JPH0712761A - Determination method for upper layer plating of steel plate having multilayer of alloyed and fused galvanization - Google Patents

Determination method for upper layer plating of steel plate having multilayer of alloyed and fused galvanization

Info

Publication number
JPH0712761A
JPH0712761A JP5157559A JP15755993A JPH0712761A JP H0712761 A JPH0712761 A JP H0712761A JP 5157559 A JP5157559 A JP 5157559A JP 15755993 A JP15755993 A JP 15755993A JP H0712761 A JPH0712761 A JP H0712761A
Authority
JP
Japan
Prior art keywords
layer
plating
upper layer
steel sheet
diffraction peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5157559A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawanishi
義博 川西
Hidetaka Kawasaki
秀隆 川崎
Masafumi Kimoto
雅文 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5157559A priority Critical patent/JPH0712761A/en
Publication of JPH0712761A publication Critical patent/JPH0712761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To precisely measure the deposited amount of an upper galvanized layer and an iron content via a nondestructive process, regarding a steel plate having a multilayer of allayed and fused galvanization. CONSTITUTION:A monochromatic characteristic X-ray is made incident on the surface of a steel plate having a multilayer of alloyed and fused galvanization at an incident angle equal to or above six times but equal to or less than 12 times Ra of the steel plate. The diffraction peak intensity and background intensity of the X-ray are measured to find an intensity difference. Then, the deposited amount of upper layer plating is calculated on the basis of the difference. Furthermore, the X-ray diffraction peak angle of the upper layer plating is measured, and an angular difference from the X-ray diffraction peak angle of pure iron is obtained, thereby calculating the iron content of the upper layer plating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐食性、摺動性、化成
処理性、電気性改善を目的として、鋼板表面に合金化溶
融亜鉛めっきを施し、さらにその上層にFe−Zn系め
っきを施した、いわゆる多層合金化溶融亜鉛めっき鋼板
における表層のめっき目付量およびFe含有率測定方法
に関する。
BACKGROUND OF THE INVENTION The present invention, in order to improve corrosion resistance, slidability, chemical conversion treatment property, and electrical property, applies galvannealing to the surface of a steel sheet, and Fe-Zn based plating to the upper layer. The present invention relates to a method for measuring the coating weight of the surface layer and the Fe content in the so-called multilayer galvannealed steel sheet.

【0002】[0002]

【従来の技術】一般に、合金化亜鉛めっき鋼板は耐食性
に優れる鋼板として広く用いられているが、合金化電気
亜鉛めっき鋼板よりも、製造コストが低くかつ目付量が
多くすることができるとの理由により、合金化溶融亜鉛
めっき鋼板方が広く使用されている。
2. Description of the Related Art Generally, galvannealed steel sheets are widely used as steel sheets having excellent corrosion resistance, but the reason is that the manufacturing cost is lower and the weight per unit area can be higher than that of galvannealed steel sheets. Due to this, alloyed hot-dip galvanized steel sheets are widely used.

【0003】また、近年においては、摺動性、化成処理
性あるいは電着性の向上を目的として、合金化溶融亜鉛
めっき鋼板の最上層にFe系を施した多層合金化溶融亜
鉛めっき鋼板が使用されてきている。
Further, in recent years, for the purpose of improving slidability, chemical conversion treatment property, or electrodeposition property, a multi-layer alloy hot-dip galvanized steel sheet having an Fe system as the uppermost layer of the hot-dip galvanized steel sheet is used. Has been done.

【0004】ところでこの多層合金化溶融亜鉛めっき鋼
板における上層Fe系めっきの目付量あるいは上層Fe
含有率が、摺動性、化成処理性、電着性に大きな影響を
与えるため、上層めっきの目付量あるいはそのFe含有
率を厳密に管理する必要がある。
By the way, the basis weight of the upper layer Fe-based plating or the upper layer Fe in this multi-layer galvannealed steel sheet
Since the content greatly affects slidability, chemical conversion treatment, and electrodeposition, it is necessary to strictly control the basis weight of the upper layer plating or its Fe content.

【0005】従来においては、上記多層合金化溶融亜鉛
めっき鋼板を含めた多層めっき鋼板のめっき組成は、次
のように測定されていた。すなわち、GDSにより上
層、下層分離点を算出し、その積算強度から上層めっき
組成を定量する、あるいは定電流にてめっき被膜を溶解
し、その溶解時間等からめっき組成を定量していた。
Conventionally, the plating composition of the multi-layer galvanized steel sheet including the above-mentioned multi-layer galvannealed steel sheet has been measured as follows. That is, the upper and lower layer separation points were calculated by GDS, and the upper layer plating composition was quantified from the integrated strength, or the plating film was dissolved at a constant current, and the plating composition was quantified from the dissolution time and the like.

【0006】しかし、上記のような従来の測定方法は、
破壊試験方法であるために、下層めっきの影響を強く受
ける。
However, the conventional measuring method as described above is
Since it is a destructive test method, it is strongly affected by lower layer plating.

【0007】したがって、この破壊試験方法は、合金化
電気めっき鋼板のように、組成がめっき深さ方向で一定
であるもの、特に下層のめっき組成が深さ方向に一定で
ある場合にのみ有効である。
Therefore, this fracture test method is effective only when the composition is constant in the plating depth direction, such as an alloyed electroplated steel sheet, and particularly when the plating composition of the lower layer is constant in the depth direction. is there.

【0008】しかし、合金化溶融亜鉛めっき鋼板は、鋼
板母材に溶融亜鉛めっきを施した後、合金化処理炉にお
いてたとえば約600℃で加熱することにより、鋼板母
材のFeが亜鉛めっき被膜中へ拡散し、Fe−Zn合金
層が形成されるものである。
However, in the galvannealed steel sheet, after hot dip galvanizing the steel sheet base material, it is heated in an alloying treatment furnace at, for example, about 600 ° C. And a Fe-Zn alloy layer is formed.

【0009】このため、めっき被膜の表面部分のFe濃
度は低く、奥部にいくしたがってFe濃度は増加する構
造となっている。したがって、めっき被膜全体のFe含
有率(合金化度)が同一であっても、最表層のFe含有
率は大きく異なる。
For this reason, the Fe concentration of the surface portion of the plating film is low, and the Fe concentration increases as it goes to the inner portion. Therefore, even if the Fe content (alloying degree) of the entire plating film is the same, the Fe content of the outermost layer is significantly different.

【0010】その結果、従来のような下層のめっき組成
の影響を受ける破壊試験方法では、多層合金化溶融亜鉛
めっき鋼板の上層めっき組成を定量する場合、測定バラ
ツキが大きくなり定量精度が低いものとなってしまう。
As a result, according to the conventional destructive test method affected by the plating composition of the lower layer, when the upper layer plating composition of the multi-layer galvannealed steel sheet is quantified, the measurement variation becomes large and the quantification accuracy is low. turn into.

【0011】さらに、破壊試験方法では、安定した標準
サンプルが必要であるため、測定チャンス毎の分析精度
維持管理が困難であるという問題もある。
Further, in the destructive testing method, since a stable standard sample is required, there is a problem that it is difficult to maintain and manage the analysis accuracy for each measurement opportunity.

【0012】そこで、非破壊で多層めっきを測定するた
め、蛍光X線を用いた次のような各方法が開示されてい
る。特開昭59-195146 号公報;高角度と低角度で、下層
および上層めっき比較のために蛍光X線を入射させて蛍
光X線を測定することにより、上下層めっき組成を測定
する方法。特開昭61-132847 号公報;上層めっき組成の
測定のために、めっき被膜への侵入情報深さが浅いL系
列の蛍光X線強度を利用する方法。特開平2-302654号公
報;低角度と高角度でX線を入射させた場合に、予め既
知の標準サンプルの測定強度から一番マッチングするX
線強度比を算出することにより、上下層の組成比を求め
る方法。
Therefore, in order to measure multi-layer plating nondestructively, the following methods using fluorescent X-rays have been disclosed. JP-A-59-195146: A method for measuring upper and lower layer plating compositions by injecting fluorescent X-rays at a high angle and a low angle for the purpose of comparing lower layer and upper layer plating and measuring fluorescent X-rays. Japanese Patent Laid-Open No. 61-132847; A method of utilizing the fluorescent X-ray intensity of L series, which has a shallow depth of penetration information into the plating film, for measuring the upper layer plating composition. Japanese Patent Application Laid-Open No. 2-302654; When X-rays are incident at a low angle and a high angle, the best matching X is obtained from the measurement intensities of known standard samples.
A method of calculating the composition ratio of the upper and lower layers by calculating the line intensity ratio.

【0013】[0013]

【発明が解決しようとする課題】上記各公報に示された
方法は、いずれも下層の合金めっき層の組成が深さ方向
に一定でない、特に、下層の表面のFe含有率が一定で
ない合金化溶融亜鉛めっき鋼板では、下層からの情報量
が測定した蛍光X線強度のバラツキの要因となり、測定
精度が劣り、かつ信頼性に乏しいものとなる。
In each of the methods disclosed in the above publications, the composition of the lower alloy plating layer is not constant in the depth direction, and in particular, the Fe content on the lower surface is not constant. In a hot-dip galvanized steel sheet, the amount of information from the lower layer causes variations in the measured fluorescent X-ray intensity, resulting in poor measurement accuracy and poor reliability.

【0014】したがって、本発明の主たる課題は、下層
めっきの組成に影響されることなく、多層合金化溶融亜
鉛めっき鋼板における上層めっき層のめっき目付量およ
びFe含有率を、精度よく定量することにある。
Therefore, a main object of the present invention is to accurately quantify the coating weight and the Fe content of the upper plating layer in a multi-layer galvannealed steel sheet without being affected by the composition of the lower plating. is there.

【0015】[0015]

【課題を解決するための手段】上記課題を解決した本第
1発明は、鋼板上に合金化溶融亜鉛めっき層を有し、さ
らにその上層にFe系めっき層を有する2層めっき鋼板
の多層合金化溶融亜鉛めっき鋼板における上層Fe系め
っき層の目付量を測定する方法であって、前記上層Fe
系めっき層表面の中心線平均粗さRaの6倍以上12倍
以下の入射角度βで、単色化された特性X線を前記多層
合金化溶融亜鉛めっき鋼板表面に対して入射せしめ、上
層めっきのX線回折ピーク強度IFeおよびバックグラン
ド強度IFKを測定し、これらの強度差IUPを求め、予め
求めた、強度差と上層Fe系めっき層の目付量との相関
に照合して、当該測定強度差IUPから上層Fe系めっき
の目付量を算出することを特徴とする多層合金化溶融亜
鉛めっき鋼板の上層めっきのめっき目付量測定方法であ
る。
The first invention, which has solved the above-mentioned problems, is a multilayer alloy of a double-layer plated steel sheet having an alloyed hot-dip galvanized layer on a steel sheet, and further having an Fe-based plated layer on the upper layer. A method for measuring a basis weight of an upper Fe-based plating layer in a chemical-dip galvanized steel sheet, comprising:
The characteristic X-rays that are monochromatic are made incident on the surface of the multi-layer alloy hot-dip galvanized steel sheet at an incident angle β of 6 times or more and 12 times or less of the center line average roughness Ra of the surface of the system-plated layer, and the upper layer plating The X-ray diffraction peak intensity I Fe and the background intensity I FK are measured, the intensity difference I UP between them is determined, and the correlation is checked in advance with the correlation between the intensity difference and the basis weight of the upper Fe-based plating layer, A coating weight measuring method for the upper layer plating of a multi-layer galvannealed steel sheet, which is characterized in that the coating weight of the upper Fe-based plating is calculated from the measured strength difference I UP .

【0016】また、第2発明は、鋼板上に合金化溶融亜
鉛めっき層を有し、さらにその上層にFe系めっき層を
有する2層めっき鋼板の多層合金化溶融亜鉛めっき鋼板
における上層Fe系めっき層の目付量を測定する方法で
あって、前記上層Fe系めっき層表面の中心線平均粗さ
Raの6倍以上12倍以下の入射角度βで、単色化され
た特性X線を前記多層合金化溶融亜鉛めっき鋼板表面に
対して入射せしめ、上層めっきのX線回折ピーク角度2
θFem を測定し、予め求めた、上層Fe系めっき固有の
X線回折ピーク角度2θFeと純FeのX線回折ピーク角
度2θFe0 との角度差Δ2θと、上層Fe系めっき目付
量と、上層Fe含有率との相関に、当該測定X線回折ピ
ーク角度2θFem に基づく角度差Δ2θm を照合させ
て、上層Fe含有率を求めることを特徴とする多層合金
化溶融亜鉛めっき鋼板の上層めっきのFe含有率測定方
法である。
The second invention is an upper layer Fe-based plating in a multi-layer alloyed hot-dip galvanized steel sheet of a double-layer plated steel sheet having an alloyed hot-dip galvanized layer on the steel sheet and further having an Fe-based plated layer on the upper layer. A method for measuring the basis weight of a layer, wherein the characteristic X-ray monochromatized at the incident angle β of 6 times or more and 12 times or less of the centerline average roughness Ra of the surface of the upper Fe-based plating layer is used for the multilayer alloy. X-ray diffraction peak angle 2 of the upper layer plating by making it incident on the surface of the galvanized steel sheet
The angle difference Δ2θ between the X-ray diffraction peak angle 2θ Fe peculiar to the upper Fe-based plating and the X-ray diffraction peak angle 2θ Fe0 of pure Fe, which was previously determined by measuring θ Fem , the upper-layer Fe-based plating basis weight, and the upper layer Correlation with the Fe content, the angle difference Δ2θ m based on the measured X-ray diffraction peak angle 2θ Fem , and the upper layer Fe content is obtained, and the upper layer plating of the multi-layer alloy hot-dip galvanized steel sheet is characterized. This is an Fe content measuring method.

【0017】[0017]

【作用】上記のように、多層合金化溶融亜鉛めっき鋼板
においては、蛍光X線強度に基づく測定法ではバラツキ
が大きいことに鑑み、他の測定法を考察した。その結
果、上層と下層の合金相構造の差を利用できるX線回折
法が有効であることを見出した。
As described above, in the case of the multi-layer alloy hot-dip galvanized steel sheet, the measuring method based on the fluorescent X-ray intensity has a large variation, and therefore another measuring method was considered. As a result, they have found that an X-ray diffraction method that can utilize the difference in the alloy phase structure between the upper layer and the lower layer is effective.

【0018】以下本発明をその要素と共に説明する。 (1)X線入射角度 多層合金化溶融亜鉛めっき鋼板における上層合金相はF
e系めっきであるため、めっき母材である下地のFeの
情報を受けることは好ましくなく、下地のFeの情報を
拾わないだけの低角度でX線を入射させるのが望まし
い。
The present invention will be described below together with its elements. (1) X-ray incidence angle The upper alloy phase in the multi-layer galvannealed steel sheet is F
Since it is an e-based plating, it is not preferable to receive information on the underlying Fe that is the plating base material, and it is desirable to make X-rays incident at a low angle that does not pick up the underlying Fe information.

【0019】しかとて、下層の合金化溶融亜鉛めっき被
膜の合金相構造と上層Fe系めっきの合金相構造は全く
異なるため、必ずしも上層めっき組成のみの情報を拾う
だけの極低角度で入射する必要もない。要は下地母材の
Feの情報を拾わない条件の入射角度に設定すればよい
のである。
However, since the alloy phase structure of the lower alloyed hot-dip galvanized coating and the alloy phase structure of the upper Fe-based plating are completely different, the incident light is necessarily incident at an extremely low angle for picking up only the upper layer plating composition information. There is no need. The point is that the incident angle should be set so that the information of Fe of the base material is not picked up.

【0020】合金化溶融亜鉛めっき鋼板においては、鋼
板自体が持つ凹凸に加えて、局部的な合金化成長速度の
差によるめっき自体の凹凸が加算される。
In the galvannealed steel sheet, in addition to the irregularities of the steel sheet itself, irregularities of the plating itself due to the local difference in the alloying growth rate are added.

【0021】したがって、このFe−Zn合金めっき層
上に、Fe系めっきを行った場合に、当然に凹凸が生じ
る。
Therefore, when Fe-based plating is performed on the Fe-Zn alloy plated layer, irregularities naturally occur.

【0022】そこで、下地鋼板のFeの影響を受けない
範囲の入射角度を知るため、凹凸状態が異なる多層合金
化溶融亜鉛めっき鋼板それぞれにおいて、X線回折入射
角度の適正範囲について測定した。その結果、下地のF
eの情報を拾わないX線回折入射角度βは、上層Fe系
めっきの表面粗度、特にそのRa(中心線平均粗さ)に
大きく依存していることが判った。
Therefore, in order to know the incident angle of the base steel sheet which is not affected by Fe, the appropriate range of the X-ray diffraction incident angle was measured for each of the multi-layer alloy hot-dip galvanized steel sheets having different irregularities. As a result, the base F
It was found that the X-ray diffraction incident angle β that does not pick up the information of e largely depends on the surface roughness of the upper Fe-based plating, particularly Ra (center line average roughness) thereof.

【0023】ところで、合金化溶融亜鉛めっき鋼板とし
て実際に求められるものは、合金化溶融亜鉛めっき層の
めっき目付量としては30〜70g/m2 、合金化度と
しては7〜14%の範囲のものである。
By the way, what is actually required as the galvannealed steel sheet is in the range of 30 to 70 g / m 2 as the coating weight of the galvannealed layer and 7 to 14% as the degree of alloying. It is a thing.

【0024】そこで、この範囲内にある多層合金化溶融
亜鉛めっき鋼板の表面粗度を測定し、下地のFeの影響
を拾わないX線入射回折角度βを測定した。その結果、
βの範囲がRa×6≦β≦Ra×12であれば高い精度
および高い信頼性の定量化が可能であることが判った。
Therefore, the surface roughness of the multi-layer alloy hot-dip galvanized steel sheet within this range was measured, and the X-ray incident diffraction angle β which did not pick up the influence of Fe as the base was measured. as a result,
It has been found that if the range of β is Ra × 6 ≦ β ≦ Ra × 12, it is possible to quantify with high accuracy and high reliability.

【0025】βがRa×6未満であれば、X線入射回折
角度が小さすぎて、下地のFeの情報は出てこないもの
の、上層Fe系めっきの情報を十分に拾いきれず、上層
めっきの回折強度が十分でないため、測定精度が安定し
ない。
If β is less than Ra × 6, the X-ray incident diffraction angle is too small to provide information on the underlying Fe, but the information on the upper Fe-based plating cannot be sufficiently picked up. The measurement accuracy is not stable because the diffraction intensity is not sufficient.

【0026】一方、βがRa×12より大きければ、上
層Fe系めっきの情報は十分拾うものの、下地のFeの
影響が強く出てきだし、上層めっき特有のピーク強度、
回折角度が下地のFeの影響を受けてズレが生じてしま
う。したがってβの範囲を上記のように限定した。より
好ましいβの範囲は、Ra×8≦β≦Ra×10であ
る。
On the other hand, when β is larger than Ra × 12, although the information of the upper Fe-based plating is sufficiently collected, the effect of Fe of the underlayer comes out strongly, and the peak strength peculiar to the upper-layer plating,
The diffraction angle is affected by the underlying Fe, resulting in a shift. Therefore, the range of β was limited as described above. A more preferable range of β is Ra × 8 ≦ β ≦ Ra × 10.

【0027】なお、低角度でX線を入射させる場合は、
入射X線、回折X線にスリットを使用し、平行X線を使
用することが好ましい。また、オンラインに適用するこ
とは困難である態様であるものの、オフラインにおける
測定においては、表面の優先配向の影響を解消するとと
もに、試料表面を平均化し、分析精度が向上するため、
試料面内回転をさせるが好ましい。
When X-rays are incident at a low angle,
It is preferable to use slits for incident X-rays and diffracted X-rays and use parallel X-rays. Further, although it is a mode that is difficult to apply online, in the measurement of offline, while eliminating the influence of the preferential orientation of the surface, the sample surface is averaged, the analysis accuracy is improved,
It is preferable to rotate the sample in-plane.

【0028】上記の低い入射角度βによる入射は、スト
リップのパスラインを十分安定させれば、十分可能であ
るために、オンライン測定用に適用することが可能であ
る。
Since the incidence with the low incidence angle β is sufficiently possible if the pass line of the strip is sufficiently stabilized, it can be applied for online measurement.

【0029】一方、本発明においては、上層Fe系めっ
き層の表面粗度に基づいて、上層Fe系めっき層の目付
量を定量する。この表面粗度の分析をオンラインで行う
ことは困難を伴うので、通常は、予め測定可能な下地母
材の表面粗度、合金化溶融亜鉛めっき鋼板の合金化度、
およびスキンパス条件等により予測することが可能であ
り、この予測値を用いても、十分に妥当性のある精度を
得ることができ、したがって、この予測表面粗度に基づ
いて、オンライン内で、X線の入射角度をセットするこ
とは十分可能である。
On the other hand, in the present invention, the basis weight of the upper Fe-based plating layer is quantified based on the surface roughness of the upper Fe-based plating layer. Since it is difficult to perform this analysis of the surface roughness online, usually, the surface roughness of the base metal that can be measured in advance, the alloying degree of the galvannealed steel sheet,
It is also possible to make predictions based on the skin pass condition and the like, and even with this predicted value, it is possible to obtain sufficiently valid accuracy. Therefore, based on this predicted surface roughness, X It is quite possible to set the incident angle of the line.

【0030】(2)上層めっき目付量測定 上層めっき固有のFe系めっき回折の強度は、上層めっ
き目付量と相関があるため、Ra×6≦β≦Ra×12
の範囲内でX線を入射させることにより、上層めっきの
回折強度を測定することで、かなり広範囲でFe含有率
の異なる上層めっきの付着量を測定することが可能とな
る。
(2) Measurement of coating weight of upper layer Since the intensity of Fe-based plating diffraction peculiar to the upper coating has a correlation with the coating weight of the upper layer, Ra × 6 ≦ β ≦ Ra × 12
By measuring the diffraction intensity of the upper layer plating by making the X-ray incident within the range, it is possible to measure the adhesion amount of the upper layer plating having a different Fe content in a fairly wide range.

【0031】多層合金化溶融亜鉛めっき鋼板に形成され
る製品性能から求められる上層めっき付着量としては、
2.5〜5.0g/m2 程度である。この理由は次述の
通りである。上層めっき目付量が2.5g/m2 未満で
あれば、上層めっきを施すことによる摺動性、化成処理
性、電着性の改善効果が不十分でとなる。一方、上層め
っき目付量が5.0g/m2 を超えると、上層めっきを
施すことによる加工時の上層めっき剥離によりパウダリ
ング不良による加工性劣化、あるいは加工性不良に起因
した電着不良を起こすため原因となる。また、上層と下
層の電位差からミクロ電池を形成し、腐食が進行しやす
いため、耐食性、特に上層Fe系めっき厚に依存し、赤
錆が発生しやすく、耐外面錆性でも問題となる。さらに
は、上層Fe系めっき厚が大きくなると、コスト的な問
題もあり、経済性の面からも好ましくない。
The coating amount of the upper layer, which is required from the performance of the product formed on the multi-layer galvannealed steel sheet, is
It is about 2.5 to 5.0 g / m 2 . The reason for this is as described below. When the coating weight of the upper layer is less than 2.5 g / m 2 , the effect of improving the slidability, chemical conversion treatment property, and electrodeposition property by applying the upper layer plating becomes insufficient. On the other hand, when the coating weight of the upper layer exceeds 5.0 g / m 2 , workability deterioration due to poor powdering or electrodeposition failure due to poor workability occurs due to peeling of the upper layer plating during processing by applying the upper layer plating. Because of that it becomes a cause. Further, since a micro battery is formed from the potential difference between the upper layer and the lower layer, and corrosion is likely to proceed, it depends on the corrosion resistance, especially the upper Fe-based plating thickness, red rust is likely to occur, and external rust resistance is also a problem. Furthermore, when the upper Fe-based plating thickness is large, there is a cost problem and it is not preferable from the economical viewpoint.

【0032】したがって、本発明における上層めっき目
付量測定範囲としては、実用上の目付量範囲をカバーす
る、後述の図3にも示すように、1.5〜7.0g/m
2 において妥当性を有すれば、十分であると考えられ
る。そこで、測定実験の結果、上記の目付量測定範囲内
においては、上層めっき固有のX線回折ピーク強度IFe
とバックグラウンド強度IBKを差し引いた、上層Fe系
めっき実質の回折ピーク強度IUP(=IFe−IBK)は、
Ra×6≦β≦Ra×12の範囲内において非常に良好
な直線関係にあることが判った。
Therefore, as the upper layer plating basis weight measuring range in the present invention, as shown in FIG. 3 which will be described later, which covers the practical basis weight range, it is 1.5 to 7.0 g / m 2.
A reasonableness in 2 is considered sufficient. Therefore, as a result of the measurement experiment, the X-ray diffraction peak intensity I Fe peculiar to the upper layer plating is within the above-mentioned weight measurement range.
And the background intensity I BK , the diffraction peak intensity I UP (= I Fe −I BK ) of the upper Fe-based plating substance is
It was found that there was a very good linear relationship within the range of Ra × 6 ≦ β ≦ Ra × 12.

【0033】そこで、標準サンプルの上層Fe系めっき
の実質回折ピーク強度IUPと目付量との関係を予め求め
て検量線とし、上層Fe系めっきの回折ピーク強度を測
定し、この検量線に照合すれば、当該多層合金化溶融亜
鉛めっき鋼板の上層めっき目付量を求めることができ
る。
Therefore, the relationship between the substantial diffraction peak intensity I UP of the upper Fe-based plating of the standard sample and the basis weight is obtained in advance to form a calibration curve, and the diffraction peak intensity of the upper Fe-based plating is measured and collated with this calibration curve. Then, the coating weight of the upper layer of the multilayer galvannealed steel sheet can be calculated.

【0034】なお、上層めっき目付量が1.5g/m2
未満では、上層Fe系メッキ特有の回折ピークが不明確
で、強度測定が困難となってしまう。一方、上層めっき
付着量が7.0g/m2 より大きいと、回折ピーク強度
が飽和する傾向がある。その結果、上層目付量が厚すぎ
る場合には、X線入射角度の設定値を上げなければなら
なく、本発明による設定角度範囲以上に回折角度を大き
く変化させる必要があり、下地のFeの情報を拾うた
め、精度の高い測定が困難となる。
The coating weight of the upper layer is 1.5 g / m 2
If it is less than the above, the diffraction peak peculiar to the upper Fe-based plating is unclear, and the strength measurement becomes difficult. On the other hand, when the amount of the deposited upper layer plating is larger than 7.0 g / m 2 , the diffraction peak intensity tends to be saturated. As a result, when the coating weight of the upper layer is too thick, it is necessary to increase the set value of the X-ray incident angle, and it is necessary to greatly change the diffraction angle beyond the set angle range according to the present invention. Therefore, it becomes difficult to measure with high accuracy.

【0035】(3)上層Fe系めっきのFe含有率測定 Feが豊富な上層Fe系めっきの場合、その回折ピーク
角度と純Feの回折ピーク角度とはほぼ一致するが、F
e系合金めっきと純Feとの間では、回折ピーク角度に
若干のズレが生じる。また、測定実験の結果、この回折
ピーク角度のズレおよび上層Fe系めっき目付量と、上
層めっきFe含有率との間に相関があることが判かっ
た。
(3) Measurement of Fe content in upper Fe-based plating In the case of Fe-rich upper Fe-based plating, the diffraction peak angle and the diffraction peak angle of pure Fe are almost the same.
A slight deviation occurs in the diffraction peak angle between the e-based alloy plating and pure Fe. Further, as a result of the measurement experiment, it was found that there is a correlation between the deviation of the diffraction peak angle, the Fe coating amount of the upper Fe-based coating, and the Fe content of the upper Fe plating.

【0036】一方、多層合金化溶融亜鉛めっき鋼板にお
いて形成される上層Fe系めっきに要求されるFe含有
率(Fe%)は、製品性能にもよるが、おおよそ75〜
85%程度である。その理由としては、次のようなもの
が挙げられる。すなわち、上層Fe%が低すぎれば、上
層めっきを施すことによる摺動性、化成処理性、電着性
の改善効果が不十分であり好ましくない。一方、上層F
e%が高すぎれば、上層めっきムラが発生しやすい。あ
るいは、電析時の電流効率が下がるというめっき操業性
の問題もあり好ましくない。したがって、本発明におい
て高い測定精度を示す目標Fe含有率の範囲としては、
70〜95%で十分と考えられる。
On the other hand, the Fe content (Fe%) required for the upper Fe-based plating formed on the multi-layer alloy hot-dip galvanized steel sheet is about 75- though it depends on the product performance.
It is about 85%. The reasons are as follows. That is, if the upper layer Fe% is too low, the effect of improving the slidability, chemical conversion treatment property, and electrodeposition property by applying the upper layer plating is insufficient, which is not preferable. On the other hand, the upper layer F
If e% is too high, unevenness of the upper layer plating is likely to occur. Alternatively, there is also a problem of plating operability that the current efficiency during electrodeposition is lowered, which is not preferable. Therefore, in the present invention, the target Fe content range showing high measurement accuracy is as follows.
It is considered that 70 to 95% is sufficient.

【0037】上層Fe%が70%未満では、上層Fe系
めっき特有の回折ピークがブロード(鈍る)になり、回
折ピークが不鮮明になり好ましくない。また、このよう
なFe%の上層めっきを施した場合、その回折ピーク強
度を求めることによる上層目付量が、実質的に下がり、
上層目付量の測定精度の低下を招く。一方、上層Fe%
は、100%でも測定可能である。いずれにしても、製
品性能上要求される上層めっきFe%の範囲内は高い精
度で測定可能である。
When the upper layer Fe% is less than 70%, the diffraction peak peculiar to the upper layer Fe-based plating becomes broad (blunt), and the diffraction peak becomes unclear, which is not preferable. Further, when such Fe% upper layer plating is applied, the amount of the upper layer basis weight obtained by obtaining the diffraction peak intensity is substantially reduced,
This lowers the measurement accuracy of the upper layer areal weight. On the other hand, upper layer Fe%
Can be measured even at 100%. In any case, it is possible to measure with high accuracy within the range of the upper layer plating Fe% required for product performance.

【0038】いずれにしても、上層Fe系めっき固有の
X線回折ピーク角度2θFeと、純FeのX線回折ピーク
角度2θFeO のズレΔ2θ(=2θFe−2θFeO )と上
層目付量との関係と、上層Fe%とは相関がある。
In any case, the X-ray diffraction peak angle 2θ Fe peculiar to the upper Fe-based plating, the deviation Δ2θ (= 2θ Fe -2θ FeO ) of the X-ray diffraction peak angle 2θ FeO of pure Fe and the upper-layer basis weight are There is a correlation between the relationship and the upper layer Fe%.

【0039】したがって、既知のサンプルにて、上層F
e系めっきの極ショートレンジでX線検出角度をスキャ
ンさせ、同時にピーク強度と回折角度を求めることによ
り、回折ピーク角度を求め、上層目付量および回折ピー
ク角度のズレと上層Fe%との相関を多重回帰式により
予め求めておき、測定した上層Fe系めっきの回折ピー
ク強度と回折ピーク角度を測定して、この多重式に照合
することで、上層Fe%を求めることができる。なお、
回折ピーク角度がサンプルのFe%によりシフトする理
由は不明確であるが、上層Fe%、付着量によりめっき
内の結晶格子歪が大きくなり変化していくものと考えら
れる。
Therefore, in the known sample, the upper layer F
The diffraction peak angle is obtained by scanning the X-ray detection angle in the extremely short range of e-based plating and at the same time obtaining the peak intensity and diffraction angle, and the correlation between the upper-layer basis weight and the deviation of the diffraction peak angle and the upper-layer Fe% is calculated. The upper layer Fe% can be determined by measuring the diffraction peak intensity and the diffraction peak angle of the upper layer Fe-based plating, which have been obtained in advance by the multiple regression equation, and by collating with this multiple equation. In addition,
The reason why the diffraction peak angle shifts depending on the Fe% of the sample is not clear, but it is considered that the crystal lattice strain in the plating increases and changes depending on the Fe% of the upper layer and the attached amount.

【0040】なお、本発明の方法は、下層めっき組成が
均一な、たとえば、多層合金化電気亜鉛めっき鋼板にお
いても適用可能であることはいうまでもない。また、本
発明における上層めっきとしては、Fe−Zn系のほ
か、Fe−P系、Fe−B系などの場合も含む。
It is needless to say that the method of the present invention can be applied even to a multi-layer alloy electrogalvanized steel sheet having a uniform lower layer plating composition. Further, the upper layer plating in the present invention includes Fe-Zn type, Fe-P type, Fe-B type and the like.

【0041】[0041]

【実施例】以下、本発明の効果を実施例により具体的に
説明する。本発明の効果を明確にするため、実めっきラ
インで製造された各種合金化溶融亜鉛めっき鋼板を脱脂
した後、表1に示すめっき液組成にて上層めっきを施
し、表2に示す各目付量、合金化度、Raの多層合金化
溶融亜鉛めっき鋼板を作成した。
EXAMPLES The effects of the present invention will be specifically described below with reference to examples. In order to clarify the effect of the present invention, after degreasing various alloyed hot-dip galvanized steel sheets produced on an actual plating line, upper layer plating is performed with the plating solution composition shown in Table 1 and each basis weight shown in Table 2 , A multi-layer alloy hot-dip galvanized steel sheet having a degree of alloying and Ra was prepared.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】なお、上記各上層めっき組成に関して、上
層目付量は、通電時間を変化させることにより、上層F
e%は、ZnSO4 ・7H2 O濃度を変化させることに
より調節した。
With respect to each of the above upper layer plating compositions, the upper layer areal weight is determined by changing the energization time.
The e% was adjusted by changing the ZnSO 4 .7H 2 O concentration.

【0045】また、上層のめっき組成の定量のために、
多層合金化溶融亜鉛めっき鋼板では、上層めっき組成の
みの定量が困難なため、Cu板に同一めっき条件でFe
系めっきを施したものについて、そのめっき被膜を溶解
したものを化学分析し、上層めっき組成とした。
In order to quantify the plating composition of the upper layer,
In a multi-layer alloy hot-dip galvanized steel sheet, it is difficult to quantify only the upper layer plating composition.
With respect to the one subjected to the system plating, the one in which the plating film was dissolved was chemically analyzed to obtain the upper layer plating composition.

【0046】上層めっき目付量およびFe含有率の測定
を行った。その測定条件を、以下に示す。 X線管球 ;Co−Kα(波長d=1.78892
Å) 管電圧 ;30kV 管電流 ;200mA モノクロメーター ;単色化のために使用 Divergence Slit;0.50mm Scattering Slit;3.00mm Receiving Slit ;3.00mm 試料回転速度 ;180000deg/min 検出器 ;シンチレーションカウンター 上層めっき測定格子面間隔;d=2.0611〜2.0
268Å(2θUP=51.4〜52.4°) 純Fe(110)格子面間隔=2.02680Å(2θ
FeO =52.38°) 以下に、その測定結果を示す。 <結果1>図1に、上層めっき(目付量=2.5g/m
2 、Fe%=70%)を施した場合のX線入射角度と上
層めっき強度と下地のFe強度の関係を示す。この図よ
り、入射X線角度βが変化しても上層めっき強度差IUP
が安定し、上層めっきのみの情報を拾う測定に適切なβ
の範囲が存在することが判る。
The coating weight of the upper layer and the Fe content were measured. The measurement conditions are shown below. X-ray tube; Co-Kα (wavelength d = 1.78892
Å) Tube voltage; 30 kV tube current; 200 mA monochromator; used for monochromation Diversity Slit; 0.50 mm Scattering Slit; 3.00 mm Receiving Slit; 3.00 mm Sample rotation speed; 180000 deg / min scintillation detector upper; Plating measurement lattice plane spacing; d = 2.0611 to 2.0
268Å (2θ UP = 51.4 to 52.4 °) Pure Fe (110) lattice spacing = 2.02680Å (2θ
FeO = 52.38 °) The measurement results are shown below. <Result 1> In FIG. 1, the upper layer plating (area weight = 2.5 g / m
2 , Fe% = 70%), the relationship between the X-ray incident angle, the upper layer plating strength, and the Fe strength of the base is shown. From this figure, even if the incident X-ray angle β changes, the upper layer plating strength difference I UP
Is stable, and β suitable for measurement that picks up information only on the upper layer plating
It turns out that the range of exists.

【0047】<結果2>下記の合金化溶融亜鉛めっき鋼
板に上層めっきを施した(目付量=3.0g/m2 、F
e%=85%)サンプルについて、その表面粗度と測定
可能X線入射角度の関係を図2に示す。図2より、目付
量が大きい場合には、測定可能X線入射角度がやや広が
る傾向が認められるが、通常製造範囲を全て勘案すると
測定可能なβの範囲は、中心線粗さRaで整理可能であ
り、βの下限値は、Ra×6、上限値は、Ra×12で
あることが判る。
<Result 2> The following alloyed hot-dip galvanized steel sheet was subjected to upper layer plating (area weight = 3.0 g / m 2 , F
The relationship between the surface roughness of the sample and the measurable X-ray incident angle is shown in FIG. From FIG. 2, when the basis weight is large, the measurable X-ray incident angle tends to be slightly widened, but the β range that can be measured can be arranged by the center line roughness Ra when the entire manufacturing range is taken into consideration. It can be seen that the lower limit value of β is Ra × 6, and the upper limit value is Ra × 12.

【0048】<結果3>次に、上層目付量と強度差IUP
の関係を図3に示す。下層の合金化溶融亜鉛めっき鋼板
のRaは、1.2μmで、X線入射角度β=10°に固
定した。その際の上層目付量は、0.5g/m2 〜1
0.0g/m2 まで、上層Fe%としては、60、7
0、80、90、100%に変化させた。図3より上層
Fe%が70%以上では、上層目付量=1.5〜7.0
g/m2 の範囲は良好な相関関係が認められることが判
る。
<Result 3> Next, the basis weight of the upper layer and the strength difference I UP
The relationship is shown in FIG. Ra of the lower layer galvannealed steel sheet was 1.2 μm, and the X-ray incident angle β was fixed at 10 °. In that case, the coating weight of the upper layer is 0.5 g / m 2 to 1
Up to 0.0 g / m 2 , the upper layer Fe% is 60, 7
It was changed to 0, 80, 90 and 100%. From FIG. 3, when the upper layer Fe% is 70% or more, the upper layer areal weight is 1.5 to 7.0.
It can be seen that a good correlation is recognized in the range of g / m 2 .

【0049】<結果4>また、同一サンプルから、上層
めっき回折ピーク角度と純Feの回折ピーク角度のズレ
Δ2θの関係を図4に示す。目付量が一定であれば、Δ
2θと上層Fe%の間には良好な相関関係が認められる
ことが判る。したがって、強度差IUPから上層目付量を
求めることにより、Δ2θから上層Fe%を求めること
が可能である。
<Result 4> FIG. 4 shows the relationship between the upper layer plating diffraction peak angle and the pure Fe diffraction peak angle deviation Δ2θ from the same sample. If the basis weight is constant, Δ
It can be seen that there is a good correlation between 2θ and Fe% in the upper layer. Therefore, the upper layer Fe% can be obtained from Δ2θ by obtaining the upper layer areal weight from the intensity difference I UP .

【0050】以上の結果から、標準サンプルの検量線を
用意することにより、Ra×6≦β≦Ra×12の範囲
内にX線入射角度を設定し、このX線入射角度で上層め
っきの強度差IUP、Δ2θを求めることによって上層F
e系めっきの付着量、Fe%を求めることが可能である
ことが判る。
From the above results, by preparing a calibration curve of a standard sample, the X-ray incident angle is set within the range of Ra × 6 ≦ β ≦ Ra × 12, and the strength of the upper layer plating is set at this X-ray incident angle. By obtaining the difference I UP and Δ2θ, the upper layer F
It is understood that it is possible to determine the amount of Fe-based plating deposited and the Fe%.

【0051】[0051]

【発明の効果】以上の説明から明らかな如く、本発明に
よれば、X線回折法を利用することにより、下層めっき
の組成に影響されることなく、多層合金化溶融亜鉛めっ
き鋼板における上層めっき層のめっき目付量およびFe
含有率を、非破壊によって精度よく測定することが可能
となる。
As is apparent from the above description, according to the present invention, by using the X-ray diffraction method, the upper layer plating in the multi-layer alloy hot-dip galvanized steel sheet is not affected by the composition of the lower layer plating. Area coating weight and Fe
It is possible to measure the content rate accurately by non-destructive.

【図面の簡単な説明】[Brief description of drawings]

【図1】X線入射角度を変化させた場合の上層めっきピ
ーク強度の関係を示す図である。
FIG. 1 is a diagram showing a relationship between upper layer plating peak intensities when an X-ray incident angle is changed.

【図2】最適X線入射角度範囲と表面粗度の関係を示す
図である。
FIG. 2 is a diagram showing a relationship between an optimum X-ray incident angle range and surface roughness.

【図3】上層めっき目付量と上層めっき回折ピーク強度
差の関係を示す図である。
FIG. 3 is a diagram showing a relationship between an upper layer plating basis weight and an upper layer plating diffraction peak intensity difference.

【図4】上層めっき回折ピーク角度と純Fe回折ピーク
角度とのズレと、上層Fe%との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a deviation between an upper layer plating diffraction peak angle and a pure Fe diffraction peak angle and an upper layer Fe%.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鋼板上に合金化溶融亜鉛めっき層を有し、
さらにその上層にFe系めっき層を有する2層めっき鋼
板の多層合金化溶融亜鉛めっき鋼板における上層Fe系
めっき層の目付量を測定する方法であって、 前記上層Fe系めっき層表面の中心線平均粗さRaの6
倍以上12倍以下の入射角度βで、単色化された特性X
線を前記多層合金化溶融亜鉛めっき鋼板表面に対して入
射せしめ、 上層めっきのX線回折ピーク強度IFeおよびバックグラ
ンド強度IFKを測定し、これらの強度差IUPを求め、 予め求めた、強度差と上層Fe系めっき層の目付量との
相関に照合して、当該測定強度差IUPから上層Fe系め
っきの目付量を算出することを特徴とする多層合金化溶
融亜鉛めっき鋼板の上層めっきのめっき目付量測定方
法。
1. A galvanized galvanized layer on a steel sheet,
A method for measuring a basis weight of an upper Fe-based plating layer in a multi-layer alloy hot-dip galvanized steel sheet of a double-layer plated steel sheet having an Fe-based plating layer as an upper layer thereof, wherein the center line average of the surface of the upper Fe-based plating layer is measured. Roughness Ra 6
Characteristic X that is monochromatic at an incident angle β of not less than 2 times and not more than 12 times
A line was made incident on the surface of the multilayer galvannealed steel sheet, the X-ray diffraction peak intensity I Fe and the background intensity I FK of the upper layer plating were measured, and the intensity difference I UP between them was determined, An upper layer of a multi-layer alloy hot-dip galvanized steel sheet, characterized in that the basis weight of the upper Fe-based plating is calculated from the measured strength difference I UP by checking the correlation between the strength difference and the basis weight of the upper Fe-based plating layer. Method for measuring coating weight of plating.
【請求項2】鋼板上に合金化溶融亜鉛めっき層を有し、
さらにその上層にFe系めっき層を有する2層めっき鋼
板の多層合金化溶融亜鉛めっき鋼板における上層Fe系
めっき層の目付量を測定する方法であって、 前記上層Fe系めっき層表面の中心線平均粗さRaの6
倍以上12倍以下の入射角度βで、単色化された特性X
線を前記多層合金化溶融亜鉛めっき鋼板表面に対して入
射せしめ、 上層めっきのX線回折ピーク角度2θFem を測定し、 予め求めた、上層Fe系めっき固有のX線回折ピーク角
度2θFeと純FeのX線回折ピーク角度2θFe0 との角
度差Δ2θと、上層Fe系めっき目付量と、上層Fe含
有率との相関に、当該測定X線回折ピーク角度2θFem
に基づく角度差Δ2θm を照合させて、上層Fe含有率
を求めることを特徴とする多層合金化溶融亜鉛めっき鋼
板の上層めっきのFe含有率測定方法。
2. A galvannealed layer on a steel sheet,
A method for measuring a basis weight of an upper Fe-based plating layer in a multi-layer alloy hot-dip galvanized steel sheet of a double-layer plated steel sheet having an Fe-based plating layer as an upper layer thereof, wherein the center line average of the surface of the upper Fe-based plating layer is measured. Roughness Ra 6
Characteristic X that is monochromatic at an incident angle β of not less than 2 times and not more than 12 times
The X-ray diffraction peak angle 2θ Fe specific to the upper Fe-based plating and the pure X-ray diffraction peak angle 2θ Fe obtained by measuring the X-ray diffraction peak angle 2θ Fem of the upper layer plating by irradiating the surface of the multilayer alloyed hot-dip galvanized steel sheet surface The angle difference Δ2θ from the X-ray diffraction peak angle 2θ Fe0 of Fe, the upper-layer Fe-based plating basis weight, and the correlation of the upper-layer Fe content with the measured X-ray diffraction peak angle 2θ Fem
A method for measuring the Fe content in the upper layer plating of a multi-layer galvannealed steel sheet, wherein the upper layer Fe content is determined by matching the angle difference Δ2θ m based on the above.
JP5157559A 1993-06-28 1993-06-28 Determination method for upper layer plating of steel plate having multilayer of alloyed and fused galvanization Pending JPH0712761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5157559A JPH0712761A (en) 1993-06-28 1993-06-28 Determination method for upper layer plating of steel plate having multilayer of alloyed and fused galvanization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5157559A JPH0712761A (en) 1993-06-28 1993-06-28 Determination method for upper layer plating of steel plate having multilayer of alloyed and fused galvanization

Publications (1)

Publication Number Publication Date
JPH0712761A true JPH0712761A (en) 1995-01-17

Family

ID=15652332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5157559A Pending JPH0712761A (en) 1993-06-28 1993-06-28 Determination method for upper layer plating of steel plate having multilayer of alloyed and fused galvanization

Country Status (1)

Country Link
JP (1) JPH0712761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055353A (en) * 2012-08-13 2014-03-27 Jfe Steel Corp Method for measuring alloying degree of alloyed galvanized steel
JP2020012732A (en) * 2018-07-18 2020-01-23 富士通株式会社 Odor measurement device, odor measurement system, and odor measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055353A (en) * 2012-08-13 2014-03-27 Jfe Steel Corp Method for measuring alloying degree of alloyed galvanized steel
JP2020012732A (en) * 2018-07-18 2020-01-23 富士通株式会社 Odor measurement device, odor measurement system, and odor measurement method

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
JP2904891B2 (en) Online alloying degree measuring device for galvanized steel sheet
US4064437A (en) Method for measuring the degree of alloying of galvannealed steel sheets
Wienströer et al. Zinc/Iron phase transformation studies on galvannealed steel coatings by X-ray diffraction
JPH0712761A (en) Determination method for upper layer plating of steel plate having multilayer of alloyed and fused galvanization
JPH0933455A (en) Method for measuring alloyed degree of alloying plated layer
JP2745428B2 (en) X-ray diffraction method for evaluating the processing performance of alloyed zinc plated steel sheets for high processing
KR101818350B1 (en) Method for quantitative measuring of alloy in the hot dip Zn-Al-Mg coating layer on the steel
JP2542906B2 (en) Method for measuring alloying degree of galvannealed steel sheet by X-ray diffraction method
JP4411918B2 (en) Quality control method and manufacturing method of steel sheet having oxide film on surface
JPH056139B2 (en)
JP2672929B2 (en) Quantitative analysis method for upper layer plating of double-layered alloyed hot dip galvanized steel sheet by glow discharge emission spectrometry
JP6520865B2 (en) Method of measuring degree of alloying and / or plating adhesion of galvanized steel sheet
JP2708257B2 (en) Method for measuring phase thickness of galvannealed steel sheet
JPH06347247A (en) Measuring method of thickness of alloy phase of plated layer
JPS6058537A (en) Method for determining quantity of plating for plated fe-zn alloy steel plate
JPH0571936A (en) Method for measuring amount of adhesion of upper-layer plating of multiple-layer plated steel plate
Karjagdiu STUDYING THE PROCESS OF ZINC WITH GALVANIZATION
JPH08297106A (en) Measuring method for plating stuck quantity and mg percentage content of zn-mg alloy-plated steel plate
JP2745427B2 (en) Method for evaluating drawability of alloyed zinc-coated steel sheet by X-ray diffraction method
JPS5946543A (en) Method for measuring degree of alloy formation of galvannealed steel plate
JPH068791B2 (en) Measuring method of alloying degree of galvannealed steel sheet
JPS62135755A (en) Method for quantitative determination of plating film on metallic material
JPH09159428A (en) Method for measuring deposition quantities of mg, and surface layer zn of zn-mg based plated steel plate
JPH03272441A (en) Composition for alloy film and measuring method for adhering amount