JP2685722B2 - X-ray analysis method - Google Patents

X-ray analysis method

Info

Publication number
JP2685722B2
JP2685722B2 JP6275583A JP27558394A JP2685722B2 JP 2685722 B2 JP2685722 B2 JP 2685722B2 JP 6275583 A JP6275583 A JP 6275583A JP 27558394 A JP27558394 A JP 27558394A JP 2685722 B2 JP2685722 B2 JP 2685722B2
Authority
JP
Japan
Prior art keywords
ray
intensity
rays
semiconductor detector
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6275583A
Other languages
Japanese (ja)
Other versions
JPH08114563A (en
Inventor
智也 新井
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP6275583A priority Critical patent/JP2685722B2/en
Publication of JPH08114563A publication Critical patent/JPH08114563A/en
Application granted granted Critical
Publication of JP2685722B2 publication Critical patent/JP2685722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体検出器を用いた
X線分析方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray analysis method using a semiconductor detector.

【0002】[0002]

【従来の技術】例えば、半導体検出器を用いた全反射蛍
光X線分析においては、試料に含まれる微量成分を主に
分析するので、試料に照射される1次X線、すなわちX
線源に用いられるターゲット材の特性X線である励起X
線によるバックグラウンドが分析の大きな弊害となり、
励起X線の低エネルギー側の強度までも除去することが
必要となる。励起X線の強度がピークよりも低エネルギ
ー側に裾野を生じるのは、半導体検出器に入射した励起
X線によって発生した電子の一部が、半導体検出器の外
へ逃げるので信号値が低減するためである。
2. Description of the Related Art For example, in total reflection fluorescent X-ray analysis using a semiconductor detector, a trace amount of a component contained in a sample is mainly analyzed, so that the primary X-ray, that is, X
Excitation X which is the characteristic X-ray of the target material used for the radiation source
The background due to the lines becomes a major obstacle to the analysis,
It is necessary to remove even the low energy side intensity of the excited X-ray. The intensity of the excited X-rays has a skirt on the lower energy side than the peak because some of the electrons generated by the excited X-rays incident on the semiconductor detector escape to the outside of the semiconductor detector, and the signal value decreases. This is because.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の技術
では、励起X線の低エネルギー側の強度を除去すること
がなされておらず、精度の高い分析ができない。
However, in the conventional technique, the intensity of the excited X-ray on the low energy side is not removed, and highly accurate analysis cannot be performed.

【0004】本発明は、前記従来の問題に鑑みてなされ
たもので、半導体検出器を用いたX線分析方法におい
て、半導体検出器に入射される高強度の測定対象外のX
線の強度を差し引いて、測定対象の2次X線の補償済み
強度を求めることが可能なX線分析方法を提供すること
を目的とする。
The present invention has been made in view of the above conventional problems, and in an X-ray analysis method using a semiconductor detector, an X-ray which is incident on the semiconductor detector and is not to be measured with high intensity.
It is an object of the present invention to provide an X-ray analysis method capable of obtaining the compensated intensity of secondary X-rays to be measured by subtracting the intensity of rays.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の方法は、半導体検出器を用いたX線分析
方法において、分析対象元素を既知量蒸着させた標準試
料より発生した測定対象の2次X線の測定強度から前記
既知量に相当する強度を差し引くことにより、半導体検
出器に入射される高強度の測定対象外のX線について
の波長に対する強度関係のプロフィールを求めてお
き、分析対象元素を含む未知試料より発生した測定対象
の2次X線の測定強度から前記測定対象外のX線のプロ
フィールの分を差し引いて、測定対象の2次X線の補償
済み強度を求める。このプロフィールは、実際にその波
長のX線が入射されていないにもかかわらず半導体検出
器から出力される電気信号による裾野部分を含んでい
る。このように、本発明の方法は、入射X線によらない
バックグラウンド成分を差し引いて測定対象の2次X線
の真の強度を求めることに特徴がある。
In order to achieve the above object, the method according to claim 1 is an X-ray analysis method using a semiconductor detector, which is a standard test in which an element to be analyzed is vapor-deposited in a known amount.
From the measurement intensity of the secondary X-ray of the measurement object generated from the material
By subtracting the intensity corresponding to a known amount, high intensity non-measurement X-rays incident on the semiconductor detector ,
To previously obtain a profile of the intensity relationship to the wavelength of its, by subtracting the amount of profile of the unmeasured X-ray from the measured intensity of the secondary X-ray to be measured generated from the unknown sample containing the analyte element, measured Obtain the compensated intensity of the secondary X-ray of interest. This profile includes the skirt portion due to the electric signal output from the semiconductor detector, although the X-ray of that wavelength is not actually incident. As described above, the method of the present invention is characterized in that the true intensity of the secondary X-ray to be measured is obtained by subtracting the background component that does not depend on the incident X-ray.

【0006】[0006]

【作用および効果】請求項1の方法では、半導体検出器
に入射される高強度の測定対象外のX線について、標準
試料により、その波長に対する強度関係のプロフィール
を求めておき、測定対象の試料より発生した測定対象の
2次X線の強度から前記測定対象外のX線のプロフィー
ルの分を差し引いて、測定対象の2次X線の補償済み強
度を求めるので、精度の高いX線分析ができる。
According to the method of the present invention, the profile of the intensity relationship with respect to the wavelength of the high intensity X-rays of the non-measurement target which is incident on the semiconductor detector is obtained by the standard sample, and the sample of the measurement target is obtained. Since the intensity of the X-ray profile outside the measurement target is subtracted from the intensity of the secondary X-ray of the measurement target generated, the compensated intensity of the secondary X-ray of the measurement target is obtained, so that highly accurate X-ray analysis can be performed. it can.

【0007】[0007]

【実施例】以下、本発明の実施例を図面にしたがって説
明する。まず、本実施例に用いるX線分析装置の概略を
説明する。図1に示すように、本実施例に用いるX線分
析装置においては、X線源21から発生した1次X線、
すなわちX線源21に用いられるターゲット材の特性X
線である励起X線22が、試料9,23に照射され、試
料9,23から発生した2次X線24が、半導体検出器
25に入射される。そして、その入射された2次X線2
4の強度が検出され、強度に相当する信号が波高値分別
回路のような分析器26に入力されて、2次X線24の
強度が分析測定される。ここで、前述したように、半導
体検出器25で検出される励起X線の強度がピークより
も低エネルギー側に裾野を生じる。その理由は、半導体
検出器に入射した励起X線によって発生した電子の一部
が、半導体検出器の外へ逃げるので信号値が低減するた
めであるが、これについて、詳しく説明する。
Embodiments of the present invention will be described below with reference to the drawings. First, an outline of the X-ray analysis apparatus used in this example will be described. As shown in FIG. 1, in the X-ray analyzer used in this embodiment, the primary X-rays generated from the X-ray source 21
That is, the characteristic X of the target material used for the X-ray source 21
The samples 9 and 23 are irradiated with the excitation X-rays 22 which are the X-rays, and the secondary X-rays 24 generated from the samples 9 and 23 are incident on the semiconductor detector 25. Then, the incident secondary X-ray 2
The intensity of No. 4 is detected, a signal corresponding to the intensity is input to an analyzer 26 such as a peak value classification circuit, and the intensity of the secondary X-ray 24 is analyzed and measured. Here, as described above, the intensity of the excited X-ray detected by the semiconductor detector 25 has a skirt on the lower energy side than the peak. The reason is that some of the electrons generated by the excited X-rays that have entered the semiconductor detector escape to the outside of the semiconductor detector, which reduces the signal value, which will be described in detail.

【0008】図2に半導体検出器の縦断面を示す。半導
体検出器は、X線1,2が入射される側から、P層をな
す金の薄膜3、P層をなし不感層であるシリコン膜4、
I層をなし有感層であるシリコン層5、N層をなし不感
層であるシリコン膜6、およびN層をなす金の薄膜7を
備えており、P層をなす金の薄膜3に対しN層をなす金
の薄膜7に高電圧がかけられている。半導体検出器への
入射X線(検出X線)1が完全に半導体検出器の検出有
効体積5中に吸収されるときは、そのX線のエネルギー
はすべて電子の運動エネルギーに変換され、発生した電
子流は半導体検出器へ接続された電子回路により波高値
(微小電圧)として測定可能信号になる(完全電荷収集
効果)。
FIG. 2 shows a vertical cross section of the semiconductor detector. The semiconductor detector includes a gold thin film 3 forming a P layer, a silicon film 4 forming a P layer and a dead layer, from the side where X-rays 1 and 2 are incident.
It has a silicon layer 5 which is an I layer and is a sensitive layer, a silicon film 6 which is an N layer and is a dead layer, and a gold thin film 7 which is an N layer. A high voltage is applied to the layered gold film 7. When the incident X-ray (detection X-ray) 1 to the semiconductor detector is completely absorbed in the detection effective volume 5 of the semiconductor detector, all the X-ray energy is converted into electron kinetic energy and generated. The electron current becomes a measurable signal as a peak value (minute voltage) by the electronic circuit connected to the semiconductor detector (complete charge collection effect).

【0009】ところが、検出器半導体表面3に近い所で
入射X線2が吸収されるときは、2次的に発生した電子
が、X線2が入射した方向とは逆方向の検出器有効体積
外に進むことがあり、このプロセスで発生する2次電子
は弾性・非弾性錯乱効果をともない、複雑な過程を
がら電子の持つエネルギーは減少し、同時に低エネルギ
ーを持つ電子の数の増加となる。この不完全な電荷収集
効果の発生の結果、波高値分布は低エネルギー側に裾野
を生じる。これは、測定対象外のX線2のエネルギー凖
位が低い程、その低エネルギー側の裾野のX線強度が強
くなることを意味し、その裾野と同じエネルギー凖位に
測定対象のX線が存在する場合に、この裾野が測定強度
に与える誤差の影響がより大きくなる。
However, when the incident X-rays 2 are absorbed near the detector semiconductor surface 3, the electrons generated secondarily have a detector effective volume in the direction opposite to the direction in which the X-rays 2 are incident. The secondary electrons that may travel outside and have elastic and inelastic confusion effects, and the energy of the electrons decreases while undergoing a complicated process. Will increase. As a result of the generation of this incomplete charge collection effect, the peak value distribution has a skirt on the low energy side. This means that the lower the energy level of the X-ray 2 that is not the measurement target, the stronger the X-ray intensity of the skirt on the low energy side, and the X-ray of the measurement target is at the same energy level as the skirt. If present, this skirt has a greater effect of the error on the measurement intensity.

【0010】ここで、励起X線の強度がピークよりも低
エネルギー側に裾野を生じるのは、図1において、励起
X線22を照射された試料9,23から発生したコンプ
トン散乱線やレーリー散乱線24が、半導体検出器25
に入射するためであるとの考えもあるが、この影響は微
小である。これを確かめるため、X線管21および試料
9,23の代わりに、コンプトン散乱線やレーリー散乱
線を発生せずにMn −Kα線およびMn −Kβ線を発生
する放射性同位体である55Fe をX線源として、半導体
検出器25でMn −Kα線の強度を検出したところ、図
3に示すように、X線管21(図1)および試料9,2
3(図1)を用いたときと同様にピーク値ip を示すエ
ネルギーよりも低エネルギー側に裾野8を生じた。
Here, the tail of the intensity of the excited X-rays is formed on the lower energy side than the peak, in FIG. 1, Compton scattered rays and Rayleigh scattering generated from the samples 9 and 23 irradiated with the excited X-rays 22. Line 24 is semiconductor detector 25
It is thought that this is because it is incident on, but this effect is insignificant. In order to confirm this, instead of the X-ray tube 21 and the samples 9 and 23, 55 Fe, which is a radioactive isotope that generates Mn-Kα and Mn-Kβ rays without generating Compton scattering rays or Rayleigh scattering rays, is used . As the X-ray source, when the intensity of Mn-Kα rays was detected by the semiconductor detector 25, as shown in FIG. 3, the X-ray tube 21 (FIG. 1) and the samples 9 and 2 were detected.
3 resulted skirt 8 to the low-energy side than the energy that indicates a peak value i p as in the case with (Figure 1).

【0011】本実施例では、励起X線のピークよりも低
エネルギー側の裾野の強度を取り除くために、図4に縦
断面で示すような標準試料9を用いる。例えば、図1に
おいて、励起X線22にW−Lβ線22を用いて、未知
試料23であるシリコンウエハ中の亜鉛から発生するZ
n −Kα線24の強度iを測定したいときには、図4の
ようにシリコンウエハ10に亜鉛11を既知量蒸着させ
た標準試料9を用意する。そして、図5に示すように、
この標準試料9から発生するZn −Kα線の強度Im
測定し、その強度Im から既知であるZn −Kα線の真
の強度Iを差し引いて、励起X線であるW−Lβ線の裾
野の強度Ib を求めておく。
In this embodiment, a standard sample 9 shown in a vertical section in FIG. 4 is used in order to remove the intensity of the skirt on the low energy side from the peak of the excited X-ray. For example, in FIG. 1, Z generated from zinc in a silicon wafer, which is an unknown sample 23, by using W-Lβ rays 22 as excitation X-rays 22.
When it is desired to measure the intensity i of the n-Kα ray 24, a standard sample 9 in which a known amount of zinc 11 is vapor-deposited on a silicon wafer 10 is prepared as shown in FIG. And as shown in FIG.
The standard measures the intensity I m of the sample 9 Zn -Kα rays generated from subtracting the true intensity I known in which Zn -Keiarufa line from the intensity I m, the W-L? Line is an excitation X-ray The strength I b of the skirt is obtained.

【0012】次に、図6に示すように、未知試料から発
生するZn −Kα線の強度im を測定し、その強度im
から前記求めておいたW−Lβ線の裾野の強度Ib を差
し引くことにより、未知試料から発生するZn −Kα線
の真の強度iが求められる。亜鉛以外の元素について
も、同様に標準試料を作製して、その元素の特性X線に
対応するエネルギーでのW−Lβ線の裾野の強度を求め
ておけば、未知試料から発生するその元素の特性X線の
真の強度が求められる。なお、本実施例では、図1にお
けるX線管21のターゲット材としてタングステンを用
い、励起X線22としてW−Lβ線を発生させたが、タ
ーゲット材に金を用いて励起X線22としてAu −Lβ
線を発生させることや、ターゲット材にモリブデンを用
いて励起X線22としてMo −Lα線を発生させること
もできる。
[0012] Next, as shown in FIG. 6, by measuring the intensity i m of Zn -Keiarufa rays generated from the unknown sample, the intensity i m
Then, the true intensity i of the Zn-Kα ray generated from the unknown sample is obtained by subtracting the intensity I b of the skirt of the W-Lβ ray obtained from the above. For elements other than zinc, if a standard sample is prepared in the same manner and the intensity of the skirt of the W-Lβ line at the energy corresponding to the characteristic X-ray of that element is determined, the element of that element generated from the unknown sample The true intensity of the characteristic X-ray is required. In this embodiment, tungsten is used as the target material of the X-ray tube 21 in FIG. 1 and W-Lβ rays are generated as the excited X-rays 22, but gold is used as the target material and Au is used as the excited X-rays 22. -Lβ
It is also possible to generate an X-ray or Mo-Lα ray as the excited X-ray 22 by using molybdenum as a target material.

【0013】本発明は、測定対象のX線の強度から、検
出器に入射されたバックグラウンド成分を形成するX線
の強度を差し引くという一般的なX線分析の手法とは異
なり、測定対象のX線の強度から、半導体検出器25に
入射されていないにもかかわらずこの検出器25から出
力されてバックグラウンド成分となる電気信号(強度に
対応)を差し引くことに特徴がある。
The present invention differs from a general X-ray analysis method in which the intensity of X-rays forming a background component incident on the detector is subtracted from the intensity of X-rays of the measurement target. It is characterized in that the electric signal (corresponding to the intensity) output from the detector 25 and corresponding to the background component is subtracted from the intensity of the X-ray even though it is not incident on the semiconductor detector 25.

【0014】本発明を利用したX線分析装置において
は、前述のようにして求めたバックグラウンドとなる裾
野の強度Ib をメモリに記憶させておき、演算器により
未知試料の測定データから裾野の強度Ib を減算するこ
とにより、自動的にデータ処理を行う。これにより、精
度の高いX線分析を迅速に行うことができる。
In the X-ray analyzer utilizing the present invention, the intensity I b of the skirt as the background obtained as described above is stored in the memory, and the skirt of the skirt is calculated from the measurement data of the unknown sample by the calculator. Data processing is automatically performed by subtracting the intensity I b . As a result, highly accurate X-ray analysis can be performed quickly.

【0015】以上のように、本実施例では、半導体検出
器に入射される励起X線について、標準試料により、そ
の波長に対する強度関係のプロフィールを求めておき、
未知試料より発生した測定対象の2次X線の強度から前
記励起X線のプロフィールの分を差し引いて、測定対象
の2次X線の補償済み強度を求めるので、精度の高いX
線分析ができる。
As described above, in the present embodiment, the profile of the intensity relationship with respect to the wavelength of the excitation X-rays incident on the semiconductor detector is obtained by using the standard sample.
Since the intensity of the profile of the excitation X-ray is subtracted from the intensity of the secondary X-ray of the measurement target generated from the unknown sample to obtain the compensated intensity of the secondary X-ray of the measurement target, the X-ray with high accuracy is obtained.
Line analysis is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に用いるX線分析装置の概略図であ
る。
FIG. 1 is a schematic diagram of an X-ray analyzer used in this example.

【図2】半導体検出器の縦断面図である。FIG. 2 is a vertical sectional view of a semiconductor detector.

【図3】放射性同位体である55Fe をX線源として、半
導体検出器で検出したMn −Kα線の強度を示す図であ
る。
FIG. 3 is a diagram showing the intensity of Mn-Kα rays detected by a semiconductor detector using 55 Fe, which is a radioactive isotope, as an X-ray source.

【図4】本実施例で用いる標準試料の縦断面図である。FIG. 4 is a vertical cross-sectional view of a standard sample used in this example.

【図5】本実施例において標準試料を用いて求めた励起
X線であるW−Lβ線の裾野の強度を示す図である。
FIG. 5 is a diagram showing the intensity of a skirt of a W-Lβ line which is an excited X-ray obtained by using a standard sample in this example.

【図6】本実施例において求めた未知試料から発生する
Zn −Kα線の真の強度を示す図である。
FIG. 6 is a diagram showing the true intensity of Zn-Kα rays generated from an unknown sample obtained in this example.

【符号の説明】[Explanation of symbols]

9…標準試料、23…測定対象の試料、25…半導体検
出器、Ib …測定対象外のX線の強度、im …測定対象
の2次X線の強度、i…測定対象の2次X線の補償済み
強度。
9 ... standard sample, 23 ... sample to be measured, 25 ... semiconductor detector, I b ... strength unmeasured X-ray, i m ... intensity of the secondary X-ray to be measured, i ... second measurement target X-ray compensated intensity.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体検出器を用いたX線分析方法にお
いて、分析対象元素を既知量蒸着させた標準試料より発生した
測定対象の2次X線の測定強度から前記既知量に相当す
る強度を差し引くことにより、 半導体検出器に入射され
る高強度の測定対象外のX線について、その波長に対す
る強度関係のプロフィールを求めておき、分析対象元素を含む未知 試料より発生した測定対象の2
次X線の測定強度から前記測定対象外のX線のプロフィ
ールの分を差し引いて、測定対象の2次X線の補償済み
強度を求めることを特徴とするX線分析方法。
1. An X-ray analysis method using a semiconductor detector, wherein an element to be analyzed is generated from a standard sample on which a known amount is vapor-deposited.
From the measured intensity of the secondary X-rays to be measured, it corresponds to the known amount.
That by subtracting the intensity, the unmeasured high-intensity X-rays to be incident on the semiconductor detector, to previously obtain a profile of the intensity relationship to the wavelength of its, measured generated from the unknown sample containing the analyte element Of 2
An X-ray analysis method, wherein the compensated intensity of the secondary X-ray of the measurement target is obtained by subtracting the profile of the X-ray outside the measurement target from the measurement intensity of the next X-ray.
JP6275583A 1994-10-14 1994-10-14 X-ray analysis method Expired - Lifetime JP2685722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6275583A JP2685722B2 (en) 1994-10-14 1994-10-14 X-ray analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6275583A JP2685722B2 (en) 1994-10-14 1994-10-14 X-ray analysis method

Publications (2)

Publication Number Publication Date
JPH08114563A JPH08114563A (en) 1996-05-07
JP2685722B2 true JP2685722B2 (en) 1997-12-03

Family

ID=17557485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6275583A Expired - Lifetime JP2685722B2 (en) 1994-10-14 1994-10-14 X-ray analysis method

Country Status (1)

Country Link
JP (1) JP2685722B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL180482A0 (en) * 2007-01-01 2007-06-03 Jordan Valley Semiconductors Inspection of small features using x - ray fluorescence

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928688B2 (en) * 1992-09-07 1999-08-03 株式会社東芝 Pollution element analysis method and device
JPH06174663A (en) * 1992-12-01 1994-06-24 Toshiba Corp Analyzing method of contaminant element

Also Published As

Publication number Publication date
JPH08114563A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
JP4015022B2 (en) X-ray fluorescence analyzer
US5497407A (en) Contaminating-element analyzing method
JPH05240808A (en) Method for determining fluorescent x rays
JP2848751B2 (en) Elemental analysis method
JPH02228515A (en) Measurement of thickness of coating
US4785401A (en) Method and device for determining an energy-independent X-ray attenuation factor in a region of an object
JP2928688B2 (en) Pollution element analysis method and device
JP2685722B2 (en) X-ray analysis method
CN101101269B (en) Energy dispersion type radiation detecting system and method of measuring content of object element
Wittry Methods of quantitative electron probe analysis
JPH06123717A (en) Fluorescent x-ray qualitative analytical method under plurality of conditions
Jakubek et al. Spectrometric properties of TimePix pixel detector for X-ray color and phase sensitive radiography
US3376415A (en) X-ray spectrometer with means to vary the spacing of the atomic planes in the analyzing piezoelectric crystal
Van Espen et al. Evaluation of a practical background calculation method in X‐ray energy analysis
USH922H (en) Method for analyzing materials using x-ray fluorescence
Burke et al. The direct measurement of dose enhancement in gamma test facilities
BR112020025909A2 (en) HUMIDITY MEASUREMENT SYSTEM AND METHOD
JP2763907B2 (en) Breakdown spectroscopic analysis method and apparatus
JP2000055841A (en) X-ray analysis method
JPS61140811A (en) Electron beam length measuring instrument
JP3146195B2 (en) X-ray mapping device
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
JP3195046B2 (en) Total reflection state detection method and trace element measuring device
JP2937598B2 (en) Depth direction element concentration distribution measuring device
Owoade et al. Model estimated uncertainties in the calibration of a total reflection x‐ray fluorescence spectrometer using single‐element standards