JPS6259844A - Method for measuring degree of alloying of alloyed and hot dip zinc coated steel sheet - Google Patents

Method for measuring degree of alloying of alloyed and hot dip zinc coated steel sheet

Info

Publication number
JPS6259844A
JPS6259844A JP20074185A JP20074185A JPS6259844A JP S6259844 A JPS6259844 A JP S6259844A JP 20074185 A JP20074185 A JP 20074185A JP 20074185 A JP20074185 A JP 20074185A JP S6259844 A JPS6259844 A JP S6259844A
Authority
JP
Japan
Prior art keywords
alloying
degree
diffraction
steel sheet
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20074185A
Other languages
Japanese (ja)
Inventor
Toshio Nakamori
中森 俊夫
Atsuyoshi Shibuya
澁谷 敦義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20074185A priority Critical patent/JPS6259844A/en
Publication of JPS6259844A publication Critical patent/JPS6259844A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the degree of alloying with high accuracy over a wide range by measuring the peak intensity or diffraction intensity of the diffraction rays with the two different index plane at a delta1-FeZn7 phase and determining the degree of alloying in accordance with the measured value thereof. CONSTITUTION:X-rays are projected on an alloyed and hot dip zinc coated steel sheet and the peak intensities of the diffraction rays at d=2.419Angstrom and d=2.398Angstrom of the detected diffraction rays are measured. The ratio between both measured values is determined. The diagram indicating the relation among the content of Fe in the plating layer, an alloying treatment temp. and the peak intensity of the diffraction ray is preliminarily formed. The content of Fe in the plating layer is calculated in accordance with the value of the ratio between both measured values and the formed diagram. The degree of alloying is thus measured with the high accuracy regardless of the degree of alloying.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は合金化熔融亜鉛めっき鋼板の合金化度を、その
合金化度に拘わらず高精度にて測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet with high accuracy regardless of the degree of alloying.

〔従来技術〕[Prior art]

連続熔融亜鉛めっきプロセスにおいては、めっき槽上部
に加熱炉を設けて鋼板上のめっき層の組織を、Fe−Z
nの全居間化合物を形成するように拡散変態させる、所
謂合金化処理が広く採用されており、このプロセスによ
り合金化熔融亜鉛めっき鋼板が製造される。
In the continuous hot-dip galvanizing process, a heating furnace is installed at the top of the plating tank to change the structure of the plating layer on the steel plate into Fe-Z
The so-called alloying process, which involves diffusion transformation to form a total compound of n, is widely used, and alloyed hot-dip galvanized steel sheets are produced by this process.

斯かる合金化熔融亜鉛めっき鋼板は、溶接性。Such alloyed hot-dip galvanized steel sheets are weldable.

塗膜との親和性の点で優れた特性を有するが、合金化処
理されためっき層が延性の小さい金属間化合物であるた
め、絞り加工、圧縮変形が加えられると、パウダリング
と呼ばれるめっき層の層内剥離・破壊が生じやすい欠点
がある。
Although it has excellent properties in terms of compatibility with the coating film, the alloyed plating layer is an intermetallic compound with low ductility, so when drawing or compressive deformation is applied, the plating layer becomes powdered. It has the disadvantage of being prone to intralayer peeling and destruction.

上記パウダリングの発生率tよ主としてめっき層の合金
化度、つまりめっき層中の平均Fe含有率に依存し、ま
ためっき層中のAI!量、めっき層厚。
The occurrence rate t of the powdering described above mainly depends on the degree of alloying of the plating layer, that is, the average Fe content in the plating layer, and the AI in the plating layer! quantity, plating layer thickness.

合金化処理温度の副次的な要因に依ることが従来より知
られている。
It has been known that this depends on secondary factors such as the alloying temperature.

そして、パウダリングの防止には、合金化処理温度が一
定であれば合金化度の低い方が良好であるので、合金化
度を必要なレベルまでに抑制、管理することがプロセス
上必要である。このため合金化度を測定する手段として
X線回折方法を用いて金属間化合物における回折線の強
度又は適当な強度化を用いる方法が提案されζいる(特
公昭56−33464号、特開昭59−46543号)
In order to prevent powdering, it is better to have a lower degree of alloying as long as the alloying temperature is constant, so it is necessary in the process to suppress and manage the degree of alloying to the required level. . For this reason, a method has been proposed that uses X-ray diffraction to measure the intensity of diffraction lines in intermetallic compounds or appropriate strengthening as a means of measuring the degree of alloying (Japanese Patent Publication No. 56-33464, Japanese Unexamined Patent Publication No. 59/1989). -46543)
.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、本発明者等が調査した結果に依れば、前記プ
ロセスにて製造される合金化熔融亜鉛めっき鋼板のめっ
き層は、めっき層中の平均Fe含有率が10〜14%で
はδ1相を主としたものであり、合金化処理不足の場合
にはδ1相+i相(Zn相)、過度の場合にはδ1相十
r相(又は立方晶化合物)となることが判明した。そし
て、Fe−Zn系の状態図から判断するところでは、合
金化過程でζ相が形成される筈であるが、実際には、ζ
相は稀にした検出されない。これは、ζ相が存在する上
限温度が480℃付近であって、ζ相を生成させるた−
めには合金化処理条件が温度:480℃9時間:30〜
60秒程度を必要とし、このような条件は生産性を重視
した一般的な製造ラインでは実現できないからである。
By the way, according to the results of investigation by the present inventors, the plating layer of the alloyed hot-dip galvanized steel sheet manufactured by the above process has a δ1 phase when the average Fe content in the plating layer is 10 to 14%. It has been found that if the alloying treatment is insufficient, the δ1 phase + i phase (Zn phase) is formed, and if the alloying treatment is excessive, the δ1 phase + r phase (or cubic compound) is formed. Judging from the phase diagram of the Fe-Zn system, the ζ phase should be formed during the alloying process, but in reality, the ζ
Phases are rarely detected. This is because the upper limit temperature at which the ζ phase exists is around 480°C, and the ζ phase is generated.
The alloying treatment conditions are temperature: 480°C, 9 hours: 30~
This is because it requires about 60 seconds, and such conditions cannot be realized on a general manufacturing line that emphasizes productivity.

前記特公昭56−33464号の測定方法は、結晶格子
面間隔d=1.26人のζ相の回折強度とd=1.26
人のδ、相の回折強度との比を用い°ζ合金化度を測定
する方法であり、ζ相が出現する480℃以下で合金化
処理された合金化熔融亜鉛めっき鋼板の合金化度の測定
に有効と思えるが、実用的な480℃以上で合金化処理
を行ったものに対してはd=1.26人のζ相の回折線
のS/Nが小さく測定精度上難点がある。
The measurement method of the above-mentioned Japanese Patent Publication No. 56-33464 is based on the diffraction intensity of the ζ phase of the crystal lattice spacing d=1.26 and the
This is a method to measure the degree of alloying in alloyed galvanized steel sheets that are alloyed at temperatures below 480°C, where the ζ phase appears. Although it seems to be effective for measurement, the S/N of the diffraction line of the ζ phase of d=1.26 is small for those subjected to practical alloying treatment at 480° C. or higher, which poses a problem in terms of measurement accuracy.

また、特開昭59−46543号の測定方法は、d=2
.14人の61相の回折強度r  (d=2.14人)
とd=2.09人のη相の回折強度r  (d=2.0
9人)の比1  (d=2.14人) / I  (d
=2.09人)を用いて夕1定する方法であり、η相が
残留する合金化処理不足材については測定可能であるが
、めっき層中のFe含有率が10%以上のものに対して
は第5図に示すように上記比が略一定値となり、測定不
可能となる。また、d=2.09人の回折線の解釈につ
いても問題がある。
Moreover, the measurement method of JP-A No. 59-46543 is d=2
.. Diffraction intensity r of 61 phases for 14 people (d=2.14 people)
and the diffraction intensity r of the η phase of d=2.09 people (d=2.0
9 people) ratio 1 (d=2.14 people) / I (d
= 2.09 people), and it is possible to measure unalloyed materials where the η phase remains, but it is difficult to measure when the Fe content in the plating layer is 10% or more. In this case, as shown in FIG. 5, the above ratio becomes a substantially constant value and becomes impossible to measure. There is also a problem with the interpretation of the diffraction line of a person with d=2.09.

即ちこの方法におい“Cはd =2.09人の回折線を
η(101)におけるものと解釈しており、I  (d
=2.14人) / I  (d=2.09人)の値は
Pe含有率が10〜17%の間で略一定値を示し、約4
となるため、この場合には相当過度な合金化処理状態ま
でη相が存在することになる。しかし、本発明者等の知
見するところではδ1 (24・1)とη (10−1
)の回折線はオーバーラツプし°ζおり、d=2.09
人の回折線は合金化度が低い材料ではη (10・1)
におけるものであるが、めっき層中のFe含有率が10
%以上の材料ではδI  (24−1)の回折線を示す
ものであって、それ故にこの方法は、理論点に一貫性を
欠いている。
That is, in this method, "C interprets the diffraction line of d = 2.09 person as that at η (101), and I (d
= 2.14 people) / I (d = 2.09 people) shows a nearly constant value when the Pe content is between 10 and 17%, and is about 4
Therefore, in this case, the η phase will exist up to a considerably excessive alloying state. However, according to the knowledge of the present inventors, δ1 (24・1) and η (10−1
) diffraction lines overlap °ζ, d=2.09
The human diffraction line is η (10・1) for materials with low alloying degree.
However, when the Fe content in the plating layer was 10
% or more of the material exhibits a diffraction line of δI (24-1), and therefore this method lacks consistency in theoretical points.

このように従来方法は、2種類の相の回折強度比を用い
ているため、その通用領域が狭く、或いは測定精度が低
く、オフラインでの測定であっても実用性が低かった。
As described above, since the conventional method uses the diffraction intensity ratio of two types of phases, its applicable range is narrow or the measurement accuracy is low, and even offline measurement is impractical.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる事情に鑑みてなされたものであり、実用
的な成品のめっき層の主相たるδ1相の異なる2指数面
の回折強度比を用いるごとにより、合金化度を広範囲に
亘って高精度で測定できる合金化熔融亜鉛めっき鋼板の
合金化度測定方法を提供することを目的とりる。
The present invention has been made in view of the above circumstances, and uses the diffraction intensity ratio of two different index planes of the δ1 phase, which is the main phase of the plating layer of a practical product, to vary the degree of alloying over a wide range. The purpose of this invention is to provide a method for measuring the degree of alloying of an alloyed galvanized steel sheet that can be measured with high accuracy.

本発明に係る合金化溶融亜鉛めっき鋼板の合金化度測定
方法は、熔融亜鉛めっき鋼板に合金化処理を施してめっ
き層を合金化した合金化熔融亜鉛めっき鋼板の合金化度
をX線回折法にて測定する方法において、δ、−FeZ
n7相における異なる2つの指数面での回折線のピーク
強度及び/又は回折強度を測定し、この測定値に基づき
合金化度を求めることを特徴とする。
The method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet according to the present invention is to measure the degree of alloying of an alloyed hot-dip galvanized steel sheet, which is obtained by subjecting a hot-dip galvanized steel sheet to alloying treatment and alloying the plating layer, using an X-ray diffraction method. In the method of measuring δ, -FeZ
It is characterized by measuring the peak intensity and/or diffraction intensity of diffraction lines on two different index planes in the n7 phase, and determining the degree of alloying based on the measured values.

〔実施例〕〔Example〕

以下本発明を具体的に説明する。合金化溶融亜鉛めっき
鋼板にX線(この場合はCOに、)を照射すると第1図
に示す如き複数の回折線が検出され、そのうちd =2
.419人のδ、(14・0)における回折線のピーク
強度1(d・2.419人)と、d−2,398人のδ
、(14・3)における回折線のピーク強度l(d・2
.398人)とを測定し、再測定値の比I  (d=2
.419人) / I (d=2.398人)を求める
。なお、第1図は横軸に2θ(度)及びd(人)をとり
、縦軸に回折線の強度をとっている。
The present invention will be specifically explained below. When an alloyed hot-dip galvanized steel sheet is irradiated with X-rays (in this case, CO), multiple diffraction lines as shown in Figure 1 are detected, among which d = 2.
.. δ of 419 people, peak intensity of diffraction line at (14・0) 1 (d・2.419 people) and δ of d-2,398 people
, (14・3), the peak intensity of the diffraction line l(d・2
.. 398 people), and the ratio of remeasured values I (d=2
.. 419 people) / I (d=2.398 people). In FIG. 1, the horizontal axis shows 2θ (degrees) and d (person), and the vertical axis shows the intensity of the diffraction line.

ところで、一般に合金化熔融亜鉛めっき鋼板の被覆層に
形成されるδH−FeZn7は、特定の選択配向性を持
たない、即ち粉末結晶の回折に近いプロフィールを示す
が、合金化度の変動に基づいて若干の配向性の変化が生
じている。
By the way, δH-FeZn7, which is generally formed in the coating layer of alloyed hot-dip galvanized steel sheets, does not have a specific preferred orientation, that is, it shows a profile close to the diffraction of powder crystals. A slight change in orientation has occurred.

このため、求められた比I (d=2.419人)/I
(d−2,398人)と、めっき層中のFe含有率及び
パウダリング量との間には夫々第2図、第3図に示す関
係がある。
Therefore, the ratio I (d=2.419 people)/I
(d-2,398 people), the Fe content in the plating layer, and the powdering amount have the relationships shown in FIGS. 2 and 3, respectively.

第2図は横軸にI(d・2.419人) / I (d
=2.398人)をとり、縦軸にめっき層中のFe含有
率(wt%)をとって、両者の関係を合金化処理温度別
に示したグラフであり、・印、O印、○印は夫々合金化
処理温度が600℃、550℃、500℃の場合の測定
結果を示す。なお、合金化溶融亜鉛めっき鋼板は、厚み
0.4鰭の鋼板に片面当たり42 g/la2のZnを
めっきした後、合金化処理を受けている。またX線回折
の条件は、ターゲット:Co、フィルター: Fe。
In Figure 2, the horizontal axis is I (d・2.419 people) / I (d
= 2.398 people), and the vertical axis is the Fe content (wt%) in the plating layer, and the graph shows the relationship between the two according to the alloying treatment temperature. show the measurement results when the alloying treatment temperatures were 600°C, 550°C, and 500°C, respectively. Note that the alloyed hot-dip galvanized steel sheet is obtained by plating a steel sheet with a thickness of 0.4 fin with 42 g/la2 of Zn per side, and then subjecting it to alloying treatment. The conditions for X-ray diffraction are: target: Co, filter: Fe.

X線管球の電圧:30にシ、X線管球の電流: 100
mA。
X-ray tube voltage: 30, X-ray tube current: 100
mA.

ゴリオメータの回転速度:2dag/分であり、まため
っき層中のFe含有率はインヒビターを入れた塩酸にて
めっき層を熔解したのち原子吸光法により分析を行った
結果を用いCいる。
The rotation speed of the goliometer was 2 dag/min, and the Fe content in the plating layer was determined using the results of melting the plating layer with hydrochloric acid containing an inhibitor and then analyzing it by atomic absorption spectrometry.

この図より理解される如く、比I (d=2.419人
)/ I (d=2.398人)の値が大きくなる程、
同様の割合で合金化度が大きくなる。つまりこの比の値
はめっき層中のFe含有率の変化に応じて路線形の変化
を示す。
As can be understood from this figure, the larger the value of the ratio I (d=2.419 people)/I (d=2.398 people), the more
The degree of alloying increases at a similar rate. In other words, the value of this ratio indicates a change in the line shape according to a change in the Fe content in the plating layer.

第3図は横軸にI (d=2.419人) / I (
d=2.398人)をとり、縦軸にパウダリング量(l
Ig)をとって、両者の関係を合金化処理温度を変えて
示したグラフであり、・印、O印、○印は夫々合金化処
理温度が600℃、550℃、500℃の場合の測定結
果を示す。なお、パウダリング量の測定は、合金化熔融
亜鉛めっき鋼板より601mφの円形試験片を打抜いて
これを平底の径が26鶴φでフランジ幅が略0になる迄
の円筒絞りを行い、円筒成形品の側面のめっき層を粘着
テープにて剥がし、成形品の重量変化により行っている
In Figure 3, the horizontal axis shows I (d=2.419 people) / I (
d = 2.398 people), and the powdering amount (l
This is a graph showing the relationship between the two by changing the alloying temperature, and the *, O, and ○ marks are measurements taken at alloying temperatures of 600°C, 550°C, and 500°C, respectively. Show the results. The amount of powdering was measured by punching out a 601 mφ circular test piece from an alloyed hot-dip galvanized steel plate and drawing it into a cylinder until the flat bottom diameter was 26 mm and the flange width was approximately 0. This is done by peeling off the plating layer on the side of the molded product using adhesive tape and changing the weight of the molded product.

この図より理解される如く、高温で合金化処理した場合
、つまり高速拡散した場合には、同一のめっき層中のF
e含有率であっても、低温で合金化処理した場合よりも
耐パウダリング性が低下する。
As can be understood from this figure, when alloying is performed at high temperatures, that is, when diffusion occurs at high speed, F in the same plating layer
Even at the e content, the powdering resistance is lower than when alloying is performed at a low temperature.

従って、合金化処理温度と第2図に示す関係とがわかっ
ていれば、本発明による場合はI  (d−2,419
人) / T (d−2,398人〉を求めることによ
りめっき層中のFe含有率つまり合金化度を、その合金
化度の程度に拘わらず高精度に測定でき、更には第3図
に示す関係がわかっていればパウダリング特性を判定で
きる。
Therefore, if the alloying temperature and the relationship shown in FIG. 2 are known, in the case of the present invention I (d-2,419
By determining the Fe content in the plating layer, that is, the degree of alloying, regardless of the degree of alloying, it is possible to measure the Fe content in the plating layer with high accuracy, regardless of the degree of alloying. If the relationship shown is known, the powdering characteristics can be determined.

なお、上記実施例ではd =2.419人のδ1(14
・0)とd =2.398人のδ1 (14・3)とに
おける2つの回折強度を測定しているが、前述のように
配向性が変化するので本発明はこれに限らず配向性の変
化が比較的顕著に現れるd =2.554Å〜2.31
8人の面間隔を有する2つの面における回折強度を測定
しても実施できることは勿論である。例えばd=2.4
19人のδl (14・0)とd =2.347人のδ
1(↓4・6)とにおける回折線のピーク強度を測定し
、再測定値の比を求める方法によってもよい。
In addition, in the above example, d = 2.419 people δ1 (14
Although the two diffraction intensities are measured at 0) and δ1 (14.3) of d = 2.398 people, the present invention is not limited to this, as the orientation changes as described above. Changes are relatively noticeable d = 2.554 Å ~ 2.31
It goes without saying that this can also be carried out by measuring the diffraction intensity on two planes having a spacing of 8 people. For example d=2.4
δl (14・0) of 19 people and δ of d = 2.347 people
1 (↓4・6) and a method of measuring the peak intensities of the diffraction lines and calculating the ratio of the remeasured values may be used.

第4図は上記方法により比を求めたときのその比とめっ
き層中のFe含有率との関係を示すグラフであり、・印
、■印、Q印は夫々台金化処理温度が600℃、550
°C,500℃の場合の測定結果を示す。この図より理
解される如く比の値がめつき層の合金化度の増加に伴っ
゛ζ増加しており、またこの比が前同様合金化処理温度
の影馨を受けるので、この方法による場合にも合金化度
及びパウダリング特性を前同様に測定できる。
FIG. 4 is a graph showing the relationship between the ratio determined by the above method and the Fe content in the plating layer, where the marks ・, ▪, and Q indicate the base metal forming treatment temperature of 600°C, respectively. , 550
The measurement results at 500°C and 500°C are shown. As can be understood from this figure, the value of the ratio increases with the increase in the degree of alloying of the plated layer, and this ratio is affected by the alloying temperature as before, so when using this method, The degree of alloying and powdering properties can also be measured in the same way as before.

なお、上記説明では回折線のピーク強度の比を測定して
合金化度等を検出しているが、本発明はこれに限らず回
折線の積分強度の比を測定しても実施できることは勿論
である。
In the above explanation, the degree of alloying, etc. is detected by measuring the ratio of peak intensities of diffraction lines, but the present invention is not limited to this, and it goes without saying that the present invention can also be carried out by measuring the ratio of integrated intensities of diffraction lines. It is.

また、本発明は上記説明のδ、(hki)に限らず他の
面指数において回折線のピーク強度又は積分強度を測定
することによっても同様に実施できる。例えばd =2
.542人に対応する面指数は(23・O) 、 (2
3・l) 、 (23・2) 、 (04・9)等が存
在し、上記説明での面指数は複数の面指数のうち比較的
低次のものを例示している。
Furthermore, the present invention is not limited to δ and (hki) as explained above, but can be similarly implemented by measuring the peak intensity or integrated intensity of the diffraction line at other surface indices. For example d = 2
.. The area index corresponding to 542 people is (23・O), (2
3.l), (23.2), (04.9), etc., and the plane index in the above explanation is a relatively low-order plane index among the plurality of plane indexes.

尚、δ、相の結晶面間隔dは、熱処理条件1合金化度に
よって僅かではあるが変動することが知られているとお
り、本明細書に示したd値は±0.005〜±0.01
人の変動を伴うものである。
As it is known that δ and the crystal plane spacing d of the phase vary slightly depending on the heat treatment conditions 1 and the degree of alloying, the d values shown in this specification are ±0.005 to ±0. 01
It is accompanied by fluctuations in people.

〔効果〕〔effect〕

以上詳述した如く本発明による場合は、合金化熔融亜鉛
めっき鋼板のめっき層の生たる構成相たるδ1−FeZ
n7相での異なる面における回折線のピーク強度又は積
分強度の比を求め、その求めた値と予め求めているその
比と合金化度との関連性とに基づいて合金化度を測定す
るので、合金化度の程度に拘わらず広範囲かつ高精度な
合金化度の測定が可能であり、また予め求めている」−
記比とパウダリング量との関連性に基づきパウダリング
特性の判定もできる等、本発明は優れた効果を奏する。
As detailed above, in the case of the present invention, δ1-FeZ, which is the constituent phase of the plating layer of the alloyed hot-dip galvanized steel sheet,
The ratio of the peak intensity or integrated intensity of the diffraction lines on different planes in the n7 phase is determined, and the degree of alloying is measured based on the determined value and the relationship between the ratio determined in advance and the degree of alloying. Regardless of the degree of alloying, it is possible to measure the degree of alloying over a wide range and with high precision, and it can also be determined in advance.
The present invention has excellent effects such as being able to determine powdering characteristics based on the relationship between the recording ratio and the amount of powdering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回折線の検出チャート、第2図、第3図、第4
図は本発明の詳細な説明図、第5図は従来技術の問題説
明図である。
Figure 1 is a diffraction line detection chart, Figures 2, 3, and 4.
The figure is a detailed explanatory diagram of the present invention, and FIG. 5 is an explanatory diagram of problems in the prior art.

Claims (1)

【特許請求の範囲】 1、溶融亜鉛めっき鋼板に合金化処理を施してめっき層
を合金化した合金化溶融亜鉛めっき鋼板の合金化度をX
線回折法にて測定する方法において、δ_1−FeZn
_7相における異なる2つの指数面での回折線のピーク
強度及び/又は回折強度を測定し、この測定値に基づき
合金化度を求めることを特徴とする合金化溶融亜鉛めっ
き鋼板の合金化度測定方法。 2、前記回折線は夫々結晶格子面間隔が2.554Å〜
2.318Åであってδ_1−FeZn_7相の異なる
2つの指数面におけるものである特許請求の範囲第1項
記載の合金化熔融亜鉛めっき鋼板の合金化度測定方法。 3、前記回折線の一方は、結晶格子面間隔が2.419
Åであって指数面が(14・0)である場合のものであ
り、他方は結晶格子面間隔が 2.398Åであって指数面が(14・3)である場合
のものである特許請求の範囲第1項記載の合金化溶融亜
鉛めっき鋼板の合金化度測定方法。 4、前記回折線の一方は、結晶格子面間隔が2.419
Åであって指数面が(14・0)である場合のものであ
り、他方は結晶格子面間隔が 2.347Åであって指数面が(14・6)である場合
のものである特許請求の範囲第1項記載の合金化溶融亜
鉛めっき鋼板の合金化度測定方法。
[Claims] 1. The alloying degree of an alloyed hot-dip galvanized steel sheet obtained by subjecting a hot-dip galvanized steel sheet to alloying treatment to alloy the plating layer is X.
In the method of measuring by line diffraction method, δ_1-FeZn
Measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet, which is characterized by measuring the peak intensity and/or diffraction intensity of diffraction lines on two different index planes in the _7 phase, and determining the degree of alloying based on the measured values. Method. 2. The diffraction lines each have a crystal lattice spacing of 2.554 Å ~
The method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet according to claim 1, which is 2.318 Å in two different index planes of the δ_1-FeZn_7 phase. 3. One of the diffraction lines has a crystal lattice spacing of 2.419
Å and the index plane is (14·0), and the other is a patent claim in which the crystal lattice spacing is 2.398 Å and the index plane is (14·3). A method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet according to item 1. 4. One of the diffraction lines has a crystal lattice spacing of 2.419
Å and the index plane is (14·0), and the other is a patent claim in which the crystal lattice spacing is 2.347 Å and the index plane is (14·6). A method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet according to item 1.
JP20074185A 1985-09-10 1985-09-10 Method for measuring degree of alloying of alloyed and hot dip zinc coated steel sheet Pending JPS6259844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20074185A JPS6259844A (en) 1985-09-10 1985-09-10 Method for measuring degree of alloying of alloyed and hot dip zinc coated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20074185A JPS6259844A (en) 1985-09-10 1985-09-10 Method for measuring degree of alloying of alloyed and hot dip zinc coated steel sheet

Publications (1)

Publication Number Publication Date
JPS6259844A true JPS6259844A (en) 1987-03-16

Family

ID=16429396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20074185A Pending JPS6259844A (en) 1985-09-10 1985-09-10 Method for measuring degree of alloying of alloyed and hot dip zinc coated steel sheet

Country Status (1)

Country Link
JP (1) JPS6259844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473154A2 (en) * 1990-08-31 1992-03-04 Nisshin Steel Co., Ltd. System for making an on-line determination of degree of alloying in galvannealed steel sheets
WO2013161922A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
US9927378B2 (en) 2013-10-25 2018-03-27 Nippon Steel & Sumitomo Metal Corporation On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473154A2 (en) * 1990-08-31 1992-03-04 Nisshin Steel Co., Ltd. System for making an on-line determination of degree of alloying in galvannealed steel sheets
EP0473154A3 (en) * 1990-08-31 1993-03-24 Nisshin Steel Co., Ltd. System for making an on-line determination of degree of alloying in galvannealed steel sheets
WO2013161922A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
JP5403193B1 (en) * 2012-04-25 2014-01-29 新日鐵住金株式会社 Method and apparatus for measuring Fe-Zn alloy phase thickness of galvannealed steel sheet
US9417197B2 (en) 2012-04-25 2016-08-16 Nippon Steel & Sumitomo Metal Corporation Method of measuring thickness of Fe—Zn alloy phase of galvannealed steel sheet and apparatus for measuring the same
US9927378B2 (en) 2013-10-25 2018-03-27 Nippon Steel & Sumitomo Metal Corporation On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line

Similar Documents

Publication Publication Date Title
RU2445401C2 (en) STEEL MATERIAL WITH Mg-BASED ALLOY COATING
US5155751A (en) System for making an on-line determination of degree of alloying in galvannealed steel sheets
RU2009044C1 (en) Method of continuous coating of steel band by dipping and article from steel produced by this method
CA1052479A (en) Method of measuring the degree of alloying of galvannealed steel sheets
GB2110248A (en) Process for preparing hot-dip zinc-plated steel sheets
Wienströer et al. Zinc/Iron phase transformation studies on galvannealed steel coatings by X-ray diffraction
JPS6259844A (en) Method for measuring degree of alloying of alloyed and hot dip zinc coated steel sheet
US2565768A (en) Aluminum coating of ferrous metal and resulting product
JPH0413855A (en) Galvannealed steel sheet excellent in workability and its production
JP2745428B2 (en) X-ray diffraction method for evaluating the processing performance of alloyed zinc plated steel sheets for high processing
JPH11279733A (en) Hot dip galvanized steel plate having blackening resistance
JP2895357B2 (en) Method of controlling phase structure of galvannealed layer
US3295199A (en) Process of making soft, ductile, galvanized material
JPH068791B2 (en) Measuring method of alloying degree of galvannealed steel sheet
JPS6032700B2 (en) Zinc alloy for hot-dip plating
JPH0533157A (en) Production of chromated zinc or zinc alloy plated steel sheet excellent in black rust resistance
US1746925A (en) Brake drum
JP3114108B2 (en) Measuring method of alloying degree of alloyed zinc coated steel sheet
JP2004232029A (en) COATED HOT DIP Al-Zn BASED ALLOY PLATED STEEL SHEET HAVING EXCELLENT SURFACE APPEARANCE, AND PRODUCTION METHOD THEREFOR
JP2708257B2 (en) Method for measuring phase thickness of galvannealed steel sheet
JP2798520B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JPS6058537A (en) Method for determining quantity of plating for plated fe-zn alloy steel plate
JP3221547B2 (en) Measuring method of zinc adhesion on galvannealed steel sheet
JP2707865B2 (en) Method of measuring alloying degree of alloyed galvanized layer
JPH02170960A (en) Production of alloyed galvanized steel sheet