JP2807156B2 - Method for controlling the degree of alloying of galvanized steel sheet - Google Patents

Method for controlling the degree of alloying of galvanized steel sheet

Info

Publication number
JP2807156B2
JP2807156B2 JP29546393A JP29546393A JP2807156B2 JP 2807156 B2 JP2807156 B2 JP 2807156B2 JP 29546393 A JP29546393 A JP 29546393A JP 29546393 A JP29546393 A JP 29546393A JP 2807156 B2 JP2807156 B2 JP 2807156B2
Authority
JP
Japan
Prior art keywords
alloying
emissivity
steel sheet
furnace
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29546393A
Other languages
Japanese (ja)
Other versions
JPH07150328A (en
Inventor
寧男 戸村
豈彦 増野
信 新井
政邦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29546393A priority Critical patent/JP2807156B2/en
Publication of JPH07150328A publication Critical patent/JPH07150328A/en
Application granted granted Critical
Publication of JP2807156B2 publication Critical patent/JP2807156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融亜鉛めっき鋼板の
合金化度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the degree of alloying of a galvanized steel sheet.

【0002】[0002]

【従来の技術】従来、溶融亜鉛めっき鋼板としては、そ
のめっき層の一部あるいは全体をFe−Zn合金層とす
るように合金化処理を施した溶融亜鉛めっき鋼板が知ら
れている。このような合金化処理は、図9に示すように
溶融亜鉛めっき槽4の直上に合金化炉2を配置し、シン
クロール5によりめっき槽4に浸漬して引き上げた鋼板
1の表面の亜鉛を絞り装置3により絞って亜鉛付着量の
調整を行い、その後直ちに合金化炉2において鋼板を加
熱装置6で加熱して亜鉛層へ鉄を拡散させることにより
なされる。ここで行われる合金化処理が適正でない場
合、つまり過合金や合金化不足となると、その品質特性
が損なわれるため、合金化処理を高精度で制御する必要
がある。
2. Description of the Related Art Heretofore, as a hot-dip galvanized steel sheet, there has been known a hot-dip galvanized steel sheet which has been subjected to an alloying treatment so that a part or the whole of a coating layer is formed of an Fe—Zn alloy layer. As shown in FIG. 9, the alloying treatment is performed by disposing the alloying furnace 2 immediately above the hot-dip galvanizing tank 4 and immersing the zinc in the plating tank 4 by the sink roll 5 to remove the zinc on the surface of the steel sheet 1. The amount of zinc is adjusted by squeezing with the squeezing device 3, and immediately thereafter, the steel sheet is heated by the heating device 6 in the alloying furnace 2 to diffuse iron into the zinc layer. If the alloying treatment performed here is not appropriate, that is, if the alloying is over-alloyed or insufficiently alloyed, the quality characteristics are impaired, so that it is necessary to control the alloying treatment with high accuracy.

【0003】従来、このような合金化処理の合金化度を
オンラインで判定する方法には、X線回折による方法、
鋼板に光を投射しその反射光を利用する方法、鋼板の放
射率を利用する方法がある。X線回折による方法として
は、各合金層のX線回折強度と合金化度の関係をあらか
じめ求めておき、検量線法によって合金化度を求める方
法である(川鉄技報18(1986)「合金化溶融亜鉛
めっき層Fe濃度の連続測定方法」や特開平1−301
155号公報参照)。また、反射光を利用する方法は、
特公昭64−655号公報に示されているように反射光
の強度分布を測定し、その値を用いて合金化判定を行う
ものである。
Conventionally, methods for online determination of the degree of alloying in such alloying treatment include a method using X-ray diffraction,
There are a method of projecting light on a steel sheet and using the reflected light, and a method of using the emissivity of the steel sheet. As a method based on X-ray diffraction, a relationship between the X-ray diffraction intensity of each alloy layer and the degree of alloying is determined in advance, and the degree of alloying is determined by a calibration curve method (Kawatetsu Technical Report 18 (1986) “Alloys”). Method of Continuous Measurement of Fe Concentration of Galvannealed Galvanized Layer "and JP-A-1-301
No. 155). Also, the method using reflected light is
As disclosed in Japanese Patent Publication No. 64-655, the intensity distribution of reflected light is measured, and the alloying judgment is performed using the measured value.

【0004】放射率を利用する方法は特開昭57−18
5966号公報に開示されているように、合金化の進行
状況により鋼板表面の放射率が急変することに着目して
なされるもので、放射エネルギを測定し、その値を用い
て合金化度の判定を行うものである。また、反射強度レ
ベルから合金化位置を求めて、その位置を制御すること
によって合金化を制御する方法としては特開平1−44
782号公報がある。
A method utilizing the emissivity is disclosed in Japanese Patent Application Laid-Open No. 57-18 / 1982.
As disclosed in Japanese Patent No. 5966, it is focused on the fact that the emissivity of the steel sheet surface changes abruptly according to the progress of alloying, the radiant energy is measured, and the value is used to determine the degree of alloying. The judgment is performed. Japanese Patent Application Laid-Open No. 1-444 discloses a method for controlling the alloying by obtaining the alloying position from the reflection intensity level and controlling the position.
No. 782.

【0005】[0005]

【発明が解決しようとする課題】X線回折を利用する方
法は、装置が大がかりとなり、コストが高くつくこと、
かつ装置が大きいために設置位置が問題になること、か
つ板温が高いと精度が悪くなるため測定位置を合金化炉
後方の水冷冷却装置出側におく必要があり、応答性が悪
いといった問題があった。
The method using X-ray diffraction requires a large-scale apparatus and is expensive.
In addition, the installation position is problematic due to the large size of the device, and the accuracy is poor if the plate temperature is high, so the measurement position must be located on the exit side of the water-cooled cooling device behind the alloying furnace, resulting in poor response. was there.

【0006】反射光を利用する方法は、光源や、反射光
センサを設置する必要があることからコストや保全面で
問題があった。放射率を利用する方法では放射温度計を
利用できるという簡便さはあるが、従来の方法では放射
エネルギから放射率を算出する方法が複雑であること、
かつ、放射エネルギだけを用いた制御では放射率以外に
鋼板温度の影響を受けるため、精度よく合金化度を制御
できないという問題があった。
The method using the reflected light has a problem in cost and maintenance because it is necessary to install a light source and a reflected light sensor. In the method using emissivity, there is the simplicity of using a radiation thermometer, but in the conventional method, the method of calculating the emissivity from radiant energy is complicated,
In addition, control using only radiant energy is affected by the temperature of the steel sheet in addition to the emissivity, so that there is a problem that the degree of alloying cannot be accurately controlled.

【0007】本発明は前記問題点を解決した溶融亜鉛め
っき鋼板の合金化度制御技術を提供することを目的とす
る。
It is an object of the present invention to provide a technique for controlling the degree of alloying of a hot-dip galvanized steel sheet that solves the above-mentioned problems.

【0008】[0008]

【課題を解決するための手段】本発明は、前記問題点を
解決するためになされたもので、鋼板を溶融亜鉛めっき
槽に浸漬し、このめっき鋼板を溶融亜鉛めっき用合金化
炉を用いて合金化するに際し、合金化炉内の板温保持帯
の複数位置の鋼板の放射温度を測定し、その放射エネル
ギを代表板温測定値と比較して各位置の鋼板の放射率を
求め、その放射率が0.4〜0.7の範囲となる位置を
合金化位置と定め、この合金化位置が一定位置となるよ
うに、合金化炉の燃料流量、及び/又は通板速度を操作
し、炉内のめっき鋼板の合金化位置を制御することによ
って合金化度を目標範囲に管理するようにしたものであ
る。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a steel sheet is immersed in a hot-dip galvanizing bath, and the coated steel sheet is formed by using an alloying furnace for hot-dip galvanizing. During alloying, the radiant temperatures of the steel plates at multiple positions in the plate temperature holding zone in the alloying furnace were measured, and the radiant energy was compared with the representative plate temperature measurement to determine the emissivity of the steel plates at each position. The position where the emissivity is in the range of 0.4 to 0.7 is defined as the alloying position, and the fuel flow rate and / or the passing speed of the alloying furnace are controlled so that the alloying position is a constant position. By controlling the alloying position of the plated steel sheet in the furnace, the degree of alloying is controlled within a target range.

【0009】一般に合金化過程の鋼板は、めっき層の相
変化に従い放射率が急変することが知られている。この
急激な変化はめっき層中の純亜鉛相(η相)が消失する
ことで生じるものである。本発明は、このη相消失点を
推定することによって、合金化の進行状態を把握するこ
とを狙ったものである。これは、η相が消失した後に成
長するΓ相の生成状態が鋼板の加工性(主にパウダリン
グ性)に影響することが知られておりη相消失点が合金
化に重要なためである。
In general, it is known that the emissivity of a steel sheet in an alloying process changes suddenly in accordance with a phase change of a plating layer. This rapid change is caused by the disappearance of the pure zinc phase (η phase) in the plating layer. The present invention aims to grasp the progress of alloying by estimating the η phase vanishing point. This is because the formation state of the 状態 phase that grows after the η phase disappears is known to affect the workability (mainly powdering property) of the steel sheet, and the η phase disappearance point is important for alloying. .

【0010】しかし、η相消失点に対応する放射率は明
確になっていない。そこで実炉でテストを行い、放射率
が0.4から0.7の範囲の任意の点から決まる合金化
位置が合金化度と相関があることを見出した。本発明に
おいて代表板温とは、放射率を計算する際に真の板温と
見なす板温であって、その測定を合金化炉の板温保持帯
内の任意の位置の測定によって代表させることができ
る。これは合金化炉の板温保持帯では一般に加熱、冷却
のための装置がなく、板温保持帯内での板温度変化がほ
とんどないため可能となったものである。
However, the emissivity corresponding to the η phase vanishing point is not clear. Therefore, a test was conducted in an actual furnace, and it was found that the alloying position determined from an arbitrary point having an emissivity in the range of 0.4 to 0.7 has a correlation with the degree of alloying. In the present invention, the representative plate temperature is a plate temperature considered as a true plate temperature when calculating the emissivity, and the measurement is represented by a measurement at an arbitrary position in the plate temperature holding zone of the alloying furnace. Can be. This is possible because there is generally no device for heating and cooling in the sheet temperature holding zone of the alloying furnace and there is almost no change in the sheet temperature in the sheet temperature holding zone.

【0011】[0011]

【作用】本発明によれば、放射率を計算する際に、合金
化炉代表板温を合金化炉内の任意の位置で測定し、その
温度を利用しているため、放射率の算出式としては、次
の式(1)のみであり、計算を簡単に行うことができ
る。
According to the present invention, when calculating the emissivity, the representative sheet temperature of the alloying furnace is measured at an arbitrary position in the alloying furnace, and the temperature is used. Is only the following equation (1), and the calculation can be easily performed.

【0012】[0012]

【数1】 (Equation 1)

【0013】ここで、ε :放射率 ε0 :放射温度計の設定放射率 C :定数 T :放射温度計の指示値[K] T0 :合金化炉の代表板温[K] λ :測定波長 である。Here, ε: emissivity ε 0 : set emissivity of radiation thermometer C: constant T: indicated value of radiation thermometer [K] T 0 : representative plate temperature of alloying furnace [K] λ: measurement Wavelength.

【0014】また、放射温度計のみの構成であるのでコ
ストも安くて済み、非常に簡便に測定をすることができ
る。また、放射率を求める際に式(1)のように合金化
炉の代表温度T0 を用いているために、放射エネルギの
みの変化を見る場合のように板温の影響を考慮できない
という不具合は発生しない。
Further, since only the radiation thermometer is used, the cost can be reduced and the measurement can be performed very easily. In addition, since the emissivity uses the representative temperature T 0 of the alloying furnace as in equation (1), the influence of the sheet temperature cannot be considered as in the case where only the change in radiant energy is observed. Does not occur.

【0015】本発明では複数の放射温度測定値からそれ
ぞれの放射率を求め、炉内位置と放射率との関係を示す
近似式を作成することができ、この近似式を用いて放射
率が0.4〜0.7の間の指定した放射率である位置を
求めることができる。
In the present invention, each emissivity is obtained from a plurality of measured radiant temperatures, and an approximate expression indicating the relationship between the furnace position and the emissivity can be created. A position with a specified emissivity between .4 and 0.7 can be determined.

【0016】[0016]

【実施例】図1は、合金化炉2の板温保持帯8に放射温
度計10,11,12を配置した設置図の一例である。
図1では、板温保持帯8の出側に合金化炉での代表板温
を測定する放射温度計9を設置しているが、これは板温
保持帯の出側はすでに合金化の進行が進んでいるため鋼
板の放射率変化が少なく比較的安定して板温の測定がで
きるためである。しかし、放射率を自動補正する機能を
有した放射温度計を用いれば、鋼板放射率の変化が大き
い位置での板測温も可能であるので代表板温を測定する
放射温度計9を合金化炉内に設置してもよい。
FIG. 1 is an example of an installation drawing in which radiation thermometers 10, 11, and 12 are arranged in a plate temperature holding zone 8 of an alloying furnace 2. FIG.
In FIG. 1, a radiation thermometer 9 for measuring the representative sheet temperature in the alloying furnace is installed on the exit side of the sheet temperature holding zone 8, but this is because the exit side of the sheet temperature holding zone has already progressed alloying. This is because the emissivity has progressed and the emissivity of the steel sheet has little change, so that the temperature of the steel sheet can be measured relatively stably. However, if a radiation thermometer having a function of automatically correcting the emissivity is used, it is possible to measure the temperature of the sheet at a position where the change in the emissivity of the steel sheet is large. It may be installed in a furnace.

【0017】図2は、図1に示す配置で放射率を求めた
例である。図2の例では板温保持帯の位置と放射率との
関係を直線近似し、合金化位置の放射率を0.6と定め
て合金化位置を求めている。図3は、合金化位置を決定
するためのフローを示すブロック図である。合金化炉の
代表板温T0 及び放射温度計の指示値Tを測定し、上記
式(1)を用いて放射率εを計算し、板温保持帯の位置
と放射率との関係を示す近似式を作成する。一方、合金
化位置の放射率を指定し、合金化位置を決定する。以後
この位置を合金化位置として、その位置の放射率が0.
4〜0.7の範囲内に入るように燃料流量、通板速度を
制御する。図3のフローに従い、合金化位置を求め、そ
の時に製造された鋼板の合金化度で整理した結果を図4
に示す。図4は通板速度80mpm、鋼種、付着量60
g/m2 の条件を一定にして合金化位置と合金化度との
関係を求めたものである。図4において黒丸で示したデ
ータは合金化位置の放射率を0.4としたもので相関係
数rは0.6である。白角で示したデータは合金化位置
の放射率を0.6としたものでそのときの相関係数rは
0.75である。白丸で示したデータは合金化位置の放
射率が0.8のもので相関係数rは0.2である。
FIG. 2 shows an example in which the emissivity is obtained by the arrangement shown in FIG. In the example of FIG. 2, the relationship between the position of the plate temperature holding zone and the emissivity is linearly approximated, and the emissivity at the alloying position is determined as 0.6 to determine the alloying position. FIG. 3 is a block diagram showing a flow for determining an alloying position. The representative plate temperature T 0 of the alloying furnace and the indicated value T of the radiation thermometer are measured, the emissivity ε is calculated using the above equation (1), and the relationship between the position of the plate temperature holding zone and the emissivity is shown. Create an approximate expression. On the other hand, the emissivity of the alloying position is specified, and the alloying position is determined. Hereinafter, this position is set as an alloying position, and the emissivity at that position is set to 0.
The fuel flow rate and the passing speed are controlled so as to fall within the range of 4 to 0.7. According to the flow of FIG. 3, the alloying position was determined, and the result of sorting by the degree of alloying of the steel sheet manufactured at that time is shown in FIG.
Shown in FIG. 4 shows a threading speed of 80 mpm, a steel type, and an adhesion amount of 60.
The relationship between the alloying position and the degree of alloying was determined while keeping the condition of g / m 2 constant. In FIG. 4, the data indicated by black circles is obtained by setting the emissivity at the alloying position to 0.4, and the correlation coefficient r is 0.6. The data indicated by the white squares is obtained by setting the emissivity at the alloying position to 0.6, and the correlation coefficient r at that time is 0.75. The data indicated by the white circles are those where the emissivity at the alloying position is 0.8 and the correlation coefficient r is 0.2.

【0018】図4より合金化位置として指定する放射率
として本発明の範囲内である0.4、0.6を選んだ場
合は、相関係数rが0.6、0.75と高く、強い相関
があることがわかる。指定する放射率として本発明の範
囲をはずれた0.8とした場合は相関係数rが0.2と
なり相関が低いことがわかる。0.8として合金化位置
を求めた場合では精度よく合金化度を制御することがで
きないことがわかる。そこで上限として放射率0.7に
設定した。一方図示してないが放射率が0.4未満では
付着亜鉛が溶融状態または一部合金化が開始した状態で
あり放射率のバラツキが大きく不安定であるため、放射
率を0.4〜0.7とした。さらに好ましくは0.5〜
0.6である。
In FIG. 4, when the emissivity designated as the alloying position is 0.4 or 0.6 which is within the range of the present invention, the correlation coefficient r is as high as 0.6 or 0.75. It turns out that there is a strong correlation. When the designated emissivity is set to 0.8 which is out of the range of the present invention, the correlation coefficient r becomes 0.2, which indicates that the correlation is low. It can be seen that when the alloying position is determined as 0.8, the degree of alloying cannot be accurately controlled. Therefore, the emissivity was set to 0.7 as the upper limit. On the other hand, although not shown, if the emissivity is less than 0.4, the deposited zinc is in a molten state or a state in which alloying has partially started, and the variation in the emissivity is large and unstable. 0.7. More preferably 0.5 to
0.6.

【0019】図5は本発明を実現するためのシステム構
成の一例を示したものである。放射温度計9〜12から
の信号を用いて合金化位置演算器15で合金化位置を推
定する。また、合金化位置演算器15は図3に示すフロ
ーに示す機能を有するものである。また、あらかじめ、
通板速度、鋼種、向け先等毎に求めた目標合金化位置を
設定する目標合金化位置設定器17を設け、合金化位置
演算器15と目標合金化位置設定器17の出力を合金化
位置制御装置16に入力する。そして合金化位置制御装
置16で合金化位置が目標値に一致するように操作量を
計算し燃料流量制御装置13、エア流量制御装置14を
操作する。
FIG. 5 shows an example of a system configuration for realizing the present invention. Using the signals from the radiation thermometers 9 to 12, the alloying position calculator 15 estimates the alloying position. The alloying position calculator 15 has the function shown in the flow chart of FIG. Also, in advance,
A target alloying position setter 17 is provided for setting a target alloying position determined for each of the threading speed, steel type, destination, etc., and the outputs of the alloying position calculator 15 and the target alloying position setter 17 are used as the alloying position. Input to the control device 16. Then, the amount of operation is calculated by the alloying position controller 16 so that the alloying position matches the target value, and the fuel flow controller 13 and the air flow controller 14 are operated.

【0020】なお図5のシステム構成では放射率を求め
る板温計10,11,12を3台用いているが、要求精
度等に従って数を増減できることはいうまでもない。ま
た操作量として燃料流量を用いているが、他に通板速度
を選んでも同様の効果を得ることができる。さらに図5
の場合代表板温は1個の放射温度計による1点での測定
であるため、板温保持帯8内で板温分布がある場合は誤
差を生じてしまう。そのために図6に示すように板温保
持帯8の入側と出側に放射温度計9、18を配設して板
温を測定し、その値から板温分布を求める板温分布演算
器19を設け放射温度計10、11、12の各位置の板
温を求めて放射率演算に用いるという方法もある。
In the system configuration shown in FIG. 5, three thermometers 10, 11, and 12 for obtaining the emissivity are used, but it goes without saying that the number can be increased or decreased according to required accuracy or the like. In addition, although the fuel flow rate is used as the operation amount, the same effect can be obtained even if the passing speed is selected. Further FIG.
In this case, since the representative plate temperature is measured at one point by one radiation thermometer, an error occurs if there is a plate temperature distribution in the plate temperature holding zone 8. For this purpose, as shown in FIG. 6, radiation thermometers 9 and 18 are arranged on the entrance side and the exit side of the sheet temperature holding zone 8 to measure the sheet temperature, and to obtain the sheet temperature distribution from the measured values. There is also a method in which a plate temperature is provided at each position of the radiation thermometers 10, 11, and 12 and used for emissivity calculation.

【0021】図7を用いて本発明の実施効果について説
明する。図7では、放射率が0.6の位置を合金化位置
としている。本発明の実施以前、ライン速度が100m
pmから80mpmへ変化したとき、合金化位置が10
mから5mまで低下している。これは放射率が0.6に
なるまでの時間は一定なので、加熱量(燃料流量)が同
一であれば、ライン速度が遅くなることで、位置が短く
なるためである。これにより最終的に合金化度が目標範
囲からはずれてしまっている。
The effect of the present invention will be described with reference to FIG. In FIG. 7, the position where the emissivity is 0.6 is set as the alloying position. Before the implementation of the present invention, the line speed was 100m
When changing from pm to 80 mpm, the alloying position is 10
m to 5 m. This is because the time required for the emissivity to reach 0.6 is constant, and if the heating amount (fuel flow rate) is the same, the line speed is reduced and the position is shortened. As a result, the degree of alloying eventually deviates from the target range.

【0022】一方、本発明を実施した場合、ライン速度
が100mpmから80mpmへ変化したとき、各放射
温度計の測定値から図5に示す制御システムにより演算
し、放射率が0.6となる合金化位置を求め、目標値合
金化度が9%になる合金化位置(図4より13m)に変
更している。ライン速度を下げた分だけ炉内帯留時間が
長くなりその分だけ合金化がすすむので合金化位置を上
げている。これにより燃料流量が減少制御され、合金化
度は目標範囲に制御できている。
On the other hand, when the present invention is carried out, when the line speed changes from 100 mpm to 80 mpm, the control system shown in FIG. The alloying position is determined and changed to the alloying position (13 m in FIG. 4) at which the target value alloying degree becomes 9%. The lower the line speed, the longer the in-furnace retention time, and the higher the alloying, the higher the alloying position. As a result, the fuel flow rate is controlled to decrease, and the degree of alloying can be controlled to the target range.

【0023】図9に合金化位置と浸漬槽の浴中Al濃度
の関係を示した。この図より、合金化度9%を得るため
の合金化位置は浴中Al濃度によらずほぼ一定であるこ
とがわかる。すなわち、合金化度に大きく影響を与える
浴中Al濃度は、合金化位置を制御することによって制
御の外乱ではなくなることが分かる。本発明を使用した
場合と使用しない場合について各100コイルの評価テ
ストを行った。その結果を表1に示す。
FIG. 9 shows the relationship between the alloying position and the Al concentration in the bath of the immersion tank. From this figure, it can be seen that the alloying position for obtaining an alloying degree of 9% is almost constant regardless of the Al concentration in the bath. That is, it can be seen that the Al concentration in the bath, which greatly affects the degree of alloying, is not a control disturbance by controlling the alloying position. An evaluation test was performed on each of the 100 coils when the present invention was used and when it was not used. Table 1 shows the results.

【0024】表1に見るように本発明の有用性が示され
た。
Table 1 shows the usefulness of the present invention.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明は、放射率が0.4〜0.7の範
囲で決まる任意の放射率の位置を合金化位置として推定
するために精度よく合金化位置を推定できるようになっ
た。また、この方法を用いて決定した合金化位置が一定
になるように合金化炉の条件を制御しているため応答性
がよく、正確に合金化度を制御することができる。
According to the present invention, since the position of an arbitrary emissivity determined in the range of 0.4 to 0.7 is estimated as the alloying position, the alloying position can be accurately estimated. . Further, since the conditions of the alloying furnace are controlled so that the alloying position determined by using this method is constant, the responsiveness is good and the degree of alloying can be accurately controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の放射温度計配置の一例を示す図であ
る。
FIG. 1 is a diagram illustrating an example of a radiation thermometer arrangement according to an embodiment.

【図2】板温保持帯内での放射率変化を示す図である。FIG. 2 is a diagram showing a change in emissivity in a plate temperature holding zone.

【図3】合金化位置を決定するためのフロー図である。FIG. 3 is a flowchart for determining an alloying position.

【図4】合金化位置と合金化度の関係を示す図である。FIG. 4 is a diagram showing a relationship between an alloying position and a degree of alloying.

【図5】合金化度制御のシステム構成図である。FIG. 5 is a system configuration diagram of alloying degree control.

【図6】合金化度制御のシステム構成図である。FIG. 6 is a system configuration diagram of alloying degree control.

【図7】本発明の実施例を示すチャートである。FIG. 7 is a chart showing an example of the present invention.

【図8】合金化位置と浴中Al濃度の関係を示すグラフ
である。
FIG. 8 is a graph showing a relationship between an alloying position and an Al concentration in a bath.

【図9】合金化炉の説明図である。FIG. 9 is an explanatory view of an alloying furnace.

【符号の説明】[Explanation of symbols]

1 鋼板 2 合金化炉 3 絞り装置 4 めっき槽 5 シンクロール 6 加熱装置 7 合金化炉加熱帯 8 板温保持帯 9 代表板温測定用放射温度計 10 放射率算出
用放射温度計 11 放射率算出用放射温度計 12 放射率算出
用放射温度計 13 燃料流量制御装置 14 エア流量制
御装置 15 合金化位置演算器 16 合金化位置
制御装置 17 目標合金化位置設定器 18 代表板温測
定用放射温度計 19 板温分布演算器
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Alloying furnace 3 Drawing device 4 Plating tank 5 Sink roll 6 Heating device 7 Alloying furnace heating zone 8 Sheet temperature holding zone 9 Radiation thermometer for representative sheet temperature measurement 10 Radiation thermometer for emissivity calculation 11 Emissivity calculation Radiation thermometer for emissivity 12 Radiation thermometer for emissivity calculation 13 Fuel flow control device 14 Air flow control device 15 Alloying position calculator 16 Alloying position control device 17 Target alloying position setting device 18 Radiation thermometer for representative sheet temperature measurement 19 Sheet temperature distribution calculator

フロントページの続き (72)発明者 永井 政邦 千葉市中央区川崎町1番地 川崎製鉄株 式会社 千葉製鉄所内 (56)参考文献 特開 平4−218654(JP,A) 特開 昭57−185966(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 2/00 - 2/40Continuation of the front page (72) Inventor Masakuni Nagai 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Corporation Chiba Works (56) References JP-A-4-218654 (JP, A) JP-A-57-185966 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C23C 2/00-2/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼板を溶融亜鉛めっき槽に浸漬し、該め
っき鋼板を溶融亜鉛めっき用合金化炉を用いて合金化す
るに際し、合金化炉内の板温保持帯の複数位置の鋼板の
放射温度を測定し、その放射エネルギを代表板温測定値
と比較して各位置の鋼板の放射率を求め、その放射率が
0.4〜0.7の範囲となる位置を合金化位置と定め、
該合金化位置が一定位置となるように、合金化炉の燃料
流量、及び/又は通板速度を操作し、炉内のめっき鋼板
の合金化位置を制御することを特徴とする溶融亜鉛めっ
き鋼板の合金化度制御方法。
When a steel sheet is immersed in a hot-dip galvanizing tank and the coated steel sheet is alloyed by using a hot-dip galvanizing alloying furnace, radiation of the steel sheet at a plurality of positions of a sheet temperature holding zone in the hot-dip galvanizing furnace is performed. The temperature is measured, the radiant energy is compared with the representative plate temperature measurement value to determine the emissivity of the steel sheet at each position, and the position where the emissivity is in the range of 0.4 to 0.7 is determined as the alloying position. ,
Hot-dip galvanized steel sheet, characterized in that the alloying position is constant, the fuel flow rate of the alloying furnace and / or the passing speed are controlled to control the alloying position of the plated steel sheet in the furnace. Alloying degree control method.
JP29546393A 1993-11-25 1993-11-25 Method for controlling the degree of alloying of galvanized steel sheet Expired - Fee Related JP2807156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29546393A JP2807156B2 (en) 1993-11-25 1993-11-25 Method for controlling the degree of alloying of galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29546393A JP2807156B2 (en) 1993-11-25 1993-11-25 Method for controlling the degree of alloying of galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPH07150328A JPH07150328A (en) 1995-06-13
JP2807156B2 true JP2807156B2 (en) 1998-10-08

Family

ID=17820919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29546393A Expired - Fee Related JP2807156B2 (en) 1993-11-25 1993-11-25 Method for controlling the degree of alloying of galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2807156B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231397A (en) * 2010-04-06 2011-11-17 Nippon Steel Corp Method, device and program for deciding alloying position
CA2807332C (en) 2010-08-23 2013-12-17 Nippon Steel & Sumitomo Metal Corporation Method of hot stamping galvanized steel sheet
JP5598313B2 (en) * 2010-12-24 2014-10-01 新日鐵住金株式会社 Alloying control method and alloying control device
CN103764867B (en) * 2011-08-26 2016-05-25 新日铁住金株式会社 Alloying location determining method, alloying position determining means

Also Published As

Publication number Publication date
JPH07150328A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
US4064437A (en) Method for measuring the degree of alloying of galvannealed steel sheets
JP2807156B2 (en) Method for controlling the degree of alloying of galvanized steel sheet
US6206986B1 (en) Method and apparatus for monitoring and controlling the quality of a galvannealed coating of steel strip
JPH0645851B2 (en) Method for producing alloyed hot-dip galvanized steel strip
JP3173354B2 (en) Alloying treatment method for hot-dip galvanized steel sheet and its alloying control device
JP3261714B2 (en) Method for controlling alloying of galvanized steel sheet
JPH0144782B2 (en)
JP2960285B2 (en) Method and apparatus for controlling degree of alloying by emissivity
JP2981290B2 (en) Manufacturing method of galvannealed steel sheet
JP2895357B2 (en) Method of controlling phase structure of galvannealed layer
JP3175802B2 (en) Method for controlling alloying of hot-dip galvanized steel sheet
JP2809774B2 (en) Manufacturing method of hot dip galvanized alloyed steel sheet
JP5673586B2 (en) Method for calculating degree of alloying of hot-dip galvanized steel sheet and method for controlling alloying
JP5403041B2 (en) Alloying equipment for hot-dip galvanized steel sheet
JP7318816B2 (en) Steel sheet unplated defect prediction method, steel sheet defect reduction method, hot dip galvanized steel sheet manufacturing method, and steel sheet unplated defect prediction model generation method
JPH06330276A (en) Method for controlling degree of alloying of hot dip metal coated steel sheet in induction heating type alloying furnace
JP3141722B2 (en) Method for controlling the degree of alloying of hot-dip galvanized steel sheet
JP5824826B2 (en) Temperature distribution estimation device in plating bath, temperature distribution estimation method, and operation method of continuous molten metal plating process
JP3393750B2 (en) Method and apparatus for controlling alloy layer thickness of continuous galvanized steel sheet
JPH09263924A (en) Method for controlling alloying degree of galvanized steel sheet
JPS62180050A (en) Method for controlling degree of alloying of hot dip galvanized steel sheet
JPH05203593A (en) Method and device for measuring plating adhesion quantity
JPH0637702B2 (en) Fuel control method for hot dip galvanizing alloy furnace
JPH03175342A (en) Method for measuring alloying degree of alloyed hot dip zinc plated steel plate
JPH05231945A (en) Measuring method of surface temperature and emissivity of hot-dipped zinc-plated steel plate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980623

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees