JPH068791B2 - Measuring method of alloying degree of galvannealed steel sheet - Google Patents

Measuring method of alloying degree of galvannealed steel sheet

Info

Publication number
JPH068791B2
JPH068791B2 JP59024095A JP2409584A JPH068791B2 JP H068791 B2 JPH068791 B2 JP H068791B2 JP 59024095 A JP59024095 A JP 59024095A JP 2409584 A JP2409584 A JP 2409584A JP H068791 B2 JPH068791 B2 JP H068791B2
Authority
JP
Japan
Prior art keywords
phase
alloying
degree
ray diffraction
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59024095A
Other languages
Japanese (ja)
Other versions
JPS60169553A (en
Inventor
順次 川辺
実成 後藤
和也 押場
忠男 藤永
忠廣 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59024095A priority Critical patent/JPH068791B2/en
Publication of JPS60169553A publication Critical patent/JPS60169553A/en
Publication of JPH068791B2 publication Critical patent/JPH068791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 本発明は、合金化亜鉛めっき鋼板の合金化度をX線回折
手法によって非破壊連続的にかつ正確に測定する方法に
関するものである。
The present invention relates to a method for continuously and accurately measuring the alloying degree of an alloyed galvanized steel sheet by an X-ray diffraction method.

溶融亜鉛めっき鋼板および電気亜鉛めっき鋼板の溶接
性、塗装後の耐食性および塗膜密着性等の品質特性を向
上させる目的で、これらの亜鉛めっき鋼板に加熱処理を
施し、めっき層中にFe−Zn合金相を成長させたいわゆる
合金化亜鉛めっき鋼板が製造される。そのめっき層は、
Fe−Zn合金相のうちδ相を主体としてなるが、加熱処
理の過不足があった場合にはΓ相、ζ相が少量存し、さ
らには金属亜鉛すなわちη相が残存する場合もある。そ
して、そのめっき層の品質特性はめっき層中の各相の割
合に依存して著しく変動するものである。従って、高品
質の合金化亜鉛めっき鋼板を製造するためには、その合
金化程度を正確に測定し、加熱処理条件、例えば加熱温
度または加熱時間を制御して、常に適正な合金化度範囲
に管理することが肝要である。
For the purpose of improving the weldability of hot-dip galvanized steel sheets and electrogalvanized steel sheets, and the quality characteristics such as corrosion resistance after coating and coating adhesion, these galvanized steel sheets are subjected to heat treatment and Fe-Zn So-called galvannealed steel sheets are produced which have grown alloy phases. The plating layer is
Of the Fe-Zn alloy phases, the δ 1 phase is the main component, but when there is an excess or deficiency of the heat treatment, a small amount of the Γ phase and ζ phase exist, and there is a case where metallic zinc, that is, the η phase remains. . The quality characteristics of the plated layer change significantly depending on the proportion of each phase in the plated layer. Therefore, in order to produce a high-quality alloyed galvanized steel sheet, the degree of alloying is accurately measured, and the heat treatment conditions, such as the heating temperature or the heating time, are controlled so that the alloying degree is always within a proper range. It is important to manage.

合金化亜鉛めっき鋼板の合金化度を比較的精度よく測定
可能な方法として、これまでに、例えば特公昭58−4
7659号に述べられる方法が開示されている。この方
法は、めっき層中の二つのFe−Zn合金相についてX線回
折特性を測定し、二つの測定値の比を求めて合金化度を
測定するものであるが、後述するように、真の合金化度
を求め得ないこと、およびこれに起因して合金化度と品
質特性との関係が直接的でないために、合金化度の測定
値を加熱処理にフィードバックして、めっき層の品質特
性を管理することが困難であることなどの問題を有して
いる。
As a method capable of measuring the degree of alloying of an alloyed galvanized steel sheet with relatively high accuracy, for example, Japanese Patent Publication No. 58-4
The method described in 7659 is disclosed. This method measures the X-ray diffraction characteristics of the two Fe-Zn alloy phases in the plating layer and obtains the ratio of the two measured values to measure the degree of alloying. Since the alloying degree cannot be calculated, and the relationship between the alloying degree and the quality characteristics is not direct due to this, the measured value of the alloying degree is fed back to the heat treatment to improve the quality of the plating layer. It has problems such as difficulty in managing characteristics.

以下、従来技術の問題点について詳述する。The problems of the prior art will be described in detail below.

第1図は、加熱処理の程度、例えば加熱時間を変えるこ
とによって、合金化度を変えた場合のめっき層中Fe−Zn
合金相組成の変化を示し、第1a図は加熱時間を比較的
短くすることによって比較的低い合金化度とした場合
を、第1b図は第1a図よりも加熱時間をやや長くし、
合金化度を高めた場合を、第1c図は第1b図よりもさ
らに加熱時間を長くし、合金化度を高めた場合を示す。
第1図から、η相の厚みは合金化度が高くなるにつれて
薄くなり、逆にδ相、Γ相は合金化度が高まるにつれ
て厚くなっているのが判る。これらから、Fe−Zn合金
相、η相のX線回折特性を測定することによって、予め
求めておいた特性と合金化度との関係を照して、合金化
度を測定し得るであろうことが推定される。前述の従来
の合金化度測定方法はまさにこの知見に基づいてなされ
て発明されたものであり、その特徴は目付量が変動した
場合を想定してFe−Zn合金相のうち二つの相についてそ
のX線回折特性を測定し、二つの相のX線回折特性の測
定値の比を求めて合金化度を測定する点にある。しか
し、本発明者等の研究から、二つのFe−Zn合金相のX線
回折特性の測定値の比を求めても正確な合金化度は求め
得ないことが判ったのである。
Fig. 1 shows the Fe-Zn in the plating layer when the degree of alloying is changed by changing the degree of heat treatment, for example, the heating time.
Fig. 1a shows changes in alloy phase composition. Fig. 1a shows a case where a relatively low degree of alloying is obtained by relatively shortening a heating time, and Fig. 1b shows a heating time slightly longer than that of Fig. 1a.
When the degree of alloying is increased, FIG. 1c shows the case where the heating time is made longer than that of FIG. 1b and the degree of alloying is increased.
From FIG. 1, it can be seen that the thickness of the η phase becomes thinner as the alloying degree becomes higher, and conversely, the δ 1 phase and the Γ phase become thicker as the alloying degree becomes higher. From these, it is possible to measure the alloying degree by measuring the X-ray diffraction characteristics of the Fe-Zn alloy phase and the η phase in light of the relationship between the previously obtained characteristics and the alloying degree. It is estimated that The above-mentioned conventional alloying degree measuring method was made based on this finding, and was invented, and its characteristic is that two units of the Fe-Zn alloy phase are assumed on the assumption that the basis weight varies. The point is to measure the X-ray diffraction characteristics, obtain the ratio of the measured values of the X-ray diffraction characteristics of the two phases, and measure the degree of alloying. However, studies by the present inventors have revealed that an accurate alloying degree cannot be obtained even if the ratio of the measured values of the X-ray diffraction characteristics of the two Fe-Zn alloy phases is obtained.

すなわち、第2図に示すように、同一合金相組成であっ
ても目付量が異なる三つの合金化亜鉛めっき鋼板にそれ
ぞれ同じようにX線回折を行なった場合、X線が透過し
到達し得る距離は三つの鋼板間では殆ど差がないが、目
付厚(目付量)が薄い(少ない)場合(第2a図)、比
較的薄い場合(第2b図)、および厚い(多い)場合
(第2c図)とで、次のようなX線の物理学的現象の差
異が生じる。すなわち、X線が物体中に入射し反射する
間には吸収、散乱などが起って、入射して鋼板素地に至
るX線の量はめっき層の厚みによって異なり、通常、目
付量が厚いほど少なくなり、また、X線がある目的とす
る回折面から反射して検出器に至るX線の量、すなわち
回折強度も目的とする回折面よりも表層寄りにあるめっ
き層の厚みによって異なり、通常その厚みが厚いほど少
なくなり、すなわちX線の回折強度が弱くなる。例えば
第2図において、目付量が少ない第2a図の場合と目付
量が多い第2c図の場合とでは、鋼板素地よりのδ
からの回折強度については目付量の少ないほうが強く、
目付量の多いほうが弱くなる。逆にζ相からの回折強度
は、目付量の多い(ζ相の絶対量が多い)ほうが強く、
目付量の少ない(ζ相の絶対量が少ない)ほうは弱くな
るのである。従って、ζ相、δ相のX線回折特性の測
定値の比をとった場合、目付量による合金化度の差は歴
然である。
That is, as shown in FIG. 2, when X-ray diffraction is similarly performed on three galvannealed steel sheets having the same alloy phase composition but different basis weights, X-rays may pass therethrough and reach them. There is almost no difference in the distance between the three steel plates, but the basis weight (weight) is thin (small) (Fig. 2a), relatively thin (Fig. 2b), and thick (large) (2c). The difference in the physical phenomenon of X-rays is as follows. That is, while X-rays are incident on an object and reflected, they are absorbed, scattered, etc., and the amount of X-rays that enter and reach the steel sheet substrate varies depending on the thickness of the plating layer. Also, the amount of X-rays reflected from a certain diffractive surface to reach the detector, that is, the diffraction intensity also varies depending on the thickness of the plating layer closer to the surface layer than the target diffractive surface. The larger the thickness, the smaller the thickness, that is, the weaker the X-ray diffraction intensity. For example, in FIG. 2 in the case of FIG. 2a having a small basis weight and in the case of FIG. 2c having a large basis weight, the smaller the basis weight is, the stronger the diffraction intensity from the δ 1 layer from the steel plate base is,
The higher the basis weight, the weaker it becomes. On the contrary, the diffraction intensity from the ζ phase is stronger when the basis weight is larger (the absolute amount of the ζ phase is larger),
The smaller the basis weight (the smaller the absolute amount of the ζ phase), the weaker it becomes. Therefore, when the ratio of the measured values of the X-ray diffraction characteristics of the ζ phase and the δ 1 phase is taken, the difference in the degree of alloying depending on the basis weight is obvious.

一方、合金化亜鉛めっき鋼板に要求される品質特性は最
近とみに厳しいものがある。例えば、目付量が厚くなる
とめっき層の加工性、溶接性などの特性は劣化するが、
厚くてもこれらの特性が優れた合金化亜鉛めっき鋼板が
求められるために、極めて狭い合金化度範囲に管理する
ことが必要となった。また、このように求められる品質
特性に応じたきめ細かな合金化度管理の要求される一方
で、合金化めっき鋼板の製造ラインにおいては生産性向
上などの目的で、ラインスピードは高速化し、さらにこ
れに伴って加熱処理のための加熱能力が大幅に上昇した
ために、瞬時の合金化度の測定誤差が多量の不良品を生
産するはめに追い込まれるようになった。
On the other hand, recently, the quality characteristics required for the galvannealed steel sheet are severe. For example, when the basis weight becomes thicker, the workability and weldability of the plating layer deteriorate,
Since an alloyed galvanized steel sheet excellent in these properties is required even if it is thick, it is necessary to control the alloying degree within an extremely narrow range. In addition, while fine control of alloying degree according to the required quality characteristics is required, the line speed is increased for the purpose of improving productivity in the production line of alloyed plated steel sheet, and further As a result, the heating capacity for the heat treatment has significantly increased, and the measurement error of the instantaneous alloying degree has been forced to produce a large amount of defective products.

本発明は上述のような実情に鑑みてなされたもので、合
金化亜鉛めっき鋼板の真の合金化度をX線回折手法によ
って、非破壊連続的に測定し得る技術を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a technique capable of nondestructively continuously measuring the true alloying degree of an alloyed galvanized steel sheet by an X-ray diffraction method. To do.

本発明は、合金化亜鉛めっき鋼板の合金化度であるFe
濃度を測定するに際し、該合金化亜鉛めっき鋼板のめっ
き層中のη相、ζ相、δ相、およびΓ相のうちから選
ばれた一つ以上の相と、前記めっき鋼板素地のα−Fe
とをそれぞれX線回折方法によりX線回折特性としてピ
ーク高さ、面積、または半価値を測定し、前記相および
めっき目付量補正するために前記α−FeのX線回折特
性測定値を変数として、めっき目付量が18〜120g
/m2の範囲における合金化亜鉛めっき鋼板の合金化度を
測定することを特徴とする合金化亜鉛めっき鋼板の合金
化度の測定方法を提供するものである。
The present invention relates to the degree of alloying of alloyed galvanized steel sheet Fe
When measuring the concentration, one or more phases selected from the η phase, the ζ phase, the δ 1 phase, and the Γ phase in the plating layer of the galvannealed steel sheet, and α− of the galvanized steel substrate Fe
And X are respectively measured as X-ray diffraction characteristics by an X-ray diffraction method to measure peak height, area, or half-value, and in order to correct the phase and the coating weight, the measured X-ray diffraction characteristics of α-Fe are used as variables. , Coating weight is 18 ~ 120g
The present invention provides a method for measuring the degree of alloying of an alloyed zinc-plated steel sheet, which comprises measuring the degree of alloying of the alloyed zinc-plated steel sheet in a range of / m 2 .

なお、本発明における真の合金化度とは、表現を簡潔に
するため、めっき層中のFe濃度ということに定義する。
その理由は、第1図に示すように、めっき層はη相、ζ
相、δ相、Γ相など三つの以上の相で構成される場合
があること、さらに一つのFe−Zn相であってもFe濃度に
比較的広い範囲があって、その範囲で品質特性への影響
力に差異があるから、相組成だけでめっき層を表現する
ことが複雑となり、かつ適当でないことによる。
The true degree of alloying in the present invention is defined as the Fe concentration in the plating layer for the sake of simplicity.
The reason is as shown in FIG.
Phase, δ 1 phase, Γ phase, etc. may be composed of three or more phases, and even one Fe-Zn phase has a relatively wide range of Fe concentration, and quality characteristics within that range. This is because it is complicated and it is not appropriate to express the plating layer only by the phase composition, because the influence on the plating layer is different.

本発明は、鋼板素地のα−FeのX線回折特性値が目付量
と密接な関係があるが、合金化度には影響されないこ
と、また、めっき層中のFe−Zn合金相およびη相のうち
から選ばれた一つ以上の相のX線回折特性の測定値とα
−FeのX線回折特性の測定値とを変数として求められる
値を合金化度とすることによって、真の合金化度を正確
に測定できることを見出し、なされたものである。
In the present invention, the X-ray diffraction characteristic value of α-Fe of the steel sheet base material is closely related to the basis weight, but it is not affected by the degree of alloying, and the Fe-Zn alloy phase and the η phase in the plating layer. Of the X-ray diffraction characteristics of one or more phases selected from
It was made by discovering that the true alloying degree can be accurately measured by setting the alloying degree to a value obtained by using the measured value of the X-ray diffraction characteristic of Fe as a variable.

前述のように、合金化亜鉛めっき鋼板の合金化度は、め
っき層中のζ,δ,ΓなどのFe−Zn合金相およびη相
のうちから選ばれた一つの相のX線回折特性の測定値、
または二つの相のX線回折特性の測定値の比で大約求め
られることは明らかであるが、従来のこの方法による合
金化度は、目付量が変動する場合においては真の合金化
度を求め得ない。そこで、本発明は、合金化亜鉛めっき
鋼板のめっき層中、Fe−Zn合金相およびη相のうちから
選ばれた一つ以上のX線回折特性の測定値と鋼板素地の
α−FeのX線回折特性の測定値とを変数として求められ
る値を合金化度とすることによって、真の合金化度を測
定するものである。以下、本発明をさらに詳細に説明す
る。
As described above, the alloying degree of the galvannealed steel sheet is determined by the X-ray diffraction characteristics of one phase selected from the Fe-Zn alloy phase such as ζ, δ 1 and Γ and the η phase in the plated layer. The measured value of
Or, it is clear that it can be roughly obtained by the ratio of the measured values of the X-ray diffraction characteristics of the two phases, but the alloying degree by this conventional method is the true alloying degree when the basis weight varies. I don't get it. Therefore, the present invention provides one or more measurement values of X-ray diffraction characteristics selected from the Fe-Zn alloy phase and the η phase in the plating layer of the galvannealed steel sheet and the X-value of α-Fe of the steel sheet substrate. The true alloying degree is measured by taking the value obtained by using the measured value of the line diffraction characteristic as a variable as the alloying degree. Hereinafter, the present invention will be described in more detail.

α−FeのX線回折特性の測定値を一つの変数として用い
るのは、α−FeのX線回折特性の測定値が目付量と密接
な関係があり、目付量がα−FeのX線回折特性の測定値
を変数として表わし得ることが判ったことに基づく。す
なわち、第3図は合金化亜鉛めっき鋼板の目付量(Mg
/m2)とX線のピーク高さ(Iα−Fe)との関係を示す
が、 M=−alogIα−Fe+b すなわち、 M=f(Iα−Fe)…(1) なる関係式が成立するのである。このような関係は、ピ
ーク高さ以外のX線回折特性、すなわち山の面積および
半価幅を用いても成立する。また、 M=f(Iα−Fe)…(1) 式は、被めっき素材の製造履歴、板厚、圧下率および鋼
種が変わることによって微妙に相違するが、全ての被め
っき素材に適用することができる。
The measured value of the X-ray diffraction characteristic of α-Fe is used as one variable, because the measured value of the X-ray diffraction characteristic of α-Fe is closely related to the basis weight, and the basis weight is X-ray of the α-Fe. It is based on the knowledge that the measured values of diffraction characteristics can be expressed as variables. That is, FIG. 3 shows the basis weight (Mg
/ M 2 ) and the peak height of the X-ray (I α-Fe ), M = −alog I α-Fe + b That is, M = f (I α-Fe ) ... (1) Is established. Such a relationship holds even if X-ray diffraction characteristics other than the peak height are used, that is, the peak area and the half width. Further, M = f (I α-Fe ) ... (1) is applied to all the plated materials, though it is slightly different depending on the manufacturing history of the plated material, the plate thickness, the rolling reduction and the steel type. be able to.

また、前述のように真の合金化度をX線回折手法によっ
て測定するには、目付量が変動することによる誤差を適
確に補正する必要があるが、幸いにも上述のように、目
付量がα−FeのX線回折特性の測定値を変数として求め
ることができるので、ある目付量について真の合金化度
とX線回折特性の測定値との関係を求め、さらに、これ
を予想される目付量範囲の全てについて求めれば、ある
目付量からの目付量毎のX線回折特性の測定値の変化量
が明らかになるので、X線回折特性の測定値の変化量が
目付量を変数としてもとまるのである。従って、全目付
量範囲における真の合金化度の関数(Y)は、ある目付
量における真の合金化度を表わす関数 {f(I)}と目付量(M)とを変数として、 Y=F〔{f(I)},M〕…(2) で表わされ、さらにMはIα−Feを変数として表わされ
るから、 Y=F〔{f(I), f(Iα−Fe)}〕…(3) となる。(3)式はまた、 Y=f(I,Iα−Fe)…(4) で表わせるから、全目付量範囲における真の合金化度
は、η相およびFe−Zn合金相のX線回折特性の測定値と
α−FeのX線回折特性の測定値とを変数として用いるこ
とによって求め得ることが判る。
Further, as described above, in order to measure the true alloying degree by the X-ray diffraction method, it is necessary to appropriately correct the error due to the variation of the basis weight, but fortunately, as described above, Since the measured value of the X-ray diffraction characteristic of α-Fe can be obtained as a variable, the relationship between the true alloying degree and the measured value of the X-ray diffraction characteristic can be obtained for a certain basis weight, and this can be predicted. If it is calculated for all the area weights, the amount of change in the measured value of the X-ray diffraction characteristic for each amount of weight from the certain amount of weight becomes clear. It comes as a variable. Therefore, the function (Y) of the true alloying degree in the entire basis weight range is defined by using a function {f (I S )} representing the true degree of alloying in a certain basis weight and a basis weight (M) as variables. = F [{f (I S )}, M] (2), and M is represented by I α-Fe as a variable, Y = F [{f (I S ), f (I α-Fe )}] ... (3). (3) also, Y = f (I S, I α-Fe) ... from expressed in (4), the true Fe content in the total basis weight range of η phase and Fe-Zn alloy phase X It can be seen that it can be obtained by using the measured value of the line diffraction characteristic and the measured value of the X-ray diffraction characteristic of α-Fe as variables.

なお、目付量を非破壊連続的に測定する方法として、蛍
光X線およびRIを用いて測定する方法などがあり、こ
れらによる測定値を変数として真の合金化度を求める方
法も考えられるが、本発明者等の研究によれば、これら
の方法は、目付量の測定誤差が大きいこと、およびX線
回折測定装置以外に全く別の測定装置をも必要とするこ
となど、測定精度上および経済上の不利益が伴うことが
判っている。
As a method of continuously measuring the basis weight in a nondestructive manner, there is a method of measuring using fluorescent X-rays and RI, and a method of obtaining the true alloying degree by using the measured values as variables can be considered. According to the research conducted by the present inventors, these methods have a large measurement error of the basis weight and require a completely different measuring device in addition to the X-ray diffraction measuring device. It is known that the above disadvantages are involved.

以下、本発明を実施例につき具体的に説明する。Hereinafter, the present invention will be specifically described with reference to examples.

連続溶融亜鉛めっきラインにおいて、板厚0.4〜1.6mmの
鋼板をラインスピード50〜120m/min、めっき浴
中Al濃度0.12〜0.18重量%のめっき浴を通過させ、ガス
ジェット目付量調整装置により目付量を18〜120g
/m2(片面)の範囲の亜鉛めっきを施した直後に、炉温
650〜1000℃のガス加熱の加熱処理炉で連続的に
加熱処理を行い、合金化亜鉛めっき鋼板を製造するライ
ンにおいて、加熱処理炉の後工程に本発明によるX線回
折装置を設置して、α−Fe、η相、ζ相、δ相および
Γ相について、X線回折特性としてピーク高さ(強
度)、山の面積および半価幅とを連続的に測定し、η
相、ζ相、δ相およびΓ相のうちから選んだ一つ以上
の相のX線回折特性の測定値を変数とし、さらにα−Fe
のX線回折特性の測定値をも変数として加えた場合(本
発明の方法)と、加えない場合(従来の方法)との合金
化度を測定し、この2種の合金化度測定値を真の合金化
度と比較した。
In a continuous hot-dip galvanizing line, a steel sheet with a plate thickness of 0.4 to 1.6 mm is passed through a plating bath with a line speed of 50 to 120 m / min and an Al concentration of 0.12 to 0.18 wt% in the plating bath, and a basis weight is adjusted by a gas jet basis weight adjusting device. 18-120g
Immediately after galvanizing in the range of / m 2 (one side), in a line for producing an alloyed galvanized steel sheet by continuously performing heat treatment in a gas heating heat treatment furnace at a furnace temperature of 650 to 1000 ° C., The X-ray diffractometer according to the present invention was installed in the post-process of the heat treatment furnace, and the peak height (strength), peaks, and peaks were obtained as X-ray diffraction characteristics for α-Fe, η phase, ζ phase, δ 1 phase, and Γ phase. Area and half width are measured continuously and η
Of the X-ray diffraction characteristics of one or more phases selected from the phase, ζ phase, δ 1 phase and Γ phase, and α-Fe
Of the X-ray diffraction characteristics of (2) was added as a variable (the method of the present invention) and not added (the conventional method) to measure the alloying degree. Compared with the true alloying degree.

第4図は真の合金化度(化学分析による鉄濃度%)とピ
ーク高さを測定して求めた合金化度測定値との関係を示
す。同図から、Γ相のX線回折特性の測定値と目付量と
をそれぞれ変数として求めた本発明による合金化度測定
値(図中●印)、η相のX線回折特性と目付量とをそれ
ぞれ変数として求めた本発明による合金化度測定値(図
中▲印)、同じくζ相のX線回折特性と目付量とをそれ
ぞれ変数として求めたもの(図中△印)、およびη相の
X線回折特性/δ相のX線回折特性の比と目付量とを
それぞれ変数として求めた本発明による合金化度測定値
(図中○印)のそれぞれは、真の合金化度と1対1の対
応があることが明確であり、本発明の方法は真の合金化
度を示していることが判る。一方、α−FeのX線回折特
性を変数とせず、η相のX線回折特性/δ相のX線回
折特性だけを変数として求めた場合では、目付量が90
g/m2〔図中曲線(II)上の□印〕と目付量が30g/
m2〔図中曲線(III)上の■印〕とで合金化度測定値が
著しく異なり、しかも真の合金化度が示されていないこ
とが判る。なお、第4図曲線(I)上の各プロット点で
の目付量は、18〜120g/m2の範囲にある無作為に
選出されたものである。
FIG. 4 shows the relationship between the true alloying degree (iron concentration% by chemical analysis) and the measured alloying degree obtained by measuring the peak height. From the same figure, the alloying degree measurement value (marked by ● in the figure) according to the present invention obtained by using the measured value and the basis weight of the X-ray diffraction characteristic of the Γ phase as variables, the X-ray diffraction characteristic of the η phase and the basis weight Values of the alloying degree according to the present invention (marked with ▲ in the figure), the X-ray diffraction characteristics of the ζ phase and the weight per unit area (marked with △ in the figure), and the η phase. X-ray diffraction characteristics / δ 1- phase X-ray diffraction characteristics ratio and basis weight were obtained as variables, and the measured alloying degree values (circle in the figure) according to the present invention are the true alloying degree and It is clear that there is a one-to-one correspondence, indicating that the method of the present invention exhibits a true degree of alloying. On the other hand, when the X-ray diffraction characteristic of α-Fe is not used as a variable and only the X-ray diffraction characteristic of the η phase / the X-ray diffraction characteristic of the δ 1 phase is obtained as a variable, the basis weight is 90
g / m 2 [□ on the curve (II) in the figure] and the basis weight is 30 g /
It can be seen that the measured alloying degree is markedly different from that of m 2 [marked by ■ on the curve (III) in the figure], and the true alloying degree is not shown. The basis weight at each plot point on the curve (I) in FIG. 4 was randomly selected within the range of 18 to 120 g / m 2 .

また、X線回折特性として山の面積および半価幅を用い
た場合においても、上述のピーク高さを用いた場合と同
様に、本発明によれば目付量18〜120g/m2(片
面)の範囲において真の合金化度を求め得ることが確認
された。
Further, even when the peak area and the half width are used as the X-ray diffraction characteristics, the basis weight is 18 to 120 g / m 2 (one side) according to the present invention, as in the case of using the above-mentioned peak height. It was confirmed that the true degree of alloying can be obtained in the range of.

さらに本発明の手法により測定した合金化度を連続的に
加熱処理炉の雰囲気温度制御にフィードバックして合金
化度を制御したところ、目的とする合金化度に常に正確
にコントロールすることが可能であることも確認した。
Furthermore, when the alloying degree measured by the method of the present invention is continuously fed back to the atmospheric temperature control of the heat treatment furnace to control the alloying degree, it is possible to always accurately control the desired alloying degree. I also confirmed that there is.

ただし、本発明に述べるX線回折特性の測定に際して
は、第5図に示すように、バックグランドGからのピー
ク高さ(a)、山の面積(斜線部、b)およびピーク高
さの2分の1(a/2)における山の幅を半価幅(c)
とした。
However, when measuring the X-ray diffraction characteristics described in the present invention, as shown in FIG. 5, the peak height (a) from the background G, the peak area (hatched portion, b) and the peak height 2 The width of the mountain in 1 / (a / 2) is the half width (c)
And

【図面の簡単な説明】[Brief description of drawings]

第1図は合金化度を変化させた場合のめっき層中Zn−Fe
合金組成の変化を示す線図的断面図、第2図は同一合金
相組成であるが目付量の異なる3つの合金化亜鉛めっき
鋼板についてX線回折を行なった場合のX線の物理学的
挙動を説明する図、第3図はX線回折特性の測定値と目
付量の関係を示す図、第4図は真の合金化度と合金化度
測定値との関係を示す図、第5図はX線回折特性の測定
を説明するための図である。
Figure 1 shows Zn-Fe in the plating layer when the alloying degree is changed.
Fig. 2 is a diagrammatic sectional view showing changes in alloy composition, and Fig. 2 shows physical behavior of X-rays when X-ray diffraction is performed on three alloyed galvanized steel sheets having the same alloy phase composition but different basis weights. FIG. 3 is a diagram showing the relationship between the measured value of the X-ray diffraction characteristics and the basis weight, FIG. 4 is a diagram showing the relationship between the true alloying degree and the measured alloying degree, FIG. FIG. 4 is a diagram for explaining measurement of X-ray diffraction characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤永 忠男 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 安部 忠廣 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究所内 (56)参考文献 特開 昭60−58537(JP,A) 特公 昭58−47659(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadao Fujinaga 1st Kawasaki-cho, Chiba-shi, Chiba Research Institute of Kawasaki Steel Co., Ltd. (72) Inventor Tadahiro Abe 1st Kawasaki-cho, Chiba-shi Kawasaki Steel Co., Ltd. In-house (56) References JP-A-60-58537 (JP, A) JP-B-58-47659 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】合金化亜鉛めっき鋼板の合金化度であるF
e濃度を測定するに際し、該合金化亜鉛めっき鋼板のめ
っき層中のη相、ζ相、δ相、およびΓ相のうちから
選ばれた一つ以上の相と、前記めっき鋼板素地のα−F
eとをそれぞれX線回折方法によりX線回折特性として
ピーク高さ、面積、または半価値を測定し、前記相およ
びめっき目付量補正するために前記α−FeのX線回折
特性測定値を変数として、めっき目付量が18〜120
g/m2の範囲における合金化亜鉛めっき鋼板の合金化度
を測定することを特徴とする合金化亜鉛めっき鋼板の合
金化度の測定方法。
1. A degree of alloying of a galvannealed steel sheet, F.
When measuring the e concentration, one or more phases selected from the η phase, the ζ phase, the δ 1 phase, and the Γ phase in the plating layer of the alloyed galvanized steel sheet and the α of the plated steel sheet base material. -F
The peak height, the area, or the half-value are measured as X-ray diffraction characteristics by the X-ray diffraction method, respectively, and the measured X-ray diffraction characteristics of α-Fe are used as variables to correct the phase and the coating weight. The coating weight is 18 to 120
A method for measuring the degree of alloying of an alloyed galvanized steel sheet, which comprises measuring the degree of alloying of an alloyed galvanized steel sheet in the range of g / m 2 .
JP59024095A 1984-02-10 1984-02-10 Measuring method of alloying degree of galvannealed steel sheet Expired - Lifetime JPH068791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024095A JPH068791B2 (en) 1984-02-10 1984-02-10 Measuring method of alloying degree of galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024095A JPH068791B2 (en) 1984-02-10 1984-02-10 Measuring method of alloying degree of galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JPS60169553A JPS60169553A (en) 1985-09-03
JPH068791B2 true JPH068791B2 (en) 1994-02-02

Family

ID=12128814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024095A Expired - Lifetime JPH068791B2 (en) 1984-02-10 1984-02-10 Measuring method of alloying degree of galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JPH068791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034089A1 (en) * 2016-08-17 2018-02-22 Jfeスチール株式会社 Method for measuring alloying degree and/or plating coating amount of zinc-plated steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081658A (en) * 1989-03-30 1992-01-14 Nkk Corporation Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
AT397815B (en) * 1992-03-31 1994-07-25 Voest Alpine Ind Anlagen METHOD FOR GALVANIZING A TAPE AND SYSTEM FOR IMPLEMENTING THE METHOD
JP5899892B2 (en) * 2011-12-16 2016-04-06 Jfeスチール株式会社 Reliability monitoring apparatus and reliability monitoring method for continuous hot dip galvanizing equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847659A (en) * 1981-09-17 1983-03-19 Kamizaki Kokyu Koki Seisakusho Kk Speed change unit of mobile working vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034089A1 (en) * 2016-08-17 2018-02-22 Jfeスチール株式会社 Method for measuring alloying degree and/or plating coating amount of zinc-plated steel sheet
JP2018028125A (en) * 2016-08-17 2018-02-22 Jfeスチール株式会社 Method for measuring alloying degree and/or plating coating weight of galvanized steel sheet
CN109563606A (en) * 2016-08-17 2019-04-02 杰富意钢铁株式会社 The alloying degree and/or plating of galvanized steel plain sheet adhere to quantity measuring method
CN109563606B (en) * 2016-08-17 2021-08-27 杰富意钢铁株式会社 Method for measuring alloying degree and/or plating adhesion amount of galvanized steel sheet

Also Published As

Publication number Publication date
JPS60169553A (en) 1985-09-03

Similar Documents

Publication Publication Date Title
KR0159783B1 (en) System for making an on-line determination of degree of alloying in galvannealed steel sheets
CA1052479A (en) Method of measuring the degree of alloying of galvannealed steel sheets
JPH068791B2 (en) Measuring method of alloying degree of galvannealed steel sheet
JP2745428B2 (en) X-ray diffraction method for evaluating the processing performance of alloyed zinc plated steel sheets for high processing
JPH04202633A (en) Production of hot-dip galvanized sheet of high tensile strength steel with high si content
JPH0933455A (en) Method for measuring alloyed degree of alloying plated layer
JP2542906B2 (en) Method for measuring alloying degree of galvannealed steel sheet by X-ray diffraction method
JP2745427B2 (en) Method for evaluating drawability of alloyed zinc-coated steel sheet by X-ray diffraction method
JP2708257B2 (en) Method for measuring phase thickness of galvannealed steel sheet
JPH0333202B2 (en)
JP3114108B2 (en) Measuring method of alloying degree of alloyed zinc coated steel sheet
JP3221547B2 (en) Measuring method of zinc adhesion on galvannealed steel sheet
JP2707865B2 (en) Method of measuring alloying degree of alloyed galvanized layer
JP2534834B2 (en) Manufacturing method of alloyed galvanized steel sheet
JPS6058537A (en) Method for determining quantity of plating for plated fe-zn alloy steel plate
JPH0695081B2 (en) Method for measuring iron concentration in galvannealed steel sheet during plating
JP2002105613A (en) Method for manufacturing galvannealed steel sheet having excellent surface smoothness
JPH09152409A (en) Method of judging degree of alloying for alloyed zinc plated steel plate
JPS646269B2 (en)
JPH0232348B2 (en) GOKINKAYOJUAENMETSUKIKOHANNOMETSUKIFUCHAKURYOSOKUTEIHOHO
JPH09159428A (en) Method for measuring deposition quantities of mg, and surface layer zn of zn-mg based plated steel plate
JPS6259844A (en) Method for measuring degree of alloying of alloyed and hot dip zinc coated steel sheet
JPH0544007A (en) Method for controlling alloying degree of galvannealed steel sheet
JPH0435028B2 (en)
JPH0440655B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term