JP2895357B2 - Method of controlling phase structure of galvannealed layer - Google Patents

Method of controlling phase structure of galvannealed layer

Info

Publication number
JP2895357B2
JP2895357B2 JP5187742A JP18774293A JP2895357B2 JP 2895357 B2 JP2895357 B2 JP 2895357B2 JP 5187742 A JP5187742 A JP 5187742A JP 18774293 A JP18774293 A JP 18774293A JP 2895357 B2 JP2895357 B2 JP 2895357B2
Authority
JP
Japan
Prior art keywords
phase
alloying
conditions
phase structure
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5187742A
Other languages
Japanese (ja)
Other versions
JPH0741925A (en
Inventor
真博 川原
一成 安達
晴美 重本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16211407&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2895357(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5187742A priority Critical patent/JP2895357B2/en
Publication of JPH0741925A publication Critical patent/JPH0741925A/en
Application granted granted Critical
Publication of JP2895357B2 publication Critical patent/JP2895357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、合金化溶融亜鉛めっき
鋼板の製造方法に関するものである。
The present invention relates to a method for producing a galvannealed steel sheet.

【0002】[0002]

【従来の技術】一般に、合金化溶融亜鉛めっき鋼板の製
造過程において、合金化処理を行う際に処理の指標とさ
れるのは合金化度即ちめっき層中のトータル鉄濃度であ
る。例えば、特開平1−177351号公報において記される
ように、一部合金相の測定は行っても、それを合金化度
(めっき層中のトータル鉄濃度)に換算して制御を行っ
ており、従来の製造方法では制御の対象はあくまで合金
化度であった。
2. Description of the Related Art Generally, in the production process of an alloyed hot-dip galvanized steel sheet, the degree of alloying, that is, the total iron concentration in the plating layer, is used as an index of the alloying treatment. For example, as described in JP-A-1-177351, even if a part of the alloy phase is measured, it is controlled by converting it into an alloying degree (total iron concentration in the plating layer). However, in the conventional manufacturing method, the control target is only the degree of alloying.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法では、めっき層中のトータル鉄濃度が所定の値とな
るように合金化処理の条件を設定・変更するため以下の
ような問題があった。即ち、合金化しためっき層中に
は、その鉄と亜鉛の含有比の違いによりΓ相(Γ
1相)、δ1 相、ζ相といった種々の相が混在する。ま
た時には合金化のための熱処理が不足すると純亜鉛相で
あるη相が残存することもある。これらの相のでき方
(形成比)は合金化処理の条件により異なってくる。こ
れらの相はそれぞれ異なった性質を持つため、パウダリ
ング性に代表される合金化溶融亜鉛めっき鋼板の品質は
めっき相の相構造(各相の形成量)によって変わってく
る。従ってめっき相中のトータル鉄濃度は変わらずと
も、相構造が違うと板の品質は変化する。即ち従来行わ
れている合金化度を指標とした合金化処理では、安定し
た品質の合金化溶融亜鉛めっき鋼板の製造は不可能であ
る。
However, in the conventional method, the conditions of the alloying treatment are set and changed so that the total iron concentration in the plating layer becomes a predetermined value. . In other words, in the alloyed plating layer, the phase (Γ)
Various phases such as 1 phase), δ 1 phase and ζ phase are mixed. In some cases, if the heat treatment for alloying is insufficient, an η phase, which is a pure zinc phase, may remain. How these phases are formed (formation ratio) differs depending on the conditions of the alloying treatment. Since these phases have different properties, the quality of the galvannealed steel sheet represented by powdering properties varies depending on the phase structure of the plating phase (the amount of each phase formed). Therefore, even if the total iron concentration in the plating phase does not change, the quality of the plate changes if the phase structure is different. That is, it is impossible to produce a stable quality alloyed hot-dip galvanized steel sheet by the conventional alloying process using the degree of alloying as an index.

【0004】以上のような事情に鑑みて、本発明は、
Γ、δ、ζ等の合金相の各相の形成量を所定の量に合致
させることのできる合金化溶融亜鉛めっき層相構造の制
御方法を提供することを目的とするものである。
[0004] In view of the above circumstances, the present invention provides:
An object of the present invention is to provide a method for controlling a phase structure of a galvannealed layer in which the amounts of alloy phases such as Γ, δ, and ζ can be made to match predetermined amounts.

【0005】[0005]

【課題を解決するための手段】本発明では前記問題を解
決するために、めっき層の相構造を予測するモデルによ
り初期の合金化処理条件を決定するとともに、合金化処
理を施して合金化が完了した時点において相構造(各相
の形成量)を測定し、δ相とΓ相の量の比:δ/Γおよ
びζ相とδ相の量の比:ζ/δの両者が所定の値となる
ように合金化処理条件を変更するようにしたものであ
る。
According to the present invention, in order to solve the above-mentioned problems, initial alloying conditions are determined by a model for predicting the phase structure of a plating layer, and alloying is performed by performing alloying. At the time of completion, the phase structure (the amount of each phase formed) is measured, and the ratio of the amount of δ phase and Γ phase: δ / Γ and
The alloying treatment conditions are changed so that both the ratio of the amounts of the vitreous phase and the δ phase: ζ / δ have a predetermined value.

【0006】これにより、同一合金化度(鉄濃度)で
も、熱処理の条件(通板速度、加熱速度、均熱時間等)
や母板の成分が違うとパウダリング性が異なるという弊
害が回避される。
[0006] Thus, even with the same degree of alloying (iron concentration), the heat treatment conditions (sheet passing speed, heating speed, soaking time, etc.)
When the components of the base plate and the base plate are different, the adverse effect of different powdering properties can be avoided.

【0007】[0007]

【作用】本発明によれば形成された合金化各相の量をオ
ンラインで測定し、フィードバックし、合金化処理条件
を設定・変更するので、めっき層の相構造が所定の割合
となり、常に同じ品質の合金化溶融亜鉛めっき鋼板を製
造できる。なお、合金化処理条件としては、目付量、合
金化熱処理条件(加熱速度、均熱温度・時間、冷却速
度)、めっき浴組成、温度及び鋼板の組成、ならびにラ
イン速度が複合して作用する。
According to the present invention, the amount of each alloyed phase formed is measured online, fed back, and the alloying conditions are set and changed, so that the phase structure of the plating layer has a predetermined ratio and is always the same. We can produce quality galvannealed steel sheets. As the alloying treatment conditions, the basis weight, alloying heat treatment conditions (heating rate, soaking temperature / time, cooling rate), plating bath composition, temperature and composition of the steel sheet, and line speed act in combination.

【0008】一般に、パウダリング性を向上させるため
には、δ相を主体とした相の構造が望ましい。それに適
した合金化処理条件の1例を述べる。 1)目付量、めっき各成分、温度、鋼板の組成が一定の
場合には、加熱温度を下げ、均熱時間を長くすることに
より、δ相を増大させる方向に働く。 2)1)項の条件の中で浴中のAl濃度が下がった場合
は、Γ相を増大させその割合でδ相を減少させる方向に
働く。
Generally, in order to improve powdering properties, a phase structure mainly composed of a δ phase is desirable. An example of alloying treatment conditions suitable for the above will be described. 1) When the basis weight, each component of the plating, the temperature, and the composition of the steel sheet are constant, the heating temperature is lowered and the soaking time is prolonged, thereby acting to increase the δ phase. 2) When the Al concentration in the bath decreases under the conditions of the item 1), it works to increase the 増 大 phase and decrease the δ phase at that rate.

【0009】従って、合金相形成後の各相の割合いをオ
ンラインで測定して、上記諸条件を操作することにより
目標の合金相割合いとすることができる。
Therefore, the ratio of each phase after the formation of the alloy phase is measured online, and the above-mentioned conditions are manipulated to obtain the target alloy phase ratio.

【0010】[0010]

【実施例】図1は本発明を適用する場合の設備構成例を
示す。ストリップ1は溶融亜鉛ポット2で亜鉛めっきを
された後、ガスワイピング装置3で所定の付着量に制御
された後合金化炉で熱処理を施される。合金化炉は加熱
帯4と保持帯5、冷却帯6で構成される。この合金化処
理を行われた後の合金相の構造を合金相測定装置7で測
定する。この測定装置としては回折X線を利用してい
る。
FIG. 1 shows an example of the equipment configuration when the present invention is applied. After the strip 1 is galvanized in a hot-dip zinc pot 2, the strip 1 is heat-treated in an alloying furnace after being controlled to a predetermined amount by a gas wiping device 3. The alloying furnace includes a heating zone 4, a holding zone 5, and a cooling zone 6. The structure of the alloy phase after performing this alloying treatment is measured by the alloy phase measuring device 7. This measuring apparatus utilizes diffracted X-rays.

【0011】次に本発明による制御方法の実施例につい
て述べる。まず合金化処理の対象であるストリップが合
金化炉に入る前に所定の合金相構造となるような合金化
処理条件を決定する。ここでは、加熱帯の加熱速度、均
熱帯の炉温及び冷却帯の冷却速度をその決定すべき値と
する。この決定に当っては、ライン速度(LS)、ポット
の浴温、浴成分、ポットへの侵入板温、亜鉛付着量目標
値、母板の成分といったものを変数とする関数によって
計算する。ライン速度はここでは決められた値として変
数としているが、これを操作量として用いることもでき
る。目標とすべき相構造の評価はδ相とΓ相の量の比
よびζ相とδ相の量の比を用いる。
Next, an embodiment of the control method according to the present invention will be described. First, before the strip to be alloyed enters the alloying furnace, alloying conditions are determined so as to have a predetermined alloy phase structure. Here, the heating rate of the heating zone, the furnace temperature in the solitary zone, and the cooling rate of the cooling zone are the values to be determined. In this determination, the calculation is performed by a function using variables such as a line speed (LS), a bath temperature of the pot, a bath component, a plate temperature entering the pot, a target value of zinc deposition amount, and a component of the mother plate. Here, the line speed is a variable as a determined value, but this can be used as an operation amount. The evaluation of the target phase structure is based on the ratio of the δ phase and Γ phase .
And the ratio of the amounts of the ζ and δ phases is used.

【0012】合金化処理を上記方法によって決定して
も、各変数の設定計算時と該ストリップが合金化炉を通
過する際の実績値の違いや、初期の条件を求めるための
関数と実プロセスの誤差により、相構造が所定の値にな
らない場合がある。そのため合金化炉後に配置した合金
相測定装置により各相の量を測定し、相構造の評価値を
計算する。この値が所定の値となるよう合金化処理条件
を変更する。
Even if the alloying process is determined by the above method, the difference between the actual value when calculating the setting of each variable and when the strip passes through the alloying furnace, and the function and actual process for obtaining the initial conditions. , The phase structure may not reach a predetermined value. Therefore, the amount of each phase is measured by an alloy phase measuring device arranged after the alloying furnace, and the evaluation value of the phase structure is calculated. The alloying treatment conditions are changed so that this value becomes a predetermined value.

【0013】図2、図3に従来法と本法によるパウダリ
ング性の違いを示す。従来のように合金化度を制御した
場合、図2に示すように同一合金化度になっても合金化
処理条件が異なるとパウダリング性は変わる。条件1は
浴中のAl濃度が低く、合金化処理の加熱時間が短く加熱
温度が高い場合、条件2は条件1よりも浴中Al濃度は高
く、合金化処理もやや低温で時間を長くした場合、条件
3はさらに合金化処理で加熱温度を下げ、処理時間を長
くした場合である。
FIGS. 2 and 3 show the difference in powdering properties between the conventional method and the present method. When the degree of alloying is controlled as in the prior art, even if the degree of alloying is the same as shown in FIG. Condition 1 was when the Al concentration in the bath was low, the heating time of the alloying treatment was short, and the heating temperature was high. In this case, the condition 3 is a case where the heating temperature is further lowered by the alloying process and the processing time is lengthened.

【0014】一方、本発明の実施結果の例を図3に示
す。δ相とΓ相の比を一定に制御することでパウダリン
グ性の違いは、従来法よりも小さくなるがまだ条件の違
いによるパウダリング性の差は残る。そのため、さらに
ζ相とδ相の比も制御するようにすると、図で分かるよ
うにパウダリング性は同一値となる。ここで、C1 =0.
05、C2 =0.01、C3 =0.005 である。
FIG. 3 shows an example of the result of the present invention. By controlling the ratio of the δ phase and the 一定 phase to be constant, the difference in the powdering property becomes smaller than that in the conventional method, but the difference in the powdering property due to the difference in the conditions still remains. Therefore, if the ratio between the ζ phase and the δ phase is further controlled, the powdering properties have the same value as can be seen in the figure. Here, C 1 = 0.
05, C 2 = 0.01 and C 3 = 0.005.

【0015】[0015]

【発明の効果】本発明は、合金化溶融亜鉛めっき鋼板の
合金化処理を行うに当って、従来合金化度を所定の値に
制御しようとしていたものを合金相の構造を所定の量に
制御するようにしたため、従来起きていた同一合金化度
でも合金化の熱処理条件の違いによってはパウダリング
性が異なるという問題を解決し、常に同じパウダリング
性を得られるようになった。
According to the present invention, in performing alloying treatment of an alloyed hot-dip galvanized steel sheet, the structure of the alloy phase is controlled to a predetermined amount instead of controlling the degree of alloying to a predetermined value. This solves the problem that the powdering property differs depending on the difference in the heat treatment conditions for alloying even at the same degree of alloying, which has conventionally occurred, and the same powdering property can always be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する場合の設備構成例を示す説明
図。
FIG. 1 is an explanatory diagram showing an example of an equipment configuration when the present invention is applied.

【図2】従来の合金化度を制御した場合のパウダリング
性との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the conventional alloying degree and the powdering property when the degree of alloying is controlled.

【図3】本発明による相構造を制御した場合のパウダリ
ング性との関係を示すグラフ。
FIG. 3 is a graph showing the relationship with the powdering property when the phase structure according to the present invention is controlled.

【符号の説明】[Explanation of symbols]

1 ストリップ 2 溶融亜鉛ポット 3 ガスワイピング装置 4 合金化炉・加熱帯 5 合金化炉・保持帯 6 合金化炉・冷却帯 7 合金相測定装置 REFERENCE SIGNS LIST 1 strip 2 molten zinc pot 3 gas wiping device 4 alloying furnace / heating zone 5 alloying furnace / holding zone 6 alloying furnace / cooling zone 7 alloy phase measuring device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−44007(JP,A) 特開 平3−273144(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 2/00 - 2/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-44007 (JP, A) JP-A-3-273144 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 2/00-2/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融した亜鉛をめっきした後熱処理を
施して母板中の鉄とめっき層中の亜鉛との合金相を形成
する過程において、形成される合金相の各相(Γ、δ、
ζ)の形成量を予想するモデルによって、各相が所定量
形成されるように初期の合金化処理の条件を決定し、次
いで形成された各相の量をオンラインで測定し、δ相と
Γ相の量の比:δ/Γおよびζ相とδ相の量の比:ζ/
δの両者が所定のに合致するように、合金化処理条件
を変更することを特徴とする合金化溶融亜鉛めっき層の
相構造の制御方法。
In the process of plating molten zinc and then performing a heat treatment to form an alloy phase of iron in the mother plate and zinc in the plating layer, each phase (Γ, δ) of the formed alloy phase is formed. ,
by the model to predict the formation of zeta), each phase to determine the conditions of initial alloying treatment so as to form a predetermined amount, then the amount of the formed phases was measured on-line, [delta] phase and
比 phase amount ratio: δ / Γ and ζ phase and δ phase amount ratio: ζ /
A method for controlling a phase structure of an alloyed hot-dip galvanized layer, characterized by changing alloying treatment conditions so that both δ coincide with predetermined values .
JP5187742A 1993-07-29 1993-07-29 Method of controlling phase structure of galvannealed layer Expired - Fee Related JP2895357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5187742A JP2895357B2 (en) 1993-07-29 1993-07-29 Method of controlling phase structure of galvannealed layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5187742A JP2895357B2 (en) 1993-07-29 1993-07-29 Method of controlling phase structure of galvannealed layer

Publications (2)

Publication Number Publication Date
JPH0741925A JPH0741925A (en) 1995-02-10
JP2895357B2 true JP2895357B2 (en) 1999-05-24

Family

ID=16211407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5187742A Expired - Fee Related JP2895357B2 (en) 1993-07-29 1993-07-29 Method of controlling phase structure of galvannealed layer

Country Status (1)

Country Link
JP (1) JP2895357B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT405770B (en) * 1997-09-24 1999-11-25 Voest Alpine Ind Anlagen METHOD FOR CONTROLLING A '' GALVANNEALING '' PROCESS
KR100762487B1 (en) * 2001-11-13 2007-10-02 주식회사 포스코 Method for controlling pretreating surface brushing for optimum galvanization in manufacturing galvanized steel sheet
KR20040036110A (en) * 2002-10-23 2004-04-30 주식회사 포스코 Method for controling zinc-ferrous alloy in continuous electroplating process
TWI396772B (en) * 2009-02-03 2013-05-21 Nippon Steel & Sumitomo Metal Corp Alloyed hot dip galvanized steel sheet and producing method therefor
JP6362429B2 (en) * 2014-06-02 2018-07-25 日新製鋼株式会社 Prediction method and production method of Γ phase formation of alloyed hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JPH0741925A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
US3056694A (en) Galvanizing process
US4059711A (en) Partially alloyed galvanize product and method
JP2895357B2 (en) Method of controlling phase structure of galvannealed layer
JP2530939B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet containing high Si
JP2513532B2 (en) Method for producing high-strength hot-dip galvanized steel sheet of high Si content steel
JPH03100154A (en) Production of alloying hot dip galvanized steel strip
JPH04254531A (en) Method for annealing high si-containing high tensile strength steel before galvanizing
JP3173354B2 (en) Alloying treatment method for hot-dip galvanized steel sheet and its alloying control device
JP6418175B2 (en) Dew point control method and method for producing hot dip galvanized steel sheet
JP3261714B2 (en) Method for controlling alloying of galvanized steel sheet
JP2807156B2 (en) Method for controlling the degree of alloying of galvanized steel sheet
KR20090071208A (en) Method for measuring alloy phases ratio of galvannealed steel sheets by x-ray diffraction and controlling alloy phases ratio using galvanneal prediction model(ga calc)
JPH06330276A (en) Method for controlling degree of alloying of hot dip metal coated steel sheet in induction heating type alloying furnace
JPS62180050A (en) Method for controlling degree of alloying of hot dip galvanized steel sheet
JP3227326B2 (en) Method for controlling alloying of galvannealed steel strip
JP2789946B2 (en) Manufacturing method of galvannealed steel sheet
JP3141722B2 (en) Method for controlling the degree of alloying of hot-dip galvanized steel sheet
JPS62196364A (en) Manufacture of alloyed hot dip galvanized steel sheet
JP3099990B2 (en) Operating method of hot dip galvanizing alloying furnace
JP2704819B2 (en) Method for producing high-Si hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPH06256925A (en) Zinc-iron hot dip galvannealed steel excellent in press formability
JP7218224B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JPH03146649A (en) Production of alloying galvanized steel strip
JP2002105613A (en) Method for manufacturing galvannealed steel sheet having excellent surface smoothness
JP3393750B2 (en) Method and apparatus for controlling alloy layer thickness of continuous galvanized steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees