JPS6184511A - Simultaneous measurement of component ratio and film thickness of two-component alloy film - Google Patents

Simultaneous measurement of component ratio and film thickness of two-component alloy film

Info

Publication number
JPS6184511A
JPS6184511A JP20757884A JP20757884A JPS6184511A JP S6184511 A JPS6184511 A JP S6184511A JP 20757884 A JP20757884 A JP 20757884A JP 20757884 A JP20757884 A JP 20757884A JP S6184511 A JPS6184511 A JP S6184511A
Authority
JP
Japan
Prior art keywords
ray
metal
alloy
film thickness
component ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20757884A
Other languages
Japanese (ja)
Inventor
Hirokiyo Yamanaka
宏青 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP20757884A priority Critical patent/JPS6184511A/en
Publication of JPS6184511A publication Critical patent/JPS6184511A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness

Abstract

PURPOSE:To measure simultaneously the component ratio and film thickness of an alloy film by deleting the term contg. an error from a calculation equation expressing the relation between the component ratio and film thickness of the alloy film and the fluorescent X-ray intensity of the metal and improving the accuracy of the calculation equation. CONSTITUTION:The primary X-ray 3 radiated from an X-ray tube 1 is converged by a collimator 2 and is irradiated to an alloy film sample 4 on a sample base 5. The secondary X-ray 6 generated from the sample 4 is detected of the X-ray energy and X-ray intensity by an X-ray detector 7 and after the electric signals thereof are amplified by a preamplifier 8 and a linear amplifier 9, the signals are discriminated by a pulse height discriminator 10, from which the respective fluorescent X-ray intensities of the metal A and metal B generated from the alloy film are inputted to a CPU11. The component ratio and film thickness are calculated by the equation indicating the relation between the component ratio and film thickness of the alloy film and the fluorescent X-ray intensity and by the equation to determine the density of the alloy in the CPU11 and are displayed on a display part 12.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明はケイ光X線を用いた穫厚計に関し、特に二成分
合金の取分比と膜厚のflffJ時測定法時間定法もの
である。
[Detailed Description of the Invention] a. Field of Industrial Application The present invention relates to a thickness meter using fluorescent X-rays, and in particular, it is a time-fixed method for measuring the fractional ratio and film thickness of a binary alloy. .

b、従来技術 従来、二成分合金膜の成分比と膜厚の同時測定は厚さの
各々異なる5個以上の純粋の金属Aの厚さを有する標準
試料と厚さの各々異なる5個以上の純粋の金属Bの厚さ
を有する標準試料と、ケイ光x綜が飽和するに十分な厚
さ金もった5個以上の成分比を有する標準試料(以後、
成分比試料と記す。)の計9個の標準試料から放射され
る金属A及び金属Bの各々のケイ光X線強度を測定し、
合金から放射されるケイ元X線強度を表わす(1)式及
び(31式に上記X線強度を代入し、連立方程式を解く
ことに二って、(1)式及び(3)式中の未知定eを決
定し、未知合金試料の取分比及び1IjS厚の同時測定
を(1)式及び(3)式を連立させることに工って、成
分比及び合金膜厚を求めていた。(1)式から(4)式
を示す。
b. Prior art Conventionally, the simultaneous measurement of the component ratio and film thickness of a binary alloy film was carried out using a standard sample having five or more pure metal A thicknesses, each having a different thickness, and a standard sample having five or more thicknesses, each having a different thickness. A standard sample having a thickness of pure metal B and a standard sample having a ratio of five or more components with a thickness of gold sufficient to saturate the fluorescence x helix (hereinafter referred to as
This is referred to as a component ratio sample. ) Measure the fluorescence X-ray intensity of each of metal A and metal B emitted from a total of nine standard samples,
By substituting the above X-ray intensity into Equation (1) and Equation (31) expressing the silica X-ray intensity emitted from the alloy and solving the simultaneous equations, The unknown constant e was determined, and the component ratio and alloy film thickness were determined by simultaneous measurement of the fractional ratio and 1IjS thickness of the unknown alloy sample by combining equations (1) and (3). Equations (1) to (4) are shown below.

工Ax (工Aa!1(WA)−エムbi(1−exp
−(Wム+(1−WA)/b)エム(λA)ρ(WA)
・t)十エムb        ・・・・・・・・・・
・・+11工A齢(WA)xawA(bWa+1)十よ
り(λム)     ・・・・・・・・・・・・(2)
工3m(より1lll(WA)−よりb ) (1−e
xp−(WA/1)’+(1−WA ) )μB(λB
)ρ(WA)・t〕十よりl)      ・・・・・
・・・・・・・(3)より66(WA )−a’ (1
−WA )/(1+b’(1−WA))十より(λB 
) ・(4)工=(エーエo ) (1−6cp−(μ
ρK))十工0   ・・・・・・・・・・・・(5)
(1)式及び(3)式中の合金の密度は(6)式を用い
ている。
Engineering Ax (Engineering Aa! 1 (WA) - M bi (1 - exp
-(W+(1-WA)/b)M(λA)ρ(WA)
・t) 10Mb ・・・・・・・・・・・・
...+11 engineering age (WA) xawA (bWa+1) from 10 (λmu) ......
3m (1lll(WA)-b) (1-e
xp-(WA/1)'+(1-WA))μB(λB
)ρ(WA)・t〕l from 10) ・・・・・・
・・・・・・・・・From (3), 66(WA )-a' (1
-WA )/(1+b'(1-WA)) from ten (λB
) ・(4) Engineering = (AE o ) (1-6cp-(μ
ρK)) Jukou 0 ・・・・・・・・・・・・(5)
For the density of the alloy in formulas (1) and (3), formula (6) is used.

ρ(WA)=ρム・WA+ρB(1−WA)     
 ・・・・・・・・・・・・(6)ここで、(1)式及
び(2)式中の足叙a、b、より(λム)は5個の成分
比試料の金属Aのケイ元X線強度より求める定数である
。VAは金属Aの成分比、μA(λ^)は金属Aのケイ
光X線に対する金属Aの吸収係数、エムbはバックグラ
ウンドであ夛、ρ(WA)は合金の曽度で金属Aの成分
比関数であり、tは合金膜の厚さく次元は(L’M’T
’))であり、エムは合金膜から放射される金属Aのケ
イ元X線強度である。(3)弐及び(4)式中のff1
i a’ 、 b’ 、 より(λB)は3個の成分比
試料の金属Bのケイ光X線強度工す求める定数である。
ρ(WA)=ρμ・WA+ρB(1−WA)
・・・・・・・・・・・・(6) Here, from the footnotes a and b in equations (1) and (2), (λum) is the metal A of the five component ratio samples. This is a constant determined from the x-ray intensity of ions. VA is the component ratio of metal A, μA (λ^) is the absorption coefficient of metal A for fluorescent X-rays, Mb is the background, and ρ (WA) is the strength of the alloy. It is a component ratio function, where t is the thickness of the alloy film and the dimension is (L'M'T
')), and Em is the intensity of silicon element X-rays of metal A emitted from the alloy film. (3) 2 and ff1 in formula (4)
From i a' , b' , (λB) is a constant that calculates the fluorescent X-ray intensity of metal B of the three component ratio samples.

μB(λB)は金属Bのケイ光X線に対する金属Bの吸
収係倣であJ、Inbはバックグラウンドであ)、より
 は合金膜から放射される金属Bのケイ光X線強度であ
る。吸収係叙エム(λム)及びμ人(λB)は(5)式
を用いて、厚さの各々異なる6個以上の純粋の金属の厚
さを有する標準試料のX線強度を測定し、連立方程式を
解くことに工す算出できる。合金の密度は(6)式を用
いて計算を行っていた。
μB (λB) is the absorption coefficient of metal B to the fluorescent X-rays of metal B (J, Inb is the background), and is the fluorescent X-ray intensity of metal B emitted from the alloy film. The absorption coefficients M (λ) and μ (λB) are measured by using equation (5) to measure the X-ray intensity of a standard sample having six or more pure metals with different thicknesses, You can use calculations to solve simultaneous equations. The density of the alloy was calculated using equation (6).

C1本発明が解決しょうとする問題点 従来の二成分合金膜の成分比と膜厚の同時測定法は取分
比と合金映厚(久冗(L’M’ T’ ))を同時に求
める際、合金の密度ρをρ= p AWA+ρB (1
−WA)として求めてGたが、この合金の密度を求める
(6)式では正しい合金の密度が求められない。そのデ
ータを表1に示す。
C1 Problems to be solved by the present invention The conventional method for simultaneously measuring the component ratio and film thickness of a binary alloy film has problems when simultaneously determining the fractional ratio and alloy thickness (L'M'T'). , the density ρ of the alloy is ρ=p AWA+ρB (1
-WA), but the correct density of the alloy cannot be determined using equation (6) for determining the density of this alloy. The data are shown in Table 1.

表1. 密度計算の誤差(半田) 表1にある工うに(6)式から計算される合金の密度は
0〜5%の誤差をもつため、検量線の方程式(1)式(
3)式は誤差を含む。又、合金膜厚を求める場せ、合金
の成分比を正しく求めても、合金膜厚を求める際に(6
)式による合金密度を用いて計算するため計算1直に誤
差が含まれてしまう問題点があった。
Table 1. Error in density calculation (solder) Since the alloy density calculated from equation (6) in Table 1 has an error of 0 to 5%, the calibration curve equation (1) equation (
3) Formula includes error. Also, when calculating the alloy film thickness, even if the alloy component ratio is calculated correctly, when calculating the alloy film thickness (6
) There was a problem in that an error was included in the first calculation because it was calculated using the alloy density according to the formula.

d0問題点を解決するための手段 以上の問題点を解決するために合金膜の成分比と膜厚と
ケイ光X線強度の関係を示す(1)弐及び(3)式を各
々(7)式及び(8)式に改良する。又、合金の密度を
求める式(6)式を(9)式に改良する。
Means for solving the d0 problem In order to solve the above problems, equations (1) and (3) showing the relationship between the component ratio, film thickness, and fluorescence X-ray intensity of the alloy film are respectively converted into (7). and (8). Also, the equation (6) for determining the density of the alloy is improved to the equation (9).

工A= (x ApO(WA)−工Ab) (1−ar
p−(WA+(1−WA )7b)μA(λA)t’)
十王At)         ・・・・・・・・・・・
・(7)より=(工3a++(WA)−よりb) (1
−eXp−(WA/b’+(1−WA ) )μB(λ
B)t’)十よりb         ・・・・・・・
・・・・・(8)ρ−ρ人ρB/(WムρB+(1−W
A)エム)         ・・・・・・・・・・・
・+91ここで、t′は合金膜厚(次元はCM”M” 
T’ ) )である。
Engineering A = (x ApO (WA) - Engineering Ab) (1-ar
p-(WA+(1-WA)7b)μA(λA)t')
Juoh At) ・・・・・・・・・・・・
・From (7)=(Eng.3a++(WA)−b) (1
-eXp-(WA/b'+(1-WA))μB(λ
B) t') b from ten...
...(8) ρ-ρperson ρB/(WmuρB+(1-W
A) M) ・・・・・・・・・・・・
・+91Here, t' is the alloy film thickness (the dimension is CM"M"
T')).

06作用 +11式及び(3)式を各々(7)式及び(8)式に改
良することにニジ合金膜の成分比と合金膜厚とケイ光X
線強度の関係式中から密度計算式に起因する誤差を除去
することができ、工り精度の高い合金膜の成分比と合金
膜厚(次元はCL−”M’ To) )の同時測定がで
きる。又、密度計算式(9)式を用いることに工す、工
す正確な合金の密度を求めることができる。
06 action + 11 formula and formula (3) are improved to formulas (7) and (8), respectively, and the component ratio of the rainbow alloy film, the alloy film thickness, and the fluorescence
Errors caused by the density calculation formula can be removed from the linear strength relational expression, and the component ratio and alloy film thickness (dimension is CL-"M'To) of the alloy film can be simultaneously measured with high processing accuracy. In addition, by using the density calculation formula (9), the accurate density of the alloy can be determined.

そのデータを表2に示す。The data are shown in Table 2.

表2. ぞ度計算結果 (7)式及び(8)式t一連立させて求めた合金膜厚(
次元はCI、−”M’T’) ) ’rt91式で求め
た合金の正確な密度で割ることに工9直観性の良い正確
な合金膜厚(次元は(L’ M’ T’ )に変換でき
る作用をもつ。
Table 2. The alloy film thickness (
Dimensions are CI, -"M'T')) 'rt91 Dividing by the exact density of the alloy determines the intuitive and accurate alloy film thickness (dimensions are (L'M'T') It has the ability to convert.

f、実施例 以下図面とともに本発明の好適な実死例について説明す
ると、第1歯は本発明のブロックダイヤグラムである。
f. Example Hereinafter, a preferred example of the present invention will be described with reference to the drawings.The first tooth is a block diagram of the present invention.

図中、符号1で示されるものはX線管であり、ここニジ
放射される一次X線3がコリメータ2に工って収束され
試料台5上の合金模試利4に照射される。合金膜試料4
から発生する二次X線6(ケイ元X線)はX線検出器7
に工つてX線エネルギー及びX線強厩が検出され、その
電機信号がプリアンプ8及びリニアアップ8に二って増
幅され、増幅された電機信号が波高弁別器10に工って
波胃弁別され、合金−から発生する金属A及び金属Bの
各々のケイ光X!強度をCPTJllに入力される。(
1!PU11内では、(7)式、(8)式、(9)式1
9合金膜の成分比と膜厚の演′Sをし、その結果を表示
912に出力する。第2図は本発明のフローチャートで
ある。
In the figure, the reference numeral 1 indicates an X-ray tube, and primary X-rays 3 emitted from the tube are focused by a collimator 2 and irradiated onto an alloy sample sample 4 on a sample stage 5. Alloy film sample 4
Secondary X-rays 6 (Si elemental X-rays) generated from the X-ray detector 7
X-ray energy and X-ray intensity are detected, the electrical signals thereof are amplified by a preamplifier 8 and a linear up 8, and the amplified electrical signals are sent to a pulse height discriminator 10 for wave-discrimination. , the fluorescence X of each of metal A and metal B generated from alloy -! The intensity is input to CPTJll. (
1! Within PU11, equations (7), (8), and (9) 1
The component ratio and film thickness of the 9 alloy film are calculated and the results are output on the display 912. FIG. 2 is a flow chart of the present invention.

g0本発明の効果 本発明は合金膜の取分比と膜厚と該金属のケイ光X線強
度の関係を表わす演算式中工9誤差を含む項を削除し、
演算式の精度を向上させるとともに合金の密度を求める
正確な密度計算式を用いる事にLυ合金映膜厚/(次元
(L−2MI T’ ) )からせ全膜厚t(次元(1
,I MOTO:l )への正確な変換ができるため、
工#)精度の商い合金膜の成分比と膜厚の同時測定がで
きる効果がある。
g0 Effects of the Present Invention The present invention eliminates the term containing the error in the calculation formula representing the relationship between the fractional ratio of the alloy film, the film thickness, and the fluorescence X-ray intensity of the metal, and
By improving the accuracy of the calculation formula and using an accurate density calculation formula for determining the density of the alloy, the total film thickness t (dimension (1
, I MOTO:l ),
TECHNOLOGY: It has the effect of being able to simultaneously measure the component ratio and film thickness of the alloy film due to its accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である。第2図は本発明を実
施するためのフローチャートである。。 (1)・・・X 線M       +2+−・・コリ
メータ(3)・・・−仄X線     (4)・・・合
金嗅試料(5)・・・試料台      (6)・・・
二次X線(7)・・・1球検出器    (8)・・・
プリアンプ(9)・・・リニアアップ   αF・・波
高弁別器συ・・・CP U       t12・・
・表示部巣二仄は本発明のフローチャートである。 以   上
FIG. 1 shows an embodiment of the present invention. FIG. 2 is a flowchart for implementing the present invention. . (1)...X-ray M +2+-...collimator (3)...-dim X-ray (4)...alloy odor sample (5)...sample stand (6)...
Secondary X-ray (7)...One-ball detector (8)...
Preamplifier (9)...Linear up αF...Height discriminator συ...CP U t12...
- The second part of the display is a flowchart of the present invention. that's all

Claims (1)

【特許請求の範囲】[Claims] 本体に設けられたX線源からの一次X線によつて励起さ
れた試料から発生するケイ光X線を検出することによつ
て第1金属及び第2金属からなる二成分合金の成分比及
び膜厚を測定する方法において、第1金属及び第2金属
のケイ光X線強度をX線検出器で検出する工程と、厚さ
の各々異なる3個以上の純粋の第1金属の厚さを有する
標準試料のX線強度を測定する行程と厚さの各々異なる
3個以上の純粋の第2金属の厚さを有する標準試料のX
線強度を測定する工程と、ケイ光X線が飽和するに十分
な厚さをもつた3個の成分比(0%及び100%の試料
を含む。)を有する標準試料のケイ光X線強度を測定し
検量線の方程式を決定する工程と、未知試料中の各金属
から放射されるケイ光X線強度を測定することにより二
成分合金の成分比と単位面積当りの重量を求める工程と
、合金の密度を第1金属及び第2金属の各密度より正し
く求める工程と、求めた合金密度より単位面積当りの重
量を通常の厚み単位へ変換する工程とによつて演算測定
することを特徴とする二成分合金膜の成分比と膜厚の同
時測定法。
By detecting the fluorescent X-rays generated from the sample excited by the primary X-rays from the X-ray source installed in the main body, the composition ratio of the binary alloy consisting of the first metal and the second metal can be determined. The method for measuring film thickness includes the steps of: detecting the fluorescent X-ray intensities of the first metal and the second metal with an X-ray detector; and measuring the thickness of three or more pure first metals, each having a different thickness. The process of measuring the X-ray intensity of a standard sample having three or more pure second metals each having a different thickness
The process of measuring the ray intensity and the fluorescence X-ray intensity of a standard sample having three component ratios (including 0% and 100% samples) with a thickness sufficient to saturate the fluorescence X-rays. and determining the equation of the calibration curve; and determining the component ratio and weight per unit area of the binary alloy by measuring the fluorescent X-ray intensity emitted from each metal in the unknown sample. The density of the alloy is calculated and measured by a step of correctly determining the density of the first metal and a second metal, and a step of converting the weight per unit area from the determined alloy density into a normal thickness unit. A method for simultaneously measuring the component ratio and film thickness of a binary alloy film.
JP20757884A 1984-10-03 1984-10-03 Simultaneous measurement of component ratio and film thickness of two-component alloy film Pending JPS6184511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20757884A JPS6184511A (en) 1984-10-03 1984-10-03 Simultaneous measurement of component ratio and film thickness of two-component alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20757884A JPS6184511A (en) 1984-10-03 1984-10-03 Simultaneous measurement of component ratio and film thickness of two-component alloy film

Publications (1)

Publication Number Publication Date
JPS6184511A true JPS6184511A (en) 1986-04-30

Family

ID=16542073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20757884A Pending JPS6184511A (en) 1984-10-03 1984-10-03 Simultaneous measurement of component ratio and film thickness of two-component alloy film

Country Status (1)

Country Link
JP (1) JPS6184511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219495A (en) * 1988-02-29 1989-09-01 Ishikawajima Harima Heavy Ind Co Ltd Furnace bottom discharge method for melting furnace and device thereof
JPH0335149A (en) * 1989-06-30 1991-02-15 Nkk Corp Method and instrument for measuring plating deposition and plating film composition of plated steel sheet
CN100409002C (en) * 2001-08-07 2008-08-06 精工电子纳米科技术有限公司 X-ray coating thickness device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219495A (en) * 1988-02-29 1989-09-01 Ishikawajima Harima Heavy Ind Co Ltd Furnace bottom discharge method for melting furnace and device thereof
JPH0335149A (en) * 1989-06-30 1991-02-15 Nkk Corp Method and instrument for measuring plating deposition and plating film composition of plated steel sheet
CN100409002C (en) * 2001-08-07 2008-08-06 精工电子纳米科技术有限公司 X-ray coating thickness device

Similar Documents

Publication Publication Date Title
JPS6184511A (en) Simultaneous measurement of component ratio and film thickness of two-component alloy film
US4088886A (en) Radiation thickness gauge for sheet material
JPH03123881A (en) Method and apparatus for analyzing gamma ray nuclide
JP2003194953A (en) Radiation measurement program and radiation-measuring apparatus
JPH01134291A (en) Scintillation type dose rate meter
Bradley et al. XRF and the in vivo evaluation of toxicological metals
JP3291253B2 (en) X-ray fluorescence analyzer
JP2732460B2 (en) X-ray fluorescence analysis method
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
JP3234716B2 (en) Area measurement method used for X-ray analysis
JPS6362694B2 (en)
JP2645227B2 (en) X-ray fluorescence analysis method
Tang et al. An XRF method for the determination of the efficiency of Si (Li) detectors in an extended-source geometry by using thick specimens
JP3455659B2 (en) X-ray fluorescence analysis method and apparatus
JP3389161B2 (en) X-ray fluorescence analyzer and recording medium used therein
JPS61193057A (en) Radiation analyzing instrument
JPS61250509A (en) Method for measuring film thickness of magnetic body on polymer film
Rhodes et al. Applications of a portable radioisotope X-ray fluorescence spectrometer to analysis of minerals and alloys
JP2685722B2 (en) X-ray analysis method
JP3399861B2 (en) X-ray analyzer
USH922H (en) Method for analyzing materials using x-ray fluorescence
JPS61170606A (en) Fluorescent x-ray film thickness gage
JP2645226B2 (en) X-ray fluorescence analysis method
JPS6179144A (en) Analyzing method of metallic sample
JPS60113135A (en) Apparatus for nondestructive measurement of concentration