JPS5977346A - Analyzing apparatus for element composition of substance - Google Patents

Analyzing apparatus for element composition of substance

Info

Publication number
JPS5977346A
JPS5977346A JP57187296A JP18729682A JPS5977346A JP S5977346 A JPS5977346 A JP S5977346A JP 57187296 A JP57187296 A JP 57187296A JP 18729682 A JP18729682 A JP 18729682A JP S5977346 A JPS5977346 A JP S5977346A
Authority
JP
Japan
Prior art keywords
neutron
gamma
ray
fast
gamma ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57187296A
Other languages
Japanese (ja)
Other versions
JPS6362694B2 (en
Inventor
Hiroshi Tominaga
洋 富永
Tsuyoshi Imahashi
今橋 強
Noboru Tachikawa
立川 登
Shoichi Horiuchi
堀内 昭一
Yoshihiro Sase
佐瀬 義広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP57187296A priority Critical patent/JPS5977346A/en
Publication of JPS5977346A publication Critical patent/JPS5977346A/en
Publication of JPS6362694B2 publication Critical patent/JPS6362694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by using a combination of at least two measurements at least one being a transmission measurement and one a scatter measurement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To analyze the element composition of a substance while correcting water content and bulk density, by measuring the fast-neutron permeability and the gamma- ray permeability of the same part of the flow of the substance to obtain a water content and a bulk density, and simultaneously measuring the neutroncapturing gamma ray generated from the measured part. CONSTITUTION:The parts of fast-neutron ray 14 and gamma ray 16 which pass through an object 20 being measured are detected by detectors 24, 26 and separated into a fast- neutron pulse signal and a gamma ray pulse signal by a pulse waveform discriminating circuit 28. The pulses are respectively counted by scalers 30, 32 thereby to calculate a water content and a bulk density. On the other hand, a part 34 of the fast neutrons are decelerated, and a part 38 of the neutrons are diffused into the object 20. When the part 38 are captured and absorbed by the object 20, a neutron-capturing gamma ray 40 is generated which is peculiar to a capturing element. The gamma ray 40 is detected by a solid gamma ray detector 44 equipped with a decelerated neutron filter 42 and is applied to a pulse crest analyzer 46 to carry out a gamma-ray energy spectral analysis, thereby allowing the concentration of each element in the object 20 to be obtained from the magnitude of eah spectral peak.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、放射性同位体から放出される放射線ケ利用し
て、工業用原材料等の各種処理工程においてXクライン
中で物質元素組成を分析する装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an apparatus for analyzing the elemental composition of materials in an X-cline in various processing steps of industrial raw materials, etc., using radiation emitted from radioactive isotopes. Regarding.

〔従来技術〕[Prior art]

石炭や鉱石などを取扱う各種産業の処理工程において、
それら物質の流れから試料を採取することなく、物質の
組成を刻々迅速に分析するオンライン分析が求められる
ようになり、このためX 、、、、、I!や中性子など
の放射線を利用する分析装置が開発され、一部では用い
られるようになった。しかしながら、測定対象となる工
業原拐料等の多くは不均質物体であり、組成、高密度と
もに不均一な分布をしているため、分析の正確さを祷る
ためにはその応用に制約があった。
In the processing processes of various industries that handle coal, ore, etc.
There is now a need for online analysis that rapidly analyzes the composition of substances moment by moment without having to take samples from the flow of these substances. Analyzers that use radiation such as neutrons and neutrons have been developed and are now in use in some areas. However, many of the industrial particles that are the objects of measurement are heterogeneous objects, with uneven distributions in both composition and density, so there are restrictions on their application in order to ensure the accuracy of analysis. there were.

例えば、薬屋的な不均質物である石炭を測定対象とする
場合、X線の散乱や螢光X線発生を利用するには、X線
の透過力が弱いンζめに微粉粒に調整し充分に混合した
うえ測定表1mヲ平坦にし、かつ試料厚さをうすくして
おかなければならない。
For example, when measuring coal, which is a heterogeneous substance similar to that used in drug stores, to utilize X-ray scattering and fluorescent X-ray generation, it is necessary to adjust it to fine powder so that the X-ray penetrating power is weaker. After mixing thoroughly, the measurement surface must be made flat by 1 m, and the sample thickness must be thin.

中性子の捕獲吸収によるガンマ#j!発生を利用する場
合は、中性子、ガンマ線ともに透過力が比較的大きいの
で、測定に係る有効体積はある程度太きく、測定対象物
自体に対する制約は少くなる。
Gamma #j due to neutron capture and absorption! When using generation, the penetrating power of both neutrons and gamma rays is relatively large, so the effective volume for measurement is somewhat large, and there are fewer restrictions on the measurement object itself.

しかし、この場合にも、対象物の嵩密度及び水分の変化
は分析結果に相当の影響を及ぼすので、その影響ができ
る限シ少くなるような対象物の流れの状態(’j4fj
 、厚さなど)や測定の幾何学的条件をjへ択し、さら
にそのうえで正確さを保14tEするため、高密度(ま
たは重量厚さ)及び水分を別の測定機器を用いて測定し
補償しなければならなかった。
However, even in this case, changes in the bulk density and moisture content of the object have a considerable influence on the analysis results, so the flow conditions of the object ('j4fj
, thickness, etc.) and the geometrical conditions of the measurement, and then, in order to maintain accuracy, high density (or weight thickness) and moisture are measured and compensated using separate measuring equipment. I had to.

しかし、異なる仮数側の測定機器を用いて流れている測
定対象物の同一部分の測定を行うことは困りil!:’
であり、嵩密度、水分を正しく補償した分析値ケ・j!
することが出来なかった。
However, it is difficult to measure the same part of a flowing object using measuring instruments on different mantissa sides! :'
And the analytical value that correctly compensates for bulk density and moisture is ke・j!
I couldn't do it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、−上記した従来技術の欠点をなくシ、
測定対・1吻の嵩密度、水分を補正した分析値が得られ
る分析装置を提供するにある。
The object of the present invention is to: - eliminate the drawbacks of the prior art mentioned above;
An object of the present invention is to provide an analysis device that can obtain analysis values corrected for the bulk density and moisture content of a measured pair of proboscises.

〔グミ明の、匝波〕[Gummy Akira's wave]

」1記目的を達成するため、本発明は、物質の流れにお
いてつねに同一部分に対して高速中性子とガンマ線の透
過率を測定し、水分と嵩密度と金求めるとともに、同じ
流れの部分から発生する中性子捕獲ガンマ線を同時に測
定することにより、水分、嵩密度を正しく補正した元素
成分を分析するようにしたものである。
In order to achieve the above object, the present invention always measures the transmittance of fast neutrons and gamma rays in the same part of the material flow, determines the water content, bulk density, and gold, and also measures the transmittance of fast neutrons and gamma rays generated from the same part of the flow. By simultaneously measuring neutron-captured gamma rays, elemental components can be analyzed with moisture and bulk density correctly corrected.

高速中性子に対する質量吸収係数は、水素に関してとく
に大きく他の元素では小さい。他方ガンマ線に対する質
量吸収係数(低エネルギーガンマ線の場合を除き)は元
素によってあまり変らない。
The mass absorption coefficient for fast neutrons is particularly large for hydrogen and small for other elements. On the other hand, the mass absorption coefficient for gamma rays (except for low-energy gamma rays) does not vary much depending on the element.

このため、前記両者の透過減衰率から水分(正しくは、
化学結合状態の如何によらない水素量)と高密度(又は
重量厚さ)が得られるものである。
For this reason, water (correctly,
It is possible to obtain high hydrogen content (hydrogen content) and high density (or weight thickness) regardless of the chemical bond state.

しかも1個の線源と1個の検出器とによる測定のため、
高速中性子とガンマ線の画線束が壁間的に全く同一部分
を通り、し次がって測定対象物の同射材で取囲み同線源
から放出される高速中性子のうち一部が減速され測定対
象物内に拡散するようにし、減速中性子が測定対象物に
捕獲吸収された際に発生する中性子捕獲ガンマ線全検出
し、そのガンマ諌エネルギーを測定解析することによっ
て、’l!1足ノし素又は多種類の元素の分析を行う。
Moreover, since the measurement is performed using one radiation source and one detector,
The streak flux of fast neutrons and gamma rays passes through the same part of the wall, and is then surrounded by the radiation material of the measurement target, where some of the fast neutrons emitted from the source are decelerated and measured. By detecting all of the neutron-captured gamma rays generated when decelerated neutrons are captured and absorbed by the measurement object, and measuring and analyzing the gamma energy, 'l! Analyzes a single element or multiple types of elements.

この際、回じ中性子線源は前記の方法により高速中性子
線妃かつガンマ線源として、上記の分析対象と同じ部分
の水分、嵩密度測定に同時に用いられておシ、分析値、
水分値、嵩密度値の間の関係を演算補正することによっ
て最終的に正確な元素組成の分析が出来るものである。
At this time, the circular neutron source is simultaneously used as a fast neutron source and a gamma ray source to measure the moisture content and bulk density of the same area as the above-mentioned analysis target.
By calculating and correcting the relationship between the moisture value and the bulk density value, accurate elemental composition analysis can finally be performed.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図において、例えば252Cfの同位体中性子線源
10をビスマス又は鉛などの重金属物質からなる線源側
遣蛾兼コリメーメ12とともに用いるとき、線源10か
ら放出される平均約2M−6−Vの高速中性子線14と
平均約IM−+vのガンマ線16とは、コリメータ12
により適当にコリメートされた線束となって測定対象物
容器18の中の測定対象物20に投射される。高速中性
子線14及びガンマ線16のうち測定対象物20を透過
し重金属からなる検出器側コリメータ22を通過しタモ
ノは、有機シンチレータ24及び光電子増1¥!f管2
6からなる検出器により検出され、光電子増倍管26の
出力パルス171号はパルス波形弁別回IIt′628
により高速中性子とガンマ線との各/’/l/ス領号に
分けられそれぞれスケーラ−30及び32により計数さ
れる。高速中性子及びガンマ線の計数は、それぞれ測定
対象物が空のときの各計数比をとることによって各透過
減衰率が得られ、これから前記により水分及び高密度の
値が算出される。
In FIG. 1, when an isotopic neutron source 10 of, for example, 252 Cf is used with a source-side moth and collimator 12 made of a heavy metal material such as bismuth or lead, an average of about 2M-6-V is emitted from the source 10. The fast neutron beam 14 and the gamma ray 16 with an average of about IM-+v
A properly collimated beam is projected onto the measurement object 20 in the measurement object container 18. Among the fast neutron beams 14 and gamma rays 16, those that pass through the measurement object 20 and pass through the detector-side collimator 22 made of heavy metals are combined with an organic scintillator 24 and a photoelectron multiplier! f tube 2
The output pulse No. 171 of the photomultiplier tube 26 is detected by a detector consisting of a pulse waveform discrimination circuit IIt'628.
The neutrons are divided into /'/l/s regions of fast neutrons and gamma rays and counted by scalers 30 and 32, respectively. For counting fast neutrons and gamma rays, each transmission attenuation rate is obtained by taking the respective counting ratio when the object to be measured is empty, and from this, the values of moisture and high density are calculated as described above.

他方、線源10から放出される高速中性子の1が測定対
象物20に捕獲吸収とれるとき、捕獲元素に固有な中性
子捕獲ガンマ線40が発生する。
On the other hand, when one of the fast neutrons emitted from the radiation source 10 is captured and absorbed by the measurement object 20, neutron capture gamma rays 40 specific to the captured element are generated.

同ガンマ線40を減速中性子フィルター42ケつけた固
体ガンマ線検出器44にて1契出し、4欠出器44の出
力パルスをパルス波高分析器46にかけガンマ線エネル
ギースベ、クトル)野析を行うことにより、中性子捕獲
ガンマ線は元素ごとに特徴的なエネルギーをもった線ス
ペクトルを有するので、各スペクトルピークの強度から
測定対象物中の各元素の6“4匿が得られる。こうして
得られた谷元素分析値は、前述のように水分(水素量)
及び高密j屍の影響を受けている。また、同様に上述の
水分、徂 嵩密度測足値も元累鍔の影響を幾分受けている。
One gamma ray 40 is detected by a solid-state gamma ray detector 44 equipped with 42 deceleration neutron filters, and the output pulses of the four detectors 44 are applied to a pulse height analyzer 46 for gamma ray energy level analysis. Since neutron-captured gamma rays have a line spectrum with characteristic energy for each element, the 6"4 concentration of each element in the object to be measured can be obtained from the intensity of each spectral peak. The valley elemental analysis value obtained in this way is, as mentioned above, moisture (hydrogen content)
and is affected by high-density corpses. Similarly, the above-mentioned moisture and bulk density measurements are also influenced to some extent by the moto-tsuba.

そこで、これら分析値、水素量、嵩密度の間の関係全会
らかじめ求めてお÷、それを演算処理装置さ 48で演算補正することによって、正しい元素組成分析
値が得られる。
Therefore, correct elemental composition analysis values can be obtained by calculating the relationship between these analysis values, hydrogen content, and bulk density in advance, and calculating and correcting the results using the arithmetic processing unit 48.

第1図に示されるように、減速中性子38の拡散は、測
定対象物の中で、高速中性子#j14及びガンマ線16
の線東部に中心にある程夏広い範囲に広がっており、こ
れにより流れの断面の平均的な分析が可能になる。これ
に対して、高速中性子線14とガンマ線16の両線束は
測定対象物20の断面の中心部を透過するので、水素量
、嵩密度の測定に係る体積が比較的限定されることにな
るが、測定対象物20が流れている物体では、実用上充
分な平均性が得られる。また、組成分析値に対する水素
量及び嵩密度の補正にlJj しては、補正の程度はあ
まシ大きなものとはならないので、測定壁間の幾分の相
違は問題とならず、流れている測定対象物に対して実用
上回−断1mについて元素組成、水素量及び嵩密度を測
定していることになる。
As shown in FIG. 1, the diffusion of decelerated neutrons 38 causes fast neutrons #j14 and gamma rays 16 in the object to be measured.
The more the line is centered in the eastern part of the line, the more it spreads out over a wide area, which allows for an average analysis of the flow cross section. On the other hand, since both the fast neutron beam 14 and gamma ray 16 flux pass through the center of the cross section of the measurement object 20, the volume involved in measuring the amount of hydrogen and bulk density is relatively limited. , when the object 20 to be measured is a flowing object, a practically sufficient averageness can be obtained. In addition, when correcting the hydrogen content and bulk density for the compositional analysis values, the degree of correction is not very large, so slight differences between measurement walls are not a problem, and flowing measurements This means that the elemental composition, hydrogen content, and bulk density of the object are measured for a practical cross section of 1 m.

第2図は、測定対象物容器18が比4グ的小さい場合の
実施例である。比較的少い鼠の測定対象物20に対して
分析の感度全同上させるため、中性子減速、反射材36
で測定対象物容器18を取囲むように構成している。ま
た、それに伴って、検出器側コリメータ220部分から
の中性子捕獲ガンマ線の発生及びその検出器44による
検出ケ防ぐ目的で、ホウ累含有ポリエチレンなどからな
る減速中性子吸収体22A’に配置しである。これら以
外はすべて第1図の実施例と同様である。
FIG. 2 shows an embodiment in which the measurement object container 18 is relatively small. In order to increase the sensitivity of analysis for the comparatively small number of measurement objects 20 of mice, a neutron moderating and reflecting material 36 is used.
It is configured to surround the measurement object container 18. In addition, in order to prevent the generation of neutron-captured gamma rays from the detector-side collimator 220 and their detection by the detector 44, the neutron absorber 22A' is arranged in a decelerated neutron absorber 22A' made of polyethylene containing boron or the like. Everything else is the same as the embodiment shown in FIG.

以上の実施例においては、いずれも水素量、高密度測定
用のパルス波形弁別型検出器と組成分析用のエネルギー
分析型ガンマ線検出器とは別個のものを用いているが、
パルス波形弁別型の有機シンチレータとエネルギ分析型
の無機シンチレータとを一本の光゛1戊子増倍管に肌合
せて用いることで、検出グローフラ一本とすることもで
きる。
In each of the above examples, a pulse waveform discrimination type detector for measuring hydrogen amount and high density and an energy analysis type gamma ray detector for composition analysis are used separately.
By using a pulse waveform discrimination type organic scintillator and an energy analysis type inorganic scintillator in a single photomultiplier tube, a single detection glow flasher can be used.

2烏3図にその実施例を示す。Examples are shown in Figures 2 and 3.

中性子線源10を遮蔽兼コリメータ12に装備し、線?
A10から放射される高速中性子線14とガンマ線16
のうち、対象物容器18及び測定対象物20會透過した
ものを、検出器側コリメータ22中に設置した有機シン
チレータ24及び光電子増倍管26により検出する。他
方、前述の実施例同様にjl11定対象物20中に拡散
した減速中性子38が測定対象物20に捕獲吸収された
際に発生ずる中性子捕獲ガンマ線40を無機シンチレー
タ50及び光電子増倍管26により検出する。両シンチ
レーク24及び50は光学的に充分損失の少いように光
電子増倍管26に結合されている。光[lL子増倍管2
6の出力パルスは、)<ルス波形弁別器52によって、
有機シンチレータ24による高速中性子パルス54及び
同ガンマ線ノくルス56と、それら両者から際立ってノ
くルス波形の異る無機シンチレータ50のガンマ線ノく
ルス58とに振り分けられる・一方、光′電子増倍管2
6の出ノj/クルスは、別に比例増巾器60で増巾され
リニアゲート62を通過したのち、パルス波高分析器5
2によpエネルギースペクトル解析されるが、リニアゲ
−1−62はパルス信号58によってのみ開かれるので
、無機シンチレータ50の検出したガンマ線パルスのみ
がエネルギー解析の対象となる。このようにして一本の
測定プローブによって、前述の実施例における2個のプ
ローブによる測定と同等の効果を上げることができる。
A neutron beam source 10 is equipped with a shield/collimator 12, and a neutron beam source 10 is equipped with a shield/collimator 12.
Fast neutron beam 14 and gamma ray 16 emitted from A10
Of these, those that have passed through the object container 18 and the object to be measured 20 are detected by an organic scintillator 24 and a photomultiplier tube 26 installed in a collimator 22 on the detector side. On the other hand, as in the previous embodiment, neutron-captured gamma rays 40 generated when the decelerated neutrons 38 diffused into the object 20 are captured and absorbed by the object 20 to be measured are detected by the inorganic scintillator 50 and the photomultiplier tube 26. do. Both scintillators 24 and 50 are optically coupled to a photomultiplier tube 26 with sufficiently low loss. Light [lL electron multiplier 2
The output pulse of 6 is determined by the pulse waveform discriminator 52,
They are divided into a fast neutron pulse 54 and a gamma ray pulse 56 generated by the organic scintillator 24, and a gamma ray pulse 58 of the inorganic scintillator 50, which has a significantly different pulse waveform from both of them.On the other hand, photoelectron multiplication tube 2
6 is amplified by a proportional amplifier 60, passed through a linear gate 62, and then passed through a pulse height analyzer 5.
However, since the linear gate 1-62 is opened only by the pulse signal 58, only the gamma ray pulse detected by the inorganic scintillator 50 is subjected to energy analysis. In this way, one measurement probe can achieve the same effect as the measurement using two probes in the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明では単一の中性子線源を効果的
に利用し、流れている測定対象物の同−政商に対して、
高速中性子及びガンマ線の透過測定と減速中性子の捕獲
に伴うガンマ線のエネルギースペクトル測定全同時に行
い、水分(水素量)、嵩密度の変化を正確に測定すると
ともに、それらを補正した正確な元素組成の分析値を得
ることが可tjヒになる。−!た、従来不可能であった
不均質な塊状物質についてもオンライン中で正確な分析
ができる。
As described above, in the present invention, a single neutron beam source is effectively used to
Transmission measurement of fast neutrons and gamma rays and energy spectrum measurement of gamma rays accompanying the capture of decelerated neutrons are performed simultaneously to accurately measure changes in moisture (hydrogen content) and bulk density, as well as accurate elemental composition analysis that corrects for them. It becomes possible to obtain the value. -! In addition, it is possible to conduct accurate online analysis of heterogeneous bulk materials, which was previously impossible.

1ン1而の)18単な説明 t131図Q」1、本発明に係る装置の基本構成を示す
#il成図、第2図は測定対象容器が比較的小さい場合
の検出部の基本構成を示す構成図、第3図は検出器を単
一にした場合の装置の基本構成を示す構成図である。
1) 18 Simple explanation t131 Figure Q'1. A diagram showing the basic configuration of the device according to the present invention. Figure 2 shows the basic configuration of the detection unit when the container to be measured is relatively small. FIG. 3 is a block diagram showing the basic structure of the apparatus when a single detector is used.

10・・・線源、12.22・・・コリメータ、14゜
34・・・高速中性子線、16・・・ガンマ線、18・
・・測定対象物容器、20・・・測定対象物、24・・
・有機シンチレータ、26・・・光電子増倍管、28・
・・パルス波形弁別回路、30.32・・・スケーラ、
36・・・減速、反射携、38・・・減速中性子、40
・・・中性子捕獲ガンマ線、42・・・減速中性子フィ
ルタ、44・・・固体ガンマ線検出器、46・・・パル
ス波高分析器、第1図 第2図 第3図
10...Radiation source, 12.22...Collimator, 14°34...Fast neutron beam, 16...Gamma ray, 18.
...Measurement object container, 20...Measurement object, 24...
・Organic scintillator, 26...Photomultiplier tube, 28・
... Pulse waveform discrimination circuit, 30.32... Scaler,
36...Deceleration, reflex movement, 38...Deceleration neutron, 40
... Neutron capture gamma ray, 42 ... Deceleration neutron filter, 44 ... Solid-state gamma ray detector, 46 ... Pulse height analyzer, Fig. 1 Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 1.116速中性子とガンマ線の両方を発生する放射線
源、この放射線源から放出された高速中性子とガンマ線
とを測定対象物に投射し、測定対象物を透過した高速中
性子とガンマ線とを検出する第1の検出器、前記放射線
源から放出された高速中性子の一部を減速させた後測定
対象物に投射し、測定対象物によって減速中性子が捕獲
吸収される際に光生する中性子捕獲ガンマ線を検出する
第2の検出器、前記第1、第2の検出器からの信号に基
づいて測足対塚物の元素成分を求める演算装置とより溝
成したことを特徴とする物質元素組成分析装置。
1. A radiation source that generates both 116-speed neutrons and gamma rays, a radiation source that projects the fast neutrons and gamma rays emitted from this radiation source onto the measurement target, and detects the fast neutrons and gamma rays that have passed through the measurement target. Detector 1 decelerates a portion of the fast neutrons emitted from the radiation source and projects them onto the object to be measured, and detects neutron-captured gamma rays that are photogenerated when the decelerated neutrons are captured and absorbed by the object to be measured. An apparatus for analyzing the elemental composition of a substance, comprising: a second detector; and an arithmetic unit for determining the elemental composition of the object to be measured based on the signals from the first and second detectors.
JP57187296A 1982-10-25 1982-10-25 Analyzing apparatus for element composition of substance Granted JPS5977346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57187296A JPS5977346A (en) 1982-10-25 1982-10-25 Analyzing apparatus for element composition of substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57187296A JPS5977346A (en) 1982-10-25 1982-10-25 Analyzing apparatus for element composition of substance

Publications (2)

Publication Number Publication Date
JPS5977346A true JPS5977346A (en) 1984-05-02
JPS6362694B2 JPS6362694B2 (en) 1988-12-05

Family

ID=16203511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57187296A Granted JPS5977346A (en) 1982-10-25 1982-10-25 Analyzing apparatus for element composition of substance

Country Status (1)

Country Link
JP (1) JPS5977346A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171341A (en) * 1984-09-17 1986-04-12 Japan Atom Energy Res Inst Component analyzing method
EP0227246A2 (en) * 1985-10-25 1987-07-01 United Kingdom Atomic Energy Authority Analysis of fluids using a source of fast neutrons
JPH05505675A (en) * 1990-03-28 1993-08-19 マーチン・マリエッタ・エナジー・システムズ・インク Hidden explosive detection device using pulsed neutron and X-ray interrogation
US5479023A (en) * 1992-04-09 1995-12-26 Institute Of Geological And Nuclear Sciences, Ltd. Method and apparatus for detecting concealed substances
WO2019241830A1 (en) * 2018-06-21 2019-12-26 Chrysos Corporation Limited System and method for moisture measurement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256596A (en) * 1975-10-29 1977-05-10 Atomic Energy Of Australia Method of analyzing coal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256596A (en) * 1975-10-29 1977-05-10 Atomic Energy Of Australia Method of analyzing coal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171341A (en) * 1984-09-17 1986-04-12 Japan Atom Energy Res Inst Component analyzing method
EP0227246A2 (en) * 1985-10-25 1987-07-01 United Kingdom Atomic Energy Authority Analysis of fluids using a source of fast neutrons
JPH05505675A (en) * 1990-03-28 1993-08-19 マーチン・マリエッタ・エナジー・システムズ・インク Hidden explosive detection device using pulsed neutron and X-ray interrogation
US5479023A (en) * 1992-04-09 1995-12-26 Institute Of Geological And Nuclear Sciences, Ltd. Method and apparatus for detecting concealed substances
WO2019241830A1 (en) * 2018-06-21 2019-12-26 Chrysos Corporation Limited System and method for moisture measurement
CN112313504A (en) * 2018-06-21 2021-02-02 澳洲快索有限公司 System and method for humidity measurement
CN112313504B (en) * 2018-06-21 2024-04-26 澳洲快索有限公司 System and method for humidity measurement

Also Published As

Publication number Publication date
JPS6362694B2 (en) 1988-12-05

Similar Documents

Publication Publication Date Title
EP0216526A1 (en) Multi-component flow measurement and imaging
Veal et al. A Rapid Method for the Direct Determination of Elemental Oxygen by Activation with Fast Neutrons.
Lintereur et al. Neutron and gamma ray pulse shape discrimination with polyvinyltoluene
CA1160364A (en) Device for determining the proportions by volume of a multiple-component mixture by irradiation with several gamma lines
JPS5977346A (en) Analyzing apparatus for element composition of substance
US3859525A (en) Method and apparatus for fluorescent x-ray analysis
US3967122A (en) Radiation analyzer utilizing selective attenuation
US4283625A (en) X-Ray fluorescence analysis
EP0486709B1 (en) Density-moisture measuring system
US3511989A (en) Device for x-ray radiometric determination of elements in test specimens
JPH01227050A (en) Method and apparatus for measuring density and others of object
Spencer et al. Neutron activation analysis of sodium in blood serum
JPS6171341A (en) Component analyzing method
US3291986A (en) Monitor for air-borne beryllium
Stillwater et al. Improved methodology for a collinear dual‐energy gamma radiation system
JPH04194772A (en) Radiation measuring device
US4817122A (en) Apparatus for radiation analysis
Mayer et al. A scintillation counter technique for the X-ray determination of bone mineral content
CN113325014B (en) Method for analyzing mass content of three substances mixed in pipeline
US3967120A (en) Analyzing radiation from a plurality of sources
US5173607A (en) Method for the correction of a counting error in liquid scintillation counting
US3470372A (en) Fog density measurement by x-ray scattering
US3154684A (en) X-ray analysis system with means to detect only the coherently scattered X-rays
Aguş Gamma-ray spectrometry for linear attenuation coefficients and selfattenuation correction factors of the skimmed milk powder
JPS60111981A (en) Quantitative analysis of strontium