JPS58135407A - Method for measuring film thickness - Google Patents
Method for measuring film thicknessInfo
- Publication number
- JPS58135407A JPS58135407A JP57008616A JP861682A JPS58135407A JP S58135407 A JPS58135407 A JP S58135407A JP 57008616 A JP57008616 A JP 57008616A JP 861682 A JP861682 A JP 861682A JP S58135407 A JPS58135407 A JP S58135407A
- Authority
- JP
- Japan
- Prior art keywords
- rays
- thickness
- film
- coating
- scattering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B15/00—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
- G01B15/02—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は一元素を含む被膜の厚さを測定するための方法
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the thickness of coatings containing one element.
鈎えば鉄板の表面にコーティングされた有機材料よりな
る塗料層の厚st非破壊″t”si定しようとする場合
、従来にか−ては―料mM−xsi*照射しそのwI果
麿料層にのみ含まれている特定の元素から発生する螢光
XS*を検出し、曽螢党X―の検出IjI直値に基づ−
τ塗料層の厚さを求めるか、母材である鉄板からめ鉄の
螢光!−の塗料層f:よる吸収の大会8tIIl定し、
その測定値からその厚さt求めるようにして−る。しか
し橙がら塗料層に含まれて−る元素は軽光素のうちで%
炭素等の原子番号の慟めて小8−元素であるため、これ
ら元素から発生する螢光!鐘の発生効率は小さく大容量
のxIm発生llを必要とする0更にこれら螢光X線は
エネルギーが小さIAために物質の透過能が小8(、塗
料層の#l−場所で発生した螢光!鐘は塗料層を通過す
る間に減衰してし會−検出で赤なくなる。従って比較的
厚−一一の厚さtrESに測定することはで会tk−6
一方量材である鉄板からの螢光X線を検出する方法では
1*x鐘のエネルギーが一端に大会−ため塗料−め嘔元
素による吸収の椙度が小、tI/&。従って被膜の厚さ
の変化に対してX−強度の変化が小さく、高稽纜の厚さ
#定ができfkVs@
本発明はこのような従来の一定方法の欠点を解決し、母
#に対して非干渉性散乱の発生効率執會vk@元素を含
む被膜の厚さを比較的広−厚さ範囲において硼めて精度
良く測定できると趨に、比較的小容量のX11g発生源
及び簡便な分光・検出系を使用することので会る新規な
被膜厚さ測定方法【提供するもので、軽元素を含む被膜
と非干渉性散乱の発生効率が皺被膜の発生効率に比して
小さめ母材とよりなる材料に被膜側から非干渉性散乱さ
れ墨−特性ZSt照射し、その結果−試料よ―放射又は
歌tgれるX線のうち一紀特性X纏の波長よ−わずかに
畏波長關の敏LX纏のAt1択して検出し、該検出信号
値と予じめ測定された被膜厚と検出信号値との相関情報
に基づいて一記被膜の厚さtm定するようにしたことを
特徴としてか一1以上、本発明5ζsPいて基本となっ
ている考え’t*明する。When attempting to non-destructively determine the thickness of a paint layer made of an organic material coated on the surface of an iron plate, it is conventional to irradiate the material mM-xsi* and determine the thickness of the paint layer. Detects fluorescence XS* generated from specific elements contained only in
τ Find the thickness of the paint layer, or the fluorescence of the iron plate from the base material! - the paint layer f: determined by the absorption convention 8tIIl,
The thickness t is determined from the measured value. However, the elements contained in the orange paint layer account for % of the light elements.
Fluorescence is generated from these elements because they are elements with a lower atomic number, such as carbon! The generation efficiency of the fluorescent X-rays is small and a large amount of xIm generation is required.Furthermore, these fluorescent The light attenuates while passing through the paint layer and turns red when detected.Therefore, it is difficult to measure a relatively thick layer of tk-6.
On the other hand, in the method of detecting fluorescent X-rays from an iron plate, which is a bulk material, the energy of 1 * x bell is at one end, so the degree of absorption by the paint element is small, tI/&. Therefore, the change in the X-intensity is small with respect to the change in the thickness of the coating, and it is possible to accurately determine the thickness fkVs@ The present invention solves the drawbacks of the conventional constant method, and In order to determine the generation efficiency of incoherent scattering, it is possible to measure the thickness of a film containing vk@ elements with high precision over a relatively wide thickness range. A novel coating thickness measurement method using a spectroscopic/detection system [This method provides a coating that contains light elements and a base material in which the generation efficiency of incoherent scattering is smaller than that of the wrinkled coating. The incoherent scattering of black-characteristic ZSt from the coating side is applied to the material, and as a result, the wavelength of the characteristic X-rays among the X-rays emitted or transmitted from the sample is slightly increased. It is characterized in that At1 of the LX coat is selected and detected, and the thickness tm of the coating is determined based on the correlation information between the detected signal value, the coating thickness measured in advance, and the detected signal value. Above all, the basic idea of the present invention 5ζsP will be explained.
V&書例えば第1−のようにアルミニラム基板1の上−
ζポリエステル樹11を塗布しt被膜2を有する試料3
に例えばロジウム(lh)La411その慶−に対して
角ateす方向から照射し、試料*mに対しτ角βtt
kす方向に非干渉性歌tされたXIa′に検出したとす
ると、その際の検出強度工ば以下のようになる。但し、
入射Xla’la度tX、、被膜膜層及び基板における
散乱効率t8nfsf、被膜層及び基板の質量吸収係数
を各々j11.μ、又とれらの密度を各々fi、*IH
とする。V& writing, for example on the aluminum laminate board 1, like the 1st-
Sample 3 coated with ζ polyester tree 11 and having T coating 2
For example, rhodium (lh) La411 is irradiated from a direction that is at an angle to
Assuming that it is detected at XIa', which is incoherently moved in the k direction, the detection strength at that time is as follows. however,
The incidence Xla'la degree tX, the scattering efficiency in the coating layer and the substrate t8nfsf, and the mass absorption coefficient of the coating layer and the substrate are respectively j11. μ, and their densities are fi, *IH
shall be.
1lIllIIにおける被膜WImからIIIさXのム
点における入射−強度一(X)は
ノ」
ra(” ” IO”T’(−PIFl x−λ
、、、) ・・・拳 (1)と’に’、ム点で散乱
して11膜2の一一五点に真遺しt非干渉性成LXIm
強度X、′(x)はIa’(K) = Ia(x)・f
axy(−(Rf’を云;十Ptt’t#)×1・・軸
(z)
となる。又入射X@fI@被膜2の犀さtノ1&鑵■に
到達した級更に基I[1の#!さyのB点&C浸透した
となり、8点で散乱して被膜表1111−★で到達した
非干渉性散乱強度X、’(y)は
工:Cj) ・Ibc、yノ千’eQ(−(RP+A7
3すp、/A、4む一@ 14)となる。従って工は基
板の厚さが1めて厚いものと仮定して以下のように褒わ
される。The incident-intensity 1 (X) at the point X of the film WIm to III in 1lIllII is
,,,)...fist (1) and 'ni', it is scattered at the mu point and left behind at the 115 points of 11 membrane 2 t incoherent formation LXIm
Intensity X,'(x) is Ia'(K) = Ia(x)・f
axy (-(Rf'); 1 Ptt't#) x 1...axis (z).Also, the class that reaches the angle of the incident X@fI@film 2 and the base I[ The incoherent scattering intensity X, '(y) is C: Cj) ・Ibc, y no thousand is scattered at 8 points and reached at coating table 1111-★. 'eQ(-(RP+A7
3sp, /A, 4muichi @ 14). Therefore, assuming that the thickness of the substrate is the thickest, the technique is rewarded as follows.
となるから、結局Xは以下のようになる0・・−・(6
)
ここで右辺槙l及びts2項は砿模層に基づく散乱強度
を表わし、1lIs項は基板からの散乱強度を豪わして
いる。被iIに含まれている軽元素即ち炭素(C)#酸
素(O)、水素(■)と基板であるアル(=ラム(ムl
)とは原子番号がかな9異なるためではf′に比して響
めて大きい0従′りてXはtが比較的小さめ場合6ζは
91項及び第2項の和として与え11に2図は既知な被
III層を有する上4のフル電材料を用、龜し、これら
材料の各々につめて同−東件でXflatlI射した際
の非干渉性散lL強度を一定しこの強度を被膜厚tの関
数としてグラフ化したもので、このグラフからもX−強
度Iが測定で赤れば被膜厚tが求められることが分るが
、この方法にh−一では検出する!鐘の波長は螢光xI
mを用いる一定の場合のように被1[4c含まれる元素
によって固定されてしまうことはな(、非干渉性欲at
起こしに(IAI+端に短波長のxae’を除^たX線
の中から、被膜の材質とその凡その厚さに応じて選択し
て測定することがで會る0
箇4図は上述した考えに基づ(本発明の一実總例を示す
もので、&は一述した知命試料であ−、4は信ジウム(
Rh)を陰響材料とするX線発生源である0鎗X線発生
源4よりのX線は試料54C照射t−れてjP*、試料
6より散乱又は放射されftX線の−Ilaはノーラス
リット5を介して、分光結晶6に導びかれる◎皺分光結
晶の設置角度は試料6かものX線のりち−ジウムのL6
線が非干渉性散乱されて長波長側にわずかにシフトgn
で得られる波長のみt選択的にX線検出$7&c導び(
ように設置されて−る。X−検出i17は曝位時間あた
一分光結晶6によって導びかれたxalの強度に応じた
パルス数のパルスを発生するもので%鎗x纏検出117
よ曽の出カバ〜スは増幅im8によって増幅δれた後、
スケーラ/タイマ94C供給されて例えば一定時間あた
−の計数litが針数される@スケーラ/#イマ9よ−
の計数値を豪わすデジタル信号は演算記憶装置10に供
給される◎*mm#cは膜厚が種々の既知な値をとる試
料に!all’tll封した@に得られる@2F111
に示した知合散乱線強度測定データに基づ−て作成され
た各検出信号値に対応する膜厚値t11わすテーブルが
記憶されており、歇糺−強度検出値1*わす信号が#演
算記憶装置10に供給ξれると対応する膜厚値を表わす
信号が―演算゛・記憶装置10かも出力され、プリン−
の如龜慶示装置1114ζil!示される。Therefore, in the end, X becomes 0...(6
) Here, the terms ``l'' and ts2 on the right side represent the scattering intensity based on the copper layer, and the term ``lIs'' represents the scattering intensity from the substrate. The light elements contained in iI, namely carbon (C), oxygen (O), and hydrogen (■), and the substrate Al (= ram (mul)
) is different from the atomic number by kana 9, so 0 subordinate' is much larger than f', so if Using the above four full electric materials having a known coating III layer, we fixed the incoherent scattering intensity when XflatlI was applied to each of these materials and fixed this intensity by coating It is graphed as a function of thickness t, and from this graph it can be seen that if the X-intensity I turns red in the measurement, the coating thickness t can be determined, but this method can detect it in h-1! The wavelength of the bell is fluorescent xI
Unlike certain cases using m, it is not fixed by the elements contained in 1 [4c (, non-interfering sexual desire at
In the first place, it is possible to select and measure from the X-rays excluding the short wavelength xae' at the IAI+ end depending on the material of the coating and its approximate thickness. Based on the idea (this shows a complete example of the present invention, & is the above-mentioned wisdom sample, and 4 is the Shinsium (
The X-rays from X-ray source 4, which is an X-ray source with Rh) as the negative material, are irradiated with sample 54C and scattered or emitted from sample 6, -Ila of X-rays is NORA. The X-rays are guided through the slit 5 to the spectroscopic crystal 6 ◎The installation angle of the wrinkle spectroscopic crystal is L6
The rays are incoherently scattered and shifted slightly toward longer wavelengthsgn
Selective X-ray detection only at wavelengths obtained with
It is set up like this. The X-detection i17 generates pulses of the number of pulses corresponding to the intensity of xal guided by the spectroscopic crystal 6 per exposure time.
After Yoso's output cover is amplified δ by amplification im8,
The scaler/timer 94C is supplied and, for example, the number of stitches is counted per a certain period of time @scaler/#ima9-
The digital signal that increases the count value is supplied to the arithmetic storage device 10. ◎*mm#c is for samples whose film thicknesses take various known values! @2F111 obtained from all'tll sealed @
A film thickness value t11 table corresponding to each detection signal value created based on the scattered radiation intensity measurement data shown in 1 is stored, and the t11 signal is calculated based on When supplied to the storage device 10, a signal representing the corresponding film thickness value is also outputted to the calculation/storage device 10, and the signal representing the corresponding film thickness value is outputted to the printer.
The display device 1114ζil! shown.
上述した如き本発明においては、”Jlの弗干渉性歌a
t用いて被膜の厚さに測定して−るため、検出するX線
の波長は螢光x@を用6た測定の場合のように被−に含
まれて―る元素によって固定客れてしまうことはなく、
非干渉性斂ttSこしに(I/%僅端に短波長のX線管
lk%1%たX線の中から任意に選ぶことがで會る・従
って被膜の厚さが比較的厚−場合にも、隔射するX線の
波長を透過能が優れた比較的短波長&液長にすることに
よ一1被関の厚at高精度に測定することがで会る・尚
、上述しtl!總llIにお−では金属材料上に塗布さ
れた有機塗料の厚さ會一定する場合に結晶分光する螢光
X線分析装置を利用して行った適用例を詳述したが、本
発明はこのような例にaSSれること橙(例えば結晶分
光tr1fkわfkIA非分歓置の装光針を利用して行
うこともで会る。In the present invention as described above, "Jl's interferometric song a
Since the thickness of the coating is measured using t, the wavelength of the detected X-rays is fixed depending on the elements contained in the coating, as in the case of measurement using fluorescence Don't put it away,
Incoherent contrast (I/%) can be arbitrarily selected from among the X-ray tubes with very short wavelengths. In addition, by setting the wavelength of the emitted X-ray to a relatively short wavelength and liquid length with excellent penetration ability, it is possible to measure the thickness of the target with high precision. In TL!, an application example was described in detail using a fluorescent X-ray analyzer that performs crystal spectroscopy when the thickness of an organic paint coated on a metal material is constant. In this case, it is also possible to use aSS (for example, crystal spectroscopy tr1fkwafkIA) using a non-separating instrument needle.
又、本発明はシダコy(at)基板上の酸化シリコン(
8,o、 )と5111化1 y (P s’s )−
bhbなる被膜の厚sm定及び窺素加工8れた窒化層の
厚II測定等の他、有機フィルムの稽密橙厚8霧定等に
も適用で会る。Furthermore, the present invention also provides silicon oxide (
8, o, ) and 5111 1 y (P s's )−
In addition to measuring the thickness sm of a coating called bhb and the thickness II of a nitrided layer treated with silicon, it can also be applied to determining the thickness of an organic film.
1111+111は本発明の詳細な説明するための因、
嬉mHは非干渉性散乱強度と膜厚との関係を示す一夷験
**V示すための■、第S図は本発明の一夷繍at示す
ための図である。
1:γル1=ウム基゛板、2;被膜、5:試料、4gX
Im’A4:*、5:ノーtxlツ)、6g分11゜結
晶s ’ : ”―検出器、8:増幅L9:Jケーラ/
−イマ、1G−演算記憶装置、I唱:l!示装置O
特許出−人
日本エックス纏 株式会社
代表者 貫 潤 和 男
RhLt5UI
4−良月−511さくxt6’m−ン1111+111 is a factor for detailed explanation of the present invention,
Figure mH is a diagram showing the relationship between incoherent scattering intensity and film thickness. 1: γ base plate, 2: coating, 5: sample, 4gX
Im'A4: *, 5: Note txl ts), 6g minute 11° crystal s': "-Detector, 8: Amplification L9: J Koehler/
-Now, 1G-Arithmetic storage device, I chant: l! Display device O Patent originator Nippon
Claims (1)
発生効率に比して小さI/I母材とよりなる材料に被膜
側から非干渉性散tsれ墨−特性X鐘tII射し、その
結Jl#試料!−放射又は散tされるX線のうち一記特
性X纏の波長よ螢わずかに長波側の散1x纏のAl4択
して検出し、鎮検出偏号値と予しめ測W!された被−厚
と検出儒壷値との相関情報に基−3v%で一記被膜の厚
8ts定するようにした仁とt特徴とする被−の厚さ一
定方法・The generation efficiency of incoherent scattering from the coating containing trench elements is smaller than that of the incoherent coating. Shoot, its result Jl#sample! - Out of the emitted or scattered X-rays, select and detect the wavelength of X-rays with one characteristic, which is slightly longer than the wavelength of the X-rays, and detect the detected polarization value and pre-measure W! Based on the correlation information between the determined coating thickness and the detected Confucian pot value, the thickness of one coating is determined to be 8ts at -3v%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57008616A JPS58135407A (en) | 1982-01-22 | 1982-01-22 | Method for measuring film thickness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57008616A JPS58135407A (en) | 1982-01-22 | 1982-01-22 | Method for measuring film thickness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58135407A true JPS58135407A (en) | 1983-08-12 |
Family
ID=11697877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57008616A Pending JPS58135407A (en) | 1982-01-22 | 1982-01-22 | Method for measuring film thickness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58135407A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821862A (en) * | 1994-08-30 | 1998-10-13 | University Of Guelph | Method and apparatus for measuring ice thickness on substrates using backscattering of gamma rays |
US5862199A (en) * | 1995-08-30 | 1999-01-19 | University Of Guelph | Method and apparatus for measuring thickness of paint layers on substrates using backscattering of x-rays |
US6252930B1 (en) | 1994-08-30 | 2001-06-26 | University Of Guelph | Method and apparatus for measuring thickness of coating layers on substrates using backscattering of x-rays and gamma rays |
CN110017798A (en) * | 2019-04-04 | 2019-07-16 | 浙江上方电子装备有限公司 | A kind of method and device detecting film thickness |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57197410A (en) * | 1981-05-29 | 1982-12-03 | Rigaku Denki Kogyo Kk | Measuring method of adhered amount of high polymer film on metallic plate |
-
1982
- 1982-01-22 JP JP57008616A patent/JPS58135407A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57197410A (en) * | 1981-05-29 | 1982-12-03 | Rigaku Denki Kogyo Kk | Measuring method of adhered amount of high polymer film on metallic plate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821862A (en) * | 1994-08-30 | 1998-10-13 | University Of Guelph | Method and apparatus for measuring ice thickness on substrates using backscattering of gamma rays |
US6252930B1 (en) | 1994-08-30 | 2001-06-26 | University Of Guelph | Method and apparatus for measuring thickness of coating layers on substrates using backscattering of x-rays and gamma rays |
US5862199A (en) * | 1995-08-30 | 1999-01-19 | University Of Guelph | Method and apparatus for measuring thickness of paint layers on substrates using backscattering of x-rays |
CN110017798A (en) * | 2019-04-04 | 2019-07-16 | 浙江上方电子装备有限公司 | A kind of method and device detecting film thickness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2849665B2 (en) | A method for measuring the thickness and composition of coatings on substrates | |
US3056027A (en) | Apparatus for measuring the thickness of a deposit | |
JP4725350B2 (en) | Transmission X-ray measurement method | |
US2926257A (en) | Method of measuring the thickness of thin coatings | |
JP3124407B2 (en) | X-ray fluorescence film thickness meter | |
JPS58223047A (en) | Method for x ray fluorescence analysis | |
JPS58135407A (en) | Method for measuring film thickness | |
Ararat-Ibarguen et al. | Measurements of diffusion coefficients in solids by means of LIBS combined with direct sectioning | |
US11262320B2 (en) | Monitor for measuring mercury emissions | |
JPH0619268B2 (en) | Method for measuring thickness of coating film on metal | |
JPH0224545A (en) | Method for fluorescence x-ray analysis | |
JPH0211844B2 (en) | ||
Jonnard et al. | Combined x‐ray reflectivity and grazing incidence x‐ray fluorescence study of Ta/Cr/Pt thin film stacks | |
JPH11287643A (en) | Method and device for measuring thickness by use of transmitted x-ray and method for measuring percentage of specific component by use of transmitted x-ray | |
JP3027074B2 (en) | X-ray diffraction dynamic measurement device | |
JPS61210932A (en) | Method and instrument for fluorescent x-ray analysis of laminated body | |
US5173929A (en) | Method for determining the thickness of a metallic coating on a gas turbine blade | |
JPS6367121B2 (en) | ||
JPH0726921B2 (en) | Instrumental analysis method for surface coating of metal plate | |
JPS6188128A (en) | Method for measuring film thickness and composition of alloy coat | |
Ekinci et al. | Determination of the sample thicknesses by intensity ratio measurement by energy dispersive X-ray fluorescence spectrometry | |
JPH02107952A (en) | X-ray diffraction measurement for powder | |
RU555811C (en) | Digital roentgeneluoroscent device | |
JPS5831522B2 (en) | Himakunoatsumisokuteisouchi | |
JP2563016B2 (en) | Fluorescent X-ray analysis method and apparatus using effective wavelength |