JPH03146649A - Production of alloying galvanized steel strip - Google Patents

Production of alloying galvanized steel strip

Info

Publication number
JPH03146649A
JPH03146649A JP28395289A JP28395289A JPH03146649A JP H03146649 A JPH03146649 A JP H03146649A JP 28395289 A JP28395289 A JP 28395289A JP 28395289 A JP28395289 A JP 28395289A JP H03146649 A JPH03146649 A JP H03146649A
Authority
JP
Japan
Prior art keywords
steel strip
alloying
heating
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28395289A
Other languages
Japanese (ja)
Inventor
Ryoichi Ide
井出 良一
Yoshihiro Iida
祐弘 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28395289A priority Critical patent/JPH03146649A/en
Publication of JPH03146649A publication Critical patent/JPH03146649A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably obtain a product of optimum degree of alloying by a simplified means by increasing the heating and temp.-rise rate of a steel strip in a heating zone of an alloying furnace to a specific value or above. CONSTITUTION:A steel strip 1 galvanized in a zinc bath 2 is subjected to alloying treatment by means of an alloying furnace 4 having a heating zone 5 and a holding zone 6, by which an alloying galvanized steel strip is obtained. In the above method, the heating and temp.-rise rate of the steel strip 1 in the heating zone 5 is regulated to >=2 deg.C/sec. By this method, the transition temp. of emissivity moves to the high-temp. side and the emissivity is held constant until a temp. of 420 deg.C at which plating is melted to the vicinity of 550 deg.C is reached. As a result, at the time of measuring the temp. of the steel strip 1 by means of a radiation thermometer 7 at the outlet of the heating zone 5, the true temp. of the steel strip 1 can be measured and the purpose can be accomplished. When the above heating and temp.-rise rate is lower than 2 deg.C/sec, the transition temp. of the emissivity becomes <=500 deg.C and a temp. at which alloying is performed and xsi-phase is formed cannot be reached.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、合金化亜鉛めっき鋼帯の製造方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for manufacturing an alloyed galvanized steel strip.

〈従来の技術〉 溶融亜鉛めっき鋼帯の塗装性、塗膜密着性、溶接性等を
向上させるために、亜鉛めりき層をFe−Zn合金化さ
せる合金化溶融亜鉛めっぎ鋼帯が公知である。
<Prior art> In order to improve the paintability, coating adhesion, weldability, etc. of hot-dip galvanized steel strips, alloyed hot-dip galvanized steel strips in which the galvanized layer is alloyed with Fe-Zn are known. It is.

合金化溶融亜鉛めっき鋼帯の製造方法の1例を第1図を
参照して説明すると、まずmflを焼鈍炉(図示せず)
を通過させることにより所定の温度に加熱する。
An example of a method for manufacturing an alloyed hot-dip galvanized steel strip will be explained with reference to FIG.
is heated to a predetermined temperature by passing it through.

焼鈍炉において所定の温度に加熱・冷却された鋼帯lは
、次いで、約460℃の亜鉛浴2に浸漬され、その表面
に溶融亜鉛が付着される。
The steel strip 1, which has been heated and cooled to a predetermined temperature in an annealing furnace, is then immersed in a zinc bath 2 at about 460° C., and molten zinc is deposited on its surface.

溶融亜鉛が付着された鋼f1は、亜鉛浴2から略鉛直方
向に引きあげられて、ワイピングノズル3によって亜鉛
付着量の制御が行なわれ、その後方(第1図でみて上方
)に設けられた合金化炉4において約500℃に再加熱
されて合金化処理を施され、次工程に送られる。
The steel f1 coated with molten zinc is pulled up from the zinc bath 2 in a substantially vertical direction, and the amount of zinc deposited is controlled by the wiping nozzle 3, and the steel f1 coated with molten zinc is pulled up from the zinc bath 2, and the amount of zinc deposited is controlled by the wiping nozzle 3. It is reheated to about 500° C. in the heat treatment furnace 4, subjected to alloying treatment, and sent to the next step.

この合金化処理とは、前述のように亜鉛めフき鋼帯の塗
装性等を向上させるために、鋼帯1の鉄を亜鉛めっき層
中に拡散させることによりFe−Zn合金層を形成せし
めるものである。
As mentioned above, this alloying treatment is to form an Fe-Zn alloy layer by diffusing the iron of the steel strip 1 into the galvanized layer in order to improve the paintability of the galvanized steel strip. It is something.

なお、このような合金化は、m−l”lが亜鉛浴2に浸
漬した瞬間より開始され、合金化炉4において再加熱す
ることにより完了する。
Incidentally, such alloying is started from the moment m-l''l is immersed in the zinc bath 2, and is completed by reheating in the alloying furnace 4.

ここで、この合金化の進行の程度、すなわち合金化度は
、目視により鋼帯の焼は具合いを判定して評価したり、
めっき面の反射光強度等を測定して評価することができ
る。 そのため、通常の合金化溶融亜鉛めっき装置にお
いては、例えば合金化炉4内に合金化度の測定装置(図
示せず)を配置して、鋼帯の合金化度を測定し、その測
定値を用いて製品の合否判定を行なったり、あるいは合
金化炉4における再加熱温度の調整等を行なっている。
Here, the degree of progress of this alloying, that is, the degree of alloying, can be evaluated by visually determining the degree of hardening of the steel strip, or
Evaluation can be made by measuring the intensity of reflected light on the plated surface. Therefore, in a normal alloying hot-dip galvanizing apparatus, for example, an alloying degree measuring device (not shown) is placed in the alloying furnace 4 to measure the alloying degree of the steel strip, and the measured value is It is used to judge whether the product is acceptable or to adjust the reheating temperature in the alloying furnace 4.

例えば、特開昭57−185966号公報には、合金化
炉中を走行する鋼板めっき面の輻射エネルギーを測定す
ることにより、合金化炉内の亜鉛めっぎ鋼板の合金化位
置を制御する方法が開示されている。
For example, JP-A-57-185966 discloses a method for controlling the alloying position of a galvanized steel sheet in an alloying furnace by measuring the radiant energy of the plated surface of the steel sheet traveling in the alloying furnace. is disclosed.

また、例えば特開昭58−16061号公報には、合金
化炉内を走行する鋼板めっき面の反射光強度を測定する
ことにより、合金化炉4内における亜鉛めっき鋼板の合
金化位置を制御する方法が開示されている。
Furthermore, for example, Japanese Patent Application Laid-Open No. 58-16061 discloses that the alloying position of a galvanized steel sheet in the alloying furnace 4 is controlled by measuring the intensity of reflected light from the plated surface of the steel sheet traveling inside the alloying furnace. A method is disclosed.

〈発明が解決しようとする課題〉 ところで、合金化亜鉛めっき鋼帯の製造においては、合
金化の進行・にともないめっき表面の放射率が約0.1
〜0.7の範囲で大きく変化することが知られている。
<Problem to be solved by the invention> By the way, in the production of alloyed galvanized steel strip, as alloying progresses, the emissivity of the plating surface decreases to approximately 0.1.
It is known that it varies greatly in the range of ~0.7.

 この放射率の変化は、めっき層表面が溶融亜鉛状態(
η相、融点419℃)から合金化してζ相(融点530
℃)、δ相(融点的640℃)になって固化する温度(
以下、遷移温度という)に対応している。
This change in emissivity is due to the fact that the surface of the plating layer is in a molten zinc state (
The η phase (melting point 419°C) is alloyed to form the ζ phase (melting point 530°C).
℃), the temperature at which it becomes the δ phase (melting point 640℃) and solidifies (
(hereinafter referred to as transition temperature).

このため、前記特開昭57−185966号において放
射温度計等によって合金化炉中で鋼板の温度を測定する
場合、この温度計位置では合金化が進行中であるため、
測定位置や通板速度によって放射率が大きく変化し、真
の鋼板温度が測定できないという問題点があった。
For this reason, when measuring the temperature of a steel plate in an alloying furnace using a radiation thermometer or the like in the above-mentioned Japanese Patent Application Laid-open No. 57-185966, since alloying is in progress at this thermometer position,
There was a problem in that the emissivity varied greatly depending on the measurement position and the sheet threading speed, making it impossible to measure the true steel sheet temperature.

また、特開昭58−16061号の方法は、複数の反射
光強度測定ユニットあるいは1個または2個の移動測定
可能なユニットを合金化炉内に設置しなければならない
という煩雑な方法であった。
Furthermore, the method disclosed in JP-A No. 58-16061 is a complicated method in which multiple reflected light intensity measurement units or one or two movable measurement units must be installed in the alloying furnace. .

本発明は上記従来技術の問題点を解消し、簡易な手段で
最適な合金化度が得られる合金化亜鉛めフき鋼帯の製造
方法を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide a method for manufacturing an alloyed galvanized steel strip that can obtain an optimal degree of alloying by simple means.

〈課題を解決するための手段〉 亜鉛めっき鋼帯の合金化時におけるめっき面の放射率の
変化を実験室で調査したところ、第2図に示すように加
熱昇温速度を大ぎくすると放射率の遷移温度が高温側に
移動することが確かめられた。
<Means for solving the problem> When we investigated in the laboratory the changes in the emissivity of the plated surface during alloying of galvanized steel strips, we found that when the heating rate was increased, the emissivity decreased as shown in Figure 2. It was confirmed that the transition temperature of

また、2℃/秒以上の昇温速度で加熱した場合、めっき
が溶融する420℃から550℃付近まではその放射率
が0.1付近で一定であること、および昇温速度がさら
に大きくなるほど、さらに高温まで放射率が一定である
ことがわかった。 また、昇温速度が2℃/秒未満の場
合は前記放射率の遷移温度が500℃以下となるので操
作業上好ましくない。
In addition, when heating at a temperature increase rate of 2℃/second or more, the emissivity is constant at around 0.1 from 420℃ to around 550℃, where the plating melts, and as the temperature increase rate increases It was also found that the emissivity remains constant up to high temperatures. Furthermore, if the temperature increase rate is less than 2° C./sec, the transition temperature of the emissivity will be 500° C. or less, which is not preferable in terms of operation.

本発明は、これらの知見に基づいてなされたものである
The present invention has been made based on these findings.

すなわち、上記目的を達成するために未発明の第1の態
様によれば、亜鉛めっきされた鋼帯を、加熱帯と保持帯
とを有する合金化炉で合金化処理する合金化亜鉛めっき
鋼帯の製造方法において、 前記加熱帯における前記鋼帯の加熱昇温速度を2℃/秒
以上とすることを特徴とする合金化亜鉛めっき鋼帯の製
造方法が提供される。
That is, according to a first aspect of the invention to achieve the above object, there is provided an alloyed galvanized steel strip in which a galvanized steel strip is alloyed in an alloying furnace having a heating zone and a holding zone. There is provided a method for producing an alloyed galvanized steel strip, characterized in that the heating rate of the steel strip in the heating zone is 2° C./second or more.

また、本発明の第2の態様によれば、前記製造方法にお
いて、前記加熱帯出口に放射温度計を設けて前記鋼帯温
度を測定することにより、前記加熱帯の加熱条件を制御
することを特徴とする合金化亜鉛めっき鋼帯の製造方法
が提供される。
According to the second aspect of the present invention, in the manufacturing method, a radiation thermometer is provided at the outlet of the heating zone to measure the temperature of the steel strip, thereby controlling the heating conditions of the heating zone. A method of manufacturing characterized galvannealed steel strip is provided.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明は、第1図に示すように加熱帯5と保持帯6とを
有する合金化炉4に通用される。
The present invention is applicable to an alloying furnace 4 having a heating zone 5 and a holding zone 6 as shown in FIG.

すなわち、焼鈍炉(図示せず)で所定の温度に加熱・冷
却され、次いで亜鉛浴2で溶融亜鉛が付着され、ワイピ
ングノズル3を通過した鋼帯1は、合金化炉4において
所定の合金化処理条件にて処理され合金化亜鉛めフき鋼
帯となる。
That is, the steel strip 1 is heated and cooled to a predetermined temperature in an annealing furnace (not shown), then coated with molten zinc in a zinc bath 2, passed through a wiping nozzle 3, and then alloyed in a predetermined alloying furnace 4. It is processed under the specified processing conditions to become an alloyed galvanized steel strip.

前記加熱帯5は、直火加熱または誘導加熱、さらにはこ
れらの組合わせなどで構成されている。 本発明の第1
の態様は、この加熱帯5における鋼帯1の加熱昇温速度
を2℃/秒以上とする。 この昇温速度が2℃/秒未満
では前記放射率の遷移温度が500℃以下となり合金化
してζ相(融点530℃)になる温度に達しない。
The heating zone 5 is configured by direct heating, induction heating, or a combination thereof. The first aspect of the present invention
In this embodiment, the heating rate of the steel strip 1 in the heating zone 5 is set to 2° C./second or more. If the temperature increase rate is less than 2° C./sec, the emissivity transition temperature will be 500° C. or lower, and the temperature at which alloying will occur will not reach the ζ phase (melting point 530° C.).

昇温速度の上限は特に設けない。 これは、鋼帯の厚さ
、幅、通板速度、加熱手段等によフて規制されるもので
易り、実用上は100℃/秒程度である。
There is no particular upper limit to the temperature increase rate. This is easily regulated by the thickness, width, threading speed, heating means, etc. of the steel strip, and is practically about 100° C./sec.

前記加熱帯5で昇温速度を2℃/秒以上の所定の値にす
るには、加熱帯5が直火加熱の場合は炉温またはガス流
量、誘導加熱の場合は投入電力を通板速度に対応して調
整すればよい。
In order to make the temperature increase rate in the heating zone 5 a predetermined value of 2° C./sec or more, the furnace temperature or gas flow rate is adjusted when the heating zone 5 uses direct flame heating, or the plate passing rate of the input power when the heating zone 5 uses induction heating. It should be adjusted accordingly.

前記保持f6は、前記加熱帯5に続いて設けられ、前記
加熱帯で所定温度に加熱された鋼帯1を所定の温度(5
00〜700℃)に所定時間保持して合金化亜鉛めフき
鋼帯とするものである。
The holding f6 is provided following the heating zone 5, and holds the steel strip 1 heated to a predetermined temperature in the heating zone to a predetermined temperature (5
00 to 700° C.) for a predetermined period of time to form an alloyed galvanized steel strip.

前記合金化炉4による亜鉛めっき層の合金化度は、合金
化処理条件、すなわち加熱温度とその温度での保持時間
によって左右されるが、これらの条件はめっき層中のA
 tz ?I4度および鋼帯中のPなどの成分により変
化する。
The degree of alloying of the galvanized layer in the alloying furnace 4 depends on the alloying treatment conditions, that is, the heating temperature and the holding time at that temperature.
tz? It changes depending on the I4 degree and components such as P in the steel strip.

第3図は加熱温度と保持時間の関係の1例を模式的に示
したものであるが、保持帯の設備長は通常一定なので、
通板速度が変化した場合はそのままでは保持時間も変化
するため、第3図に例示する適正範囲に入るよう加熱温
度を変更する必要がある。 この適正範囲は合金元素の
種類と割合に応じて予め求めておく。 また、保持帯の
設備長が可変で通板速度が変化しても保持時間を一定に
制御できるような合金化炉の場合には、めっき層中のA
n濃度および鋼種等の変化に対応して加熱温度を変更す
れば良いことになる。
Figure 3 schematically shows an example of the relationship between heating temperature and holding time, but since the length of the holding zone is usually constant,
If the sheet passing speed changes, the holding time will also change, so it is necessary to change the heating temperature so that it falls within the appropriate range illustrated in FIG. 3. This appropriate range is determined in advance according to the type and proportion of alloying elements. In addition, in the case of an alloying furnace where the equipment length of the holding zone is variable and the holding time can be controlled constant even if the strip passing speed changes, it is necessary to
It is only necessary to change the heating temperature in response to changes in the n concentration, steel type, etc.

このようにして、前記加熱f5を通過した鋼帯1を保持
帯6で所定時間保持し、最適な合金化度に処理された合
金化亜鉛めっき鋼帯を製造することができる。
In this way, the steel strip 1 that has passed through the heating f5 is held in the holding band 6 for a predetermined period of time, and an alloyed galvanized steel strip that has been processed to an optimal degree of alloying can be manufactured.

つぎに、本発明の第2の態様について説明するが、前記
加熱体5出口に放射温度計7を設けるほかは上記第1の
態様と同様であるので重複する説明は省略する。
Next, a second aspect of the present invention will be described, but since it is the same as the first aspect except that a radiation thermometer 7 is provided at the outlet of the heating element 5, a redundant explanation will be omitted.

めっき直後の鋼帯1を、加熱帯5にて2℃/秒以上の昇
温速度で加熱し、加熱体5出口に設けた放射温度計7に
より鋼帯′1の温度を測定し、この温度が予め設定した
目標温度となるように加熱帯5の出力(直火加熱ならば
炉温またはガス流量、誘導加熱ならば投入電力)を調整
し、続いて第3図に示すような適正範囲に入るように保
持’lf6で鋼板温度を所定時間保持することにより最
適合金化度に制御された亜鉛めフき鋼帯が製造できる。
The steel strip 1 immediately after plating is heated in the heating zone 5 at a temperature increase rate of 2° C./sec or more, and the temperature of the steel strip '1 is measured with the radiation thermometer 7 installed at the outlet of the heating element 5. Adjust the output of the heating zone 5 (furnace temperature or gas flow rate for direct flame heating, input power for induction heating) so that the temperature reaches the preset target temperature, and then adjust the output to the appropriate range as shown in Figure 3. By holding the steel plate temperature at 'lf6 for a predetermined period of time, a galvanized steel strip with an optimum degree of alloying can be manufactured.

すなわち、加熱帯5に招ける昇温速度を2℃/秒以上と
することにより放射率の遷8温度が高温側となり、めっ
きが溶融する420℃から550℃付近までは放射率が
0.1付近で一定であるため、加熱−IF5出口での鋼
帯1の真の温度が測定できるからである。
That is, by setting the temperature increase rate in the heating zone 5 to 2°C/second or more, the emissivity temperature becomes high temperature, and the emissivity is 0.1 from 420°C, where the plating melts, to around 550°C. This is because the true temperature of the steel strip 1 at the exit of the heating IF 5 can be measured since it is constant in the vicinity.

この時、放射温度計7で測定する際に、放射温度計7の
放射率を設定しなければならない。
At this time, when measuring with the radiation thermometer 7, the emissivity of the radiation thermometer 7 must be set.

この放射率は、放射温度計7の検出波長等により異なる
ので、実設備において接触式温度計等で測定した鋼板温
度により較正すれば精度の良い放射率が設定できる 加熱温度と保持時間との関係については前述したとおり
である。
Since this emissivity differs depending on the detection wavelength of the radiation thermometer 7, etc., the relationship between heating temperature and holding time allows you to set an accurate emissivity by calibrating it using the steel plate temperature measured with a contact thermometer, etc. in actual equipment. As mentioned above.

また、このような加熱温度と保持時間との関係からプロ
セスコンピューターによって最適加熱温度を計算して目
標値として与え、合金化度を制御することも可能である
Further, it is also possible to control the degree of alloying by calculating the optimal heating temperature using a process computer from the relationship between the heating temperature and the holding time and giving it as a target value.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1) 第1図に示すような合金化炉を用いて、亜鉛めっき鋼−
f(鋼種:低炭素鋼、厚さ:0,5〜1.2mm、幅8
00〜1300mm)を昇温速度を5〜b 出口で板温を測定波長2μmの放射温度計と、接触式温
度計とで測定したところ、放射温度計の設定放射率ε=
0.12で板温440〜580℃の範囲が±5℃の精度
で測定できた。
(Example 1) Using an alloying furnace as shown in Fig. 1, galvanized steel
f (steel type: low carbon steel, thickness: 0.5 to 1.2 mm, width 8
00 to 1300 mm), the heating rate was 5 to b.Measuring the plate temperature at the outlet.Measuring the plate temperature with a radiation thermometer with a wavelength of 2 μm and a contact thermometer, the set emissivity of the radiation thermometer ε =
0.12, it was possible to measure the plate temperature in the range of 440 to 580°C with an accuracy of ±5°C.

保持帯5の長さが25mあり、通板速度80 m / 
m i nでは保持時間は18.8秒、100 m /
 m i nでは15秒となる。
The length of the holding band 5 is 25 m, and the threading speed is 80 m/
At min, the retention time was 18.8 seconds, at 100 m/
For min, it is 15 seconds.

そこで、第3図に模式的に示した条件を適用し、100
m/minで通板している時は、加熱温度を490℃に
設定し、加熱条件をフィードバック制御し、最適合金化
度の製品が得られた。
Therefore, by applying the conditions schematically shown in Figure 3,
When threading at a rate of m/min, the heating temperature was set at 490° C., and the heating conditions were feedback-controlled to obtain a product with an optimal degree of alloying.

また、通板速度が80m/minに変化した時は、加熱
温度を470℃に変更し、最適合金化度の製品が得られ
た。
Further, when the sheet passing speed was changed to 80 m/min, the heating temperature was changed to 470° C., and a product with the optimum degree of alloying was obtained.

実用的には、オンラインに設置された合金化度針により
最適合金化となる加熱温度を決定し、その温度となるよ
うにフィードバック制御することも可能である。
Practically speaking, it is also possible to determine the heating temperature that will result in optimal alloying using an alloying degree needle installed online, and to perform feedback control to achieve that temperature.

〈発明の効果〉 本発明は以上説明したように構成されているので、加熱
帯において2℃/秒以上の急速加熱を行うという簡易な
手段で最適な合金化度を有する合金化亜鉛めっきwI帯
を製造することができる。
<Effects of the Invention> Since the present invention is configured as explained above, an alloyed galvanized wI band having an optimum degree of alloying can be obtained by simply performing rapid heating at 2° C./second or more in the heating zone. can be manufactured.

また、加熱帯において2℃/秒以上の急速加熱を行うと
ともに、加熱帯出口に放射温度計を設けることにより真
温度の測定が可能となった。
In addition, by performing rapid heating at 2° C./second or more in the heating zone and installing a radiation thermometer at the exit of the heating zone, it became possible to measure the true temperature.

また、加熱温度と保持時間が明確にできることから、通
板速度に対応する保持時間に応じて加熱温度を変化させ
放射温度計出力のフィードバック制御を行い加熱量をコ
ントロールすることにより、安定して最適合金化の製品
を得ることが可能となった。
In addition, since the heating temperature and holding time can be clearly defined, the heating temperature can be changed according to the holding time corresponding to the threading speed, and the heating amount can be controlled stably and optimally by feedback control of the radiation thermometer output. It became possible to obtain alloyed products.

さらに、これらの操業上のパラメータをプロセスコンピ
ューターに演算させ、全自動で合金化処理を行うことが
可能である。
Furthermore, by having a process computer calculate these operational parameters, it is possible to perform alloying processing fully automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施するための合金化炉の1例を示
す配置図である。 第2図は、めっき表面の放射率とvA帯湯温度の関係を
示すグラフである。 第3図は、保持時間と加熱温度との関係を模式的に示す
グラフである。 符号の説明 1・・・鋼帯、 2・・・亜鉛浴、 3・・・ワイピングノズル、 4・・・合金化炉、 5・・・加熱帯、 6・・・保持帯、 7・・・放射温度計 FIG、2 i目早温度じC)
FIG. 1 is a layout diagram showing one example of an alloying furnace for carrying out the present invention. FIG. 2 is a graph showing the relationship between the emissivity of the plating surface and the vA bath temperature. FIG. 3 is a graph schematically showing the relationship between holding time and heating temperature. Explanation of symbols 1... Steel strip, 2... Zinc bath, 3... Wiping nozzle, 4... Alloying furnace, 5... Heating zone, 6... Holding zone, 7... Radiation thermometer FIG, 2 i initial temperature C)

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛めっきされた鋼帯を、加熱帯と保持帯とを有
する合金化炉で合金化処理する合金化亜鉛めっき鋼帯の
製造方法において、 前記加熱帯における前記鋼帯の加熱昇温速度を2℃/秒
以上とすることを特徴とする合金化亜鉛めっき鋼帯の製
造方法。
(1) A method for producing an alloyed galvanized steel strip, in which a galvanized steel strip is alloyed in an alloying furnace having a heating zone and a holding zone, comprising: heating temperature increase rate of the steel strip in the heating zone; A method for producing an alloyed galvanized steel strip, characterized in that the temperature is 2° C./second or more.
(2)請求項1記載の合金化亜鉛めっき鋼帯の製造方法
において、前記加熱帯出口に放射温度計を設けて前記鋼
帯温度を測定することにより、前記加熱帯の加熱条件を
制御することを特徴とする合金化亜鉛めっき鋼帯の製造
方法。
(2) In the method for producing an alloyed galvanized steel strip according to claim 1, the heating conditions of the heating zone are controlled by providing a radiation thermometer at the outlet of the heating zone to measure the temperature of the steel strip. A method for producing an alloyed galvanized steel strip characterized by:
JP28395289A 1989-10-31 1989-10-31 Production of alloying galvanized steel strip Pending JPH03146649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28395289A JPH03146649A (en) 1989-10-31 1989-10-31 Production of alloying galvanized steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28395289A JPH03146649A (en) 1989-10-31 1989-10-31 Production of alloying galvanized steel strip

Publications (1)

Publication Number Publication Date
JPH03146649A true JPH03146649A (en) 1991-06-21

Family

ID=17672350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28395289A Pending JPH03146649A (en) 1989-10-31 1989-10-31 Production of alloying galvanized steel strip

Country Status (1)

Country Link
JP (1) JPH03146649A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564437A1 (en) * 1992-03-31 1993-10-06 Voest-Alpine Industrieanlagenbau Gmbh Process of galvanizing a strip and arrangement for carrying out the process
JP2013117048A (en) * 2011-12-05 2013-06-13 Jfe Steel Corp Alloying treatment device of hot-dip galvanized steel sheet
WO2013084405A1 (en) * 2011-12-05 2013-06-13 Jfeスチール株式会社 Device for alloying molten zinc-plated steel plate, method for controlling alloying, and method for calculating degree of alloying
JP2013117049A (en) * 2011-12-05 2013-06-13 Jfe Steel Corp Alloying treatment device of hot-dip galvanized steel sheet and alloying control method
JP2013194318A (en) * 2012-03-23 2013-09-30 Jfe Steel Corp Method for calculating alloying degree of hot dip galvanizing steel sheet, and method for controlling alloying thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230970A (en) * 1984-05-02 1985-11-16 Kawasaki Steel Corp Manufacture of alloyed hot dip galvanized steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230970A (en) * 1984-05-02 1985-11-16 Kawasaki Steel Corp Manufacture of alloyed hot dip galvanized steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564437A1 (en) * 1992-03-31 1993-10-06 Voest-Alpine Industrieanlagenbau Gmbh Process of galvanizing a strip and arrangement for carrying out the process
JP2013117048A (en) * 2011-12-05 2013-06-13 Jfe Steel Corp Alloying treatment device of hot-dip galvanized steel sheet
WO2013084405A1 (en) * 2011-12-05 2013-06-13 Jfeスチール株式会社 Device for alloying molten zinc-plated steel plate, method for controlling alloying, and method for calculating degree of alloying
JP2013117049A (en) * 2011-12-05 2013-06-13 Jfe Steel Corp Alloying treatment device of hot-dip galvanized steel sheet and alloying control method
JP2013194318A (en) * 2012-03-23 2013-09-30 Jfe Steel Corp Method for calculating alloying degree of hot dip galvanizing steel sheet, and method for controlling alloying thereof

Similar Documents

Publication Publication Date Title
JPH03146649A (en) Production of alloying galvanized steel strip
JPH03100154A (en) Production of alloying hot dip galvanized steel strip
JPH01252761A (en) Sheet temperature controller in alloying furnace for hot-dip galvanization
JPH0525604A (en) Alloying controller for hot dip coating equipment
JP3261714B2 (en) Method for controlling alloying of galvanized steel sheet
JP4990448B2 (en) Continuous annealing furnace cooling zone in IF steel combined with continuous annealing and hot dipping.
JPH0144782B2 (en)
JP2895357B2 (en) Method of controlling phase structure of galvannealed layer
JP2960285B2 (en) Method and apparatus for controlling degree of alloying by emissivity
JP2807156B2 (en) Method for controlling the degree of alloying of galvanized steel sheet
JP3787320B2 (en) Method and apparatus for controlling alloying in hot dip galvanizing line
JP3175802B2 (en) Method for controlling alloying of hot-dip galvanized steel sheet
JPH06207296A (en) Method and equipment for plating strip material with zinc
JP3411712B2 (en) Alloying furnace for hot-dip galvanized steel sheet and its operation method
JPH06207297A (en) Method and equipment for plating strip material with zinc
JP2981290B2 (en) Manufacturing method of galvannealed steel sheet
JP2644513B2 (en) Method for controlling the degree of alloying of galvannealed steel sheet
JPH0637702B2 (en) Fuel control method for hot dip galvanizing alloy furnace
JP2809774B2 (en) Manufacturing method of hot dip galvanized alloyed steel sheet
JPH0499854A (en) Production of galvannealed steel sheet
KR20020048087A (en) edge heater auto control apparatus using Fe induction pating line
JP2005256145A (en) Reflowing treatment method for tin electroplated steel sheet
JP3099990B2 (en) Operating method of hot dip galvanizing alloying furnace
JPH07118823A (en) Method for controlling alloying degree of galvannealed steel sheet
JP2545653B2 (en) Heat input control method for alloying furnace of hot-dip galvanized steel strip