 2 is
oK, z-WFo1 Figure 3 shows 'Fe with wFo as a variable.
Figure 4 is a graph showing the correlation between Ka and area weight, Figure 4 is a membrane diagram for carrying out the method of the present invention, and Figures 5 and 6 are graphs showing the relationship between Ka and area weight. It is a graph which shows the relationship between WFe and the weight of each. 10.20...Excitation source 11.21...Detector 30.
...Arithmetic unit 31...Display device patent applicant Sumitomo Metal Industries Co., Ltd. agent Patent attorney Noboru Kawano Daikiku 1 Figure 〆〆,■~Hashanbodan Gamble 6W Fe heavy 1'' Si Agricultural degree (/
, )Figure 2g +oct 〇- and) +0 211) 30
40 50th E11 < Outside/
7□Z] 3rd Fe2 4th Figure yS 5 Figure Quantity (Iotsu Scientific Analysis*>Cri A2) $6 Figure Procedure Amendment (Method) 1. Indication of Case 1982 Patent Application No. 105709 No. 2, Departure I
Name of EJ1 Fluorescence X-ray analysis power method 3, Relationship with the person making the amendment 41 cases Patent applicant 4, agent 6 Number of inventions increased by amendment 7, subject of amendment 8-1 Specification] Hosukutsu No. On page 3, line 17, the statement "Fe-Zn on r Fe" is corrected to "Fe-Zn1 on Fe2". 8-2 As shown in the attached drawing

Claims (1)

【特許請求の範囲】[Claims] ]−1下地金檎成分を含むメッキ被膜の厚さ゛及び/又
は組成を螢光X線分析にて定量する方法において、下地
金属力・らの螢光X線が実質的に検出さ′nない第1の
励起線入射角及び螢光x151取出角による螢光X線強
度測定と、下地金属からの螢光X線が検出さ扛る第2の
励起線入射角及び螢光X線取出角による螢光X#i!強
)K測定とを行い、両側定値に基き前記定量を8行うこ
とを特徴とする螢光X線分析方法。
]-1 In the method of quantifying the thickness and/or composition of the plating film containing the base metal component by fluorescent X-ray analysis, the fluorescent X-rays from the base metal are not substantially detected. Fluorescent X-ray intensity measurement using the first excitation ray incident angle and fluorescence x151 extraction angle, and the second excitation ray incidence angle and fluorescence X-ray extraction angle at which the fluorescent X-rays from the underlying metal are detected. Fluorescent X#i! (strong) K measurement, and the quantification is carried out eight times based on constant values on both sides.
JP10570982A 1982-06-18 1982-06-18 Method for x ray fluorescence analysis Granted JPS58223047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10570982A JPS58223047A (en) 1982-06-18 1982-06-18 Method for x ray fluorescence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10570982A JPS58223047A (en) 1982-06-18 1982-06-18 Method for x ray fluorescence analysis

Publications (2)

Publication Number Publication Date
JPS58223047A true JPS58223047A (en) 1983-12-24
JPH0541940B2 JPH0541940B2 (en) 1993-06-25

Family

ID=14414867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10570982A Granted JPS58223047A (en) 1982-06-18 1982-06-18 Method for x ray fluorescence analysis

Country Status (1)

Country Link
JP (1) JPS58223047A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236052A (en) * 1984-05-10 1985-11-22 Rigaku Denki Kogyo Kk Simultaneous analysis of thickness and composition of film
JPS60250237A (en) * 1984-05-28 1985-12-10 Rigaku Denki Kogyo Kk Concentration distribution measuring apparatus for element in solid
JPS60263841A (en) * 1984-06-12 1985-12-27 Rigaku Denki Kk X-ray diffraction instrument for thin film sample
JPS6117052A (en) * 1984-07-02 1986-01-25 Rigaku Denki Kogyo Kk X-ray fluorescence analyzer
JPS6188128A (en) * 1984-10-05 1986-05-06 Kawasaki Steel Corp Method for measuring film thickness and composition of alloy coat
JPS61210932A (en) * 1985-03-15 1986-09-19 Sumitomo Metal Ind Ltd Method and instrument for fluorescent x-ray analysis of laminated body
EP0197157A1 (en) * 1984-10-05 1986-10-15 Kawasaki Steel Corporation Method of determining thickness and composition of alloy film
US4959848A (en) * 1987-12-16 1990-09-25 Axic Inc. Apparatus for the measurement of the thickness and concentration of elements in thin films by means of X-ray analysis
EP0389774A2 (en) * 1989-03-30 1990-10-03 Nkk Corporation Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
JPH0335149A (en) * 1989-06-30 1991-02-15 Nkk Corp Method and instrument for measuring plating deposition and plating film composition of plated steel sheet
US5113421A (en) * 1988-05-13 1992-05-12 Data Measurement Corporation Method and apparatus for measuring the thickness of a coating on a substrate
DE19931298B4 (en) * 1998-07-16 2007-05-03 Panalytical B.V. Method for analyzing thin layers with X-ray fluorescence
US7356114B2 (en) 2005-09-14 2008-04-08 Rigaku Industrial Corporation X-ray fluorescence spectrometer
WO2012008513A1 (en) * 2010-07-15 2012-01-19 株式会社堀場製作所 Fluorescent x-ray detection method and fluorescent x-ray detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636045A (en) * 1979-08-31 1981-04-09 Sumitomo Metal Ind Ltd Quantity determination method for sticking quantity of plating metal and quantity of component in ni-zn alloy-plated steel plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636045A (en) * 1979-08-31 1981-04-09 Sumitomo Metal Ind Ltd Quantity determination method for sticking quantity of plating metal and quantity of component in ni-zn alloy-plated steel plate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236052A (en) * 1984-05-10 1985-11-22 Rigaku Denki Kogyo Kk Simultaneous analysis of thickness and composition of film
JPS60250237A (en) * 1984-05-28 1985-12-10 Rigaku Denki Kogyo Kk Concentration distribution measuring apparatus for element in solid
JPH0254496B2 (en) * 1984-06-12 1990-11-21 Rigaku Denki Co Ltd
JPS60263841A (en) * 1984-06-12 1985-12-27 Rigaku Denki Kk X-ray diffraction instrument for thin film sample
JPS6117052A (en) * 1984-07-02 1986-01-25 Rigaku Denki Kogyo Kk X-ray fluorescence analyzer
JPS6188128A (en) * 1984-10-05 1986-05-06 Kawasaki Steel Corp Method for measuring film thickness and composition of alloy coat
EP0197157A1 (en) * 1984-10-05 1986-10-15 Kawasaki Steel Corporation Method of determining thickness and composition of alloy film
US4764945A (en) * 1984-10-05 1988-08-16 Kawasaki Steel Corp. Method of measuring layer thickness and composition of alloy plating
JPS61210932A (en) * 1985-03-15 1986-09-19 Sumitomo Metal Ind Ltd Method and instrument for fluorescent x-ray analysis of laminated body
US4959848A (en) * 1987-12-16 1990-09-25 Axic Inc. Apparatus for the measurement of the thickness and concentration of elements in thin films by means of X-ray analysis
US5113421A (en) * 1988-05-13 1992-05-12 Data Measurement Corporation Method and apparatus for measuring the thickness of a coating on a substrate
EP0389774A2 (en) * 1989-03-30 1990-10-03 Nkk Corporation Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
US5081658A (en) * 1989-03-30 1992-01-14 Nkk Corporation Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
JPH0335149A (en) * 1989-06-30 1991-02-15 Nkk Corp Method and instrument for measuring plating deposition and plating film composition of plated steel sheet
DE19931298B4 (en) * 1998-07-16 2007-05-03 Panalytical B.V. Method for analyzing thin layers with X-ray fluorescence
US7356114B2 (en) 2005-09-14 2008-04-08 Rigaku Industrial Corporation X-ray fluorescence spectrometer
WO2012008513A1 (en) * 2010-07-15 2012-01-19 株式会社堀場製作所 Fluorescent x-ray detection method and fluorescent x-ray detection device

Also Published As

Publication number Publication date
JPH0541940B2 (en) 1993-06-25

Similar Documents

Publication Publication Date Title
TW500922B (en) Quantitative measuring method and apparatus of metal phase using X-ray diffraction method, and method for making plated steel sheet using them
EP0197157B1 (en) Method of determining thickness and composition of alloy film
JPS58223047A (en) Method for x ray fluorescence analysis
EP0422017B1 (en) Method for measuring the thickness of a coating on a substrate
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
He et al. An integrated system for quantitative EDXRF analysis based on fundamental parameters
JPS60202339A (en) X-ray fluorescence analysis method
JPH0211844B2 (en)
JPH0619268B2 (en) Method for measuring thickness of coating film on metal
Demortier et al. PIXE gadgets
CN1044745C (en) Testing method for X-fluorescence gold content and thickness of gold plated, cladded
JPS6188128A (en) Method for measuring film thickness and composition of alloy coat
JPS6367121B2 (en)
JP2873125B2 (en) Method and apparatus for measuring coating weight
Ohno et al. X‐ray fluorescence analysis without standards of small particles extracted from super‐alloys
JPH056139B2 (en)
JPS62137552A (en) Plating attachment meter for alloy
JP2001281175A (en) Measuring method for metal surface oxide and x-ray diffraction device
JPH06331576A (en) Analysis of iron zinc alloy plating layer on iron
JPS62138742A (en) Thickness gauge for alloy film
JPS61277041A (en) Method and apparatus for fluorescent x-ray analysis of metal film
JPS58135407A (en) Method for measuring film thickness
Bennun et al. A method for thickness determination of thin films of amalgamable metals by total-reflection X-ray fluorescence
JP2563016B2 (en) Fluorescent X-ray analysis method and apparatus using effective wavelength
Kurahashi et al. Determination of trace elements in sediment reference materials by monochromatic X-ray excitation X-ray fluorescence spectrometry