JP3787320B2 - Method and apparatus for controlling alloying in hot dip galvanizing line - Google Patents

Method and apparatus for controlling alloying in hot dip galvanizing line Download PDF

Info

Publication number
JP3787320B2
JP3787320B2 JP2002291381A JP2002291381A JP3787320B2 JP 3787320 B2 JP3787320 B2 JP 3787320B2 JP 2002291381 A JP2002291381 A JP 2002291381A JP 2002291381 A JP2002291381 A JP 2002291381A JP 3787320 B2 JP3787320 B2 JP 3787320B2
Authority
JP
Japan
Prior art keywords
induction heating
temperature
plate
heating device
alloying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002291381A
Other languages
Japanese (ja)
Other versions
JP2004137511A (en
Inventor
泰夫 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002291381A priority Critical patent/JP3787320B2/en
Publication of JP2004137511A publication Critical patent/JP2004137511A/en
Application granted granted Critical
Publication of JP3787320B2 publication Critical patent/JP3787320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、鋼板の連続式溶融亜鉛めっきラインにおいて、めっき直後の鋼板を加熱、保熱した後に急冷することによって亜鉛めっき層を合金化処理する合金化制御に関するもので、材料サイズ、材質、めっき品種に応じて最適な合金化制御を行うことができる溶融亜鉛めっきラインにおける合金化制御方法及びその装置に関するものである。
【0002】
【従来の技術】
図6は従来の連続式溶融亜鉛めっきラインの一例を示す図である。図6において、鋼板1は、溶融亜鉛ポット2の中のシンクロール3を介して垂直上方に引き上げられ、メッキ機4によって所定のめっき厚さに調整される。メッキ機4は、ガスワイピング式や電磁力を利用したワイピング方式が採用されている。メッキ機4によって所定のめっき厚さに調整されためっき鋼板1は、引き続いて誘導加熱装置5にて再加熱された後、電熱ヒーター19を装備した保熱帯7にて所定の時間保熱されることによってめっき層の合金化処理が行われる。保熱帯7を出ためっき鋼板1は、気水冷却装置11において急冷され、トップロール12を経て次工程へ送られる。
【0003】
誘導加熱装置5及び保熱帯7においては、最適な合金化処理を行うために、誘導加熱装置5の出側に放射型板温計13を設け、放射型板温計13の測定結果に基づいて電力制御装置6により誘導加熱装置5への投入電力量を制御することによって、めっき鋼板の温度が所定の温度になる様に運転する方法が、例えば特許第3074933号公報などによって提唱されていた。
【0004】
また、保熱帯7では、保熱帯7の出側であって保熱帯7と冷却装置11の間に設けた放射型板温計21の測定結果に基づいて、板温指示計17により保熱帯出側での板温が所定の温度になるように板温指示計17から保熱帯7への投入電力を制御する方法が提唱されていた。
【0005】
また、めっき鋼板において優れためっき密着性と加工時等における曲げ加工部のめっき層が粉状になって剥離するいわゆるパウダリングを防止するために、図4中の破線で示されるように、溶融亜鉛めっきの合金化処理において、誘導加熱装置により所定温度t1℃まで急速加熱し、引き続いて保熱帯にてt1℃の温度に保持する方法が採られていた。また、特開平4−341550号公報に開示されているように、目付け制御完了後、第一段の加熱合金化過程において500℃以上で600℃以下の板温度に加熱し、その後、未合金化状態のまま第二段階の加熱合金化処理で、510℃以下で470℃以上の板温度範囲で加熱して合金化処理を完了させることが提案されており、このとき第二段の加熱は3秒以内にすることが有効であるとされていた。
【0006】
【発明が解決しようとする課題】
しかしながら、図6に示す如く誘導加熱装置出側に放射型板温計13を設けてメッキ鋼板1の板温を測定し、その測定結果に基づいて誘導加熱装置5への投入電力量を制御しようとするものにおいては、決定的な欠点が内在していた。すなわち、メッキ鋼板1は、誘導加熱装置5で再加熱された後、保熱帯7で所定の時間だけ保熱される過程においてめっき層の合金化が進行するもので、保熱帯後段においてほぼ合金化処理が完了した段階ではめっき浴成分に応じて合金化処理メッキ鋼板の表面放射度はほぼ一定値に収斂するが、誘導加熱直後の合金化過程でのめっき表面の放射率は、めっき厚みや加熱温度によって大きく変化し、このため誘導加熱装置出側で放射板温計によって正確な板温を測定することは実用上困難であるということである。
【0007】
また、保熱帯7の出側であって保熱帯7と冷却装置11の間に設けた放射型板温計21の測定結果に基づいて、保熱帯出側での板温が所定の温度になるように板温指示計17から保熱帯7への投入電力を制御する技術においても、めっき鋼板1は保熱帯7を出た時点から外気との接触や後設の冷却装置11からの冷風等の影響を受けて板温が降下し始めているので、保熱帯7と冷却装置11の間に設けた放射型板温計21で測定する板温は温度降下途中の温度を測定していることになり、この温度降下量は鋼板厚みやライン通板速度などのライン通板条件によって変化するため、放射型板温計21の測定結果から保熱帯7でのめっき鋼板1の保定温度を正しく代表することが困難であった。
【0008】
一方、誘導加熱装置の入側めっき鋼板温度は、溶融めっき浴を出ためっき鋼板が気体ワイピング式のメッキ機を通過してめっき厚みが所定の厚みに調整される過程で、めっき付着量やメッキ機ワイピングノズルの気体圧力、流速などのめっきワイピング条件によって誘導加熱装置入側でのめっき鋼板温度が変化するため、誘導加熱装置の電源出力が同じであって誘導加熱装置における昇温量が一定であっても、誘導加熱装置出側でのめっき鋼板温度は変化してしまうので、誘導加熱装置出側でのめっき鋼板温度を精度よく制御することは困難であった。
【0009】
また、従来の合金化処理方法においては、密着性と耐パウダリング性を兼ね備え、さらにプレス加工時に金型との摺動性に優れた高品質の合金化めっき処理鋼板を得ることは難しかった。すなわち、めっき鋼板の合金化過程では、地金側からΓ相、δ相、ζ相、η相の順に合金化層が生成するが、各層の生成速度には差があるため保熱帯出側での合金化相はほとんどδ相、ζ相となっており、地金側に僅かにΓ相が残存している。めっき密着性に優れ、且つ、良好な加工性を維持するためには、合金化度(Fe%)を適正にすることによってδ相、ζ相の比をある範囲に抑えることが重要である。例えば、ζ相/δ相比を0.1〜0.2とすることで加工性に優れた合金めっき層を得ることができる。合金化度が低い場合、すなわちζ相/δ相比が大きい場合にはめっき層表層の比較的柔らかいζ相(FeZn13)が生成し、プレス加工時において摺動抵抗となってプレス割れを起こす原因になる。一方合金化度が高い場合、すなわちζ相/δ相比が小さい場合には地金とめっき層境界面にΓ相(FeZn21)が生成し、プレス加工時にΓ相が壊れてめっき密着性が悪くなるという問題が生じる。このζ相/δ相比を合金化処理サイクルの温度パターンの差のもとで比較して図5に示している。従来法の図4の波線で示す一定保熱のもとでは、ζ相/δ相比が大きくなってしまい、良好な加工性を維持することが困難であった。また、めっき密着性を向上させるために重要なΓ相生成の抑制に関して、従来の方法では保熱帯出側でのめっき鋼板温度が高いことにより過合金によりΓ相が成長しやすくなっており、結果的にめっき密着性が阻害されるという問題があった。一方、特開平4−341550号公報における方法において、第二段階での加熱時間を3秒以内という短時間で行う場合は、合金化処理を完了させるために第一の加熱において加熱板温度を600℃付近の高温に加熱する必要が生じ、第一の加熱装置に強力な加熱能力を有する装置が必要となり設備費が増大するという難点があった。
【0010】
そこで、本発明は、鋼鈑の溶融亜鉛めっき設備において、合金化処理を精度よく制御することができる溶融亜鉛めっきラインにおける合金化制御方法及びその装置を提供するものである。
【0011】
【課題を解決するための手段】
本発明の溶融亜鉛めっきラインにおける合金化制御方法は、鋼板に溶融亜鉛めっき浴でめっきを施し、所定のめっき厚さに調整した後、誘導加熱装置で再加熱し、電気ヒーターを装備した保熱帯で所定時間保持し、引き続いて冷却する溶融亜鉛めっきラインにおける合金化制御方法において、予め設定されている誘導加熱装置出側の目標板温及び通板条件に基づいて前記誘導加熱装置での必要加熱量を算出し、更に該必要加熱量に加熱コイル効率を加味して誘導加熱装置への投入電力量を算出するとともに、保熱帯内の出側近傍の板温計及び保熱帯の複数箇所の炉温計による測定実績を用いて前記誘導加熱装置出側の板温を算定し、該算定値に基づき前記目標板温度に補正をかけ、前記投入電力量を補正して520℃〜560℃に再加熱し、前記520℃〜560℃の再加熱温度から保熱時間中に漸次板温度を511℃〜522℃に低下させる傾斜保熱を施した後、250℃〜300℃までを冷却速度30℃/秒以上で急速冷却することを特徴とする。
【0012】
また、本発明の合金化制御装置は、溶融亜鉛めっきされた鋼板を加熱する誘導加熱装置、保熱帯、冷却帯を順次有する溶融亜鉛めっき設備の合金化制御装置において、予め設定されている誘導加熱装置出側の目標板温及び通板条件に基づいて前記誘導加熱装置での必要加熱量を算出し、更に該必要加熱量に加熱コイル効率を加味して誘導加熱装置への投入電力量を指令する電力指令設定器を設け、保熱帯内には出側近傍に板温計を設けると共に保熱帯の複数箇所に炉温計を設け、該板温計及び炉温計による測定実績を用いて前記誘導加熱装置出側の板温を算定する板温補正演算器を設け、該板温補正演算器での算定値に基づき前記電力指令設定器の目標板温に補正をかけ、前記誘導加熱装置への投入電力量を補正して520℃〜560℃に再加熱し、前記520℃〜560℃の再加熱温度から保熱時間中に漸次板温度を511℃〜522℃に低下させる傾斜保熱を施した後、250℃〜300℃までを冷却速度30℃/秒以上で急速冷却するようになしたことを特徴とする。
【0014】
【発明の実施の形態】
実施例1
図1に本発明の溶融亜鉛めっき設備の一実施例を示す図である。図1において、鋼板1は溶融亜鉛浴2に進入した後、シンクロール3を介して上方に引き上げられ、どぶ漬けされためっき鋼板1に付着した亜鉛層をメッキ機4にて所定の付着量に制御される。めっき厚を調整された鋼板1は、誘導加熱装置5によって500℃〜570℃程度の温度に再加熱され、引き続いて保熱帯7にて温度保持される。その後、めっき鋼板1は、気水冷却装置11により冷却され、トップロール12を経て次工程へ送られる。
【0015】
誘導加熱装置5への投入電力は、電力指令設定器15より演算設定された設定値S1が電力制御装置6へ伝送され、誘導加熱装置5への投入電力量が制御される。このとき、保熱帯7の後段部分であって保熱帯7内に設置されている放射型板温計10によりめっき鋼板の温度Pt2が実測され、同時に炉温計16a、16bによって測定される炉内温度実績Pfa,Pfbを用いて、板温補正演算器14により誘導加熱装置出側の板温Pt1が算定される。すなわち、保熱帯7内でのめっき鋼板からの伝熱量Qは、Q=Qr+Qcで表すことができ、ここでQrは放射による伝熱量、Qcは対流による伝熱量で、それぞれ次式で求められる。
【0016】
Qr=4.88×10−8×φcg× {(Ts+273)−(Ts−Tg+273)}×A
Qc=α×(Ts−Tf)×A
ここで、
φcg:ガス輻射係数
Ts:めっき鋼板温度
Tf:保熱帯炉内温度(Pfa,Pfb)
Tg:対数平均温度差
α:対流伝熱係数
A:保熱帯内めっき鋼板表面積
一方、保熱帯内でのめっき鋼板の熱量授受による温度変化Qsは、鋼板の処理量をW、鋼板の比熱をCsとすると
Qs=W×Cs×(Ptl−Pt2)で求られる。
【0017】
従って、φcgやαは予め計算により求めておけば、保熱帯炉内温度実績Pfa,Pfbを得ることによって、それぞれ対応するゾーンにおける炉内温度Tfが既知となり、Qs=Qr+Qcより誘導加熱装置出側板温Ptlが求まる。このようにして演算された誘導加熱装置出側板温実績演算値Ptlは、電力指令設定器15に伝送される。
【0018】
また、保熱帯7の内部に装備された電気ヒーター19は、炉温制御装置20にて炉内温度実績Pfa,Pfbが所定の設定炉温になる様に保熱帯制御装置8にて投入電力を制御される。気水冷却装置11の気体及び液体の噴射量は、放射型板温計18による測定実績が、あらかじめ設定された250℃〜350℃の範囲の板温設定値に合致するように制御される。
【0019】
図2は、本発明の電力指令設定器15における演算ロジックを示す図である。投入電源量は、板厚、板幅、ライン速度等のライン通板状況データーより求めた処理量と、誘導加熱装置入口板温と目標板温の差ΔTとから、まず必要加熱量が計算される。このとき誘導加熱装置入口での板温は、鋼板がめっき浴を出てガスワイピング部分を通過して誘導加熱装置に入るまでの温度降下分を伝熱計算で求めて使用する。さらに、誘導加熱装置における加熱コイル効率(η)を用いて電力投入量指令を出力するが、ここで、実績板温演算値Pt1にて補正を掛けることにより電力投入量指令が補正されて出力される。このとき、実績板温演算値Ptlによる補正は、通板サイズが変化しない定常運転時にのみ補正されるようになっている。すなわち、誘導加熱装置における加熱コイル効率は、あらかじめ性能テストにより求められたものを使用することができるもので、さらに、本発明による実績板温演算値Ptlによる補正をもとに、めっき鋼板の板厚、板幅毎に誘導加熱装置の加熱効率を逆算してデーターとして蓄積することができる。したがって、このようにして蓄積された加熱効率データーを用いれば、鋼板の接続部が通過する際に板厚や板幅が変化する過渡期においてもより精度の高い電力量設定及び合金化制御を可能にすることができ、応答遅れによる未合金めっき等の不良部の発生を防止することができるようになる。
【0020】
実施例2
図3は本発明の保熱帯の制御の一例を示す図である。図3において、鋼板1は溶融亜鉛浴2に進入した後、シンクロール3を介して上方に引き上げられ、どぶ漬けされためっき鋼板1に付着した亜鉛層をメッキ機4にて所定の付着量に制御される。めっき鋼板1は、誘導加熱装置5によって500℃〜570℃程度の温度に再加熱され、引き続いて保熱帯7にて温度保持される。その後、めっき鋼板1は、気水冷却装置11によりめっき鋼板温度は30℃/秒以上の冷却速度で、250℃〜350℃になるように急速冷却され、トップロール12を経て次工程へ送られる。このとき、めっき鋼板温度を250℃〜350℃になるように急速冷却することにより、めっき層中のΓ相の過剰生成を抑制することができる。これは、合金化めっき処理鋼板の潜熱でめっき層が過合金化しやすくなることを急冷により防止することができるためである。
【0021】
誘導加熱装置5への投入電力は、実施例1で説明したとおり、誘導加熱装置5出側のめっき鋼板温度がT1℃になるように鋼板サイズ、通板速度に応じて投入電力量をプリセット設定される。
【0022】
また、保熱帯7出側付近でのめっき鋼板温度がT2℃になるように、保熱帯7の内部に装備された電気ヒーター19は、炉温制御装置20を介して保熱帯制御装置8にて投入電力を制御される。このように、保熱帯の熱源として電気ヒーターを用いることにより、より精度よく炉温を制御することができる。気水冷却装置11では、気体及び液体冷媒の噴射量を調整することによってめっき鋼板温度が250℃〜350℃の範囲の板温設定値に合致するように制御される。
【0023】
図4には、本発明による合金化処理サイクルの温度パターンを示している。従来は、誘導加熱装置にて再加熱されためっき鋼板は図4中破線で示されるように保熱帯内で一定の温度に保持されていた。本発明では、誘導加熱装置出側でのめっき鋼板温度T1と保熱帯出側でのめっき鋼板温度T2としたとき、T1−T2=Δtとして傾斜的に保熱が実施されている。
【0024】
ここで、Δtは次式で求められる。
【0025】
Δt=C1・C2・C3・exp{n・w}
ただし、
C1:浴中Al濃度によって決まる係数(0.9〜1.O)
C2:原板中のMn,Si等の添加成分量によって決まる係数(0.5〜1.5)
C3:定数(500〜900)
n:係数(−0.04〜−0.06)
w:亜鉛付着量(g/m
例えば、亜鉛付着量w=55g/m、浴中Al濃度=0.09%にてC1=0.9、通常のCQ材にてC2=1.0、C3=700、n=−0.05のとき、上式より△t=約40℃の傾斜保熱を行うことが求められる。係数C1は、浴中にAl濃度によって決められ、浴中Al濃度が0.09%以下ではC1=0.9、浴中Al濃度が0.1%以上ではC1=1.0とすることが望ましい。
【0026】
係数C2は、原板中のMn、Si等の添加成分量に依存し、これらの成分の含有率が多くなる高張力鋼板では表面の亜鉛との反応が遅くなるのでC2を最大で1.5とすることが望ましく、また、軟質冷延鋼板のめっきに際しては0.5〜1.0の範囲で最適値を得ることができる。C3は溶融亜鉛めっきライン固有の定数で保熱帯での保持時間などに応じて決定されもるので、保熱帯での保持時間が7秒ではC3=900とするが、保持時間が例えば15秒以上と長くとることができればC3=500とすることができる。係数nは、−0.04〜−0.06の範囲で最適値が選定される。
【0027】
前述のとおり、めっき密着性に優れ、且つ、良好な加工性を維持するためには、δ相、ζ相の比をある範囲に抑えることが重要である。例えば、ζ相/δ相比を0.1〜0.2とすることで加工性に優れた合金めっき層を得ることができる。このζ相/δ相比を合金化処理サイクルの温度パターンの差のもとで比較して図5に示している。従来法の温度パターンのもとでは、破線に示すようにζ相/δ相比が大きくなってしまうのに対して、本発明による傾斜保熱ではζ相/δ相比を0.1〜0.2の適正範囲に制御することができるので、加工性に優れたメッキ鋼板を得ることができる。
【0028】
さらに本発明による傾斜保熱では、保熱時間中に漸次板温が低下するので地金との境界近くに生成するΓ相の生成を抑制することができ、Γ相厚みを0.6μm未満にすることができるので、優れためっき密着性を得ることができるようになる。
【0029】
また、誘導加熱装置5によってめっき鋼板を520℃〜560℃の高温に急速に再加熱することによって、合金化に必要な保熱時間を短縮することが可能になるので、合金化処理装置をコンパクトにできるという利点を得ることができる。例えば、めっき付着量が30〜60g/m、めっき層鉄量7〜13%残部亜鉛からなる合金化処理を行う際、従来の均一温度保持方法では保熱時間が20〜25秒必要であったが、本発明の方法によれば8〜10秒で合金化処理を完了せしめることができる。
【0030】
次に、本発明の4つの実施例を比較例と対比して表1に示す。表1において、平板鋼板(板厚0.7mm、板幅1050mm)に連続的にめっきを施し、浴直上でガスワイピングにより付着量を制御し、430℃のめっき鋼帯を誘導加熱装置へ導入して再加熱を行った。誘導加熱装置は、100KHzの高周波誘導加熱を採用し、保熱帯は電気ヒーターを装備している。急速冷却は、気水噴射により合金化処理後のめっき鋼帯を直接冷却した。
【0031】
【表1】

Figure 0003787320
表1から明らかなとおり、本発明により優れた耐パウダリング性及びめっき密着性を得ることができた。
【0032】
【発明の効果】
本発明によれば、誘導加熱装置出側に放射型板温計を設けてめっき鋼板の板温を測定し、その測定結果に基づいて誘導加熱装置への投入電力量を制御しようとする従来技術において問題であっためっき鋼板表面の放射率変動に起因する誘導加熱装置出側での放射板温計による正確な板温の測定が実用上困難であり従って精度の良い合金化制御ができないという問題も解消でき、さらに、メッキ機ワイピング条件による誘導加熱装置入側めっき鋼板温度の変動があっても、本発明の方法によれば誘導加熱装置出側めっき鋼板温度を正確に補正することができるので定常操業状態において正確な加熱温度を得ることが可能になった。
【0033】
また、誘導加熱装置における加熱コイル効率を逆算して実績データーとして蓄積することが可能になり、したがって、過渡期においても、実績データーとして蓄積された加熱効率などのデーターを使用することによりライン通板条件に応じた投入電源量指令を優先して制御することにより、電源量指令に時間的遅れを無くし合金化不足を生じることなく合金化メッキ制御を行うことができるようになった。
【0034】
さらに、保熱帯の後段部分に設置される放射板温計は、従来のように保熱帯の出側であって保熱帯と冷却装置の間に設けた場合に比較して、メッキ鋼板が外気との接触や後設の冷却装置からの冷風等の影響を受けて板温が降下し始めている途中の状態の温度を測定しているのではなく、炉内条件がほぼ一定の保熱帯内であるので精度良く板温を測定することができる。従って、板サイズや通板速度に影響されず正確な板温を測定することができるようになったので、メッキ密着性及び加工性に優れた合金メッキ鋼板を安定して製造することが可能となった。
【0035】
さらに本発明による傾斜保熱では、保熱時間中に漸次板温が低下するので地金との境界近くに生成するΓ相の生成を抑制することができ、優れためっき密着性を得ることができるようになる。
【0036】
また、誘導加熱装置によってめっき鋼板を520℃〜560℃の高温に急速に再加熱することによって、合金化に必要な保熱時間を短縮することが可能になるので、合金化処理装置をコンパクトにできる。
【図面の簡単な説明】
【図1】本発明の溶融亜鉛めっき設備の一実施例を示す図である。
【図2】本発明の電力指令設定器15における演算ロジックを示す図である。
【図3】本発明の保熱帯の制御の一例を示す図である。
【図4】本発明における合金化サイクルと従来法を示す図である。
【図5】本発明と従来法のζ相/δ相比と加工性の関係を示す図である。
【図6】従来の溶融亜鉛めっき設備の例を示す説明図である。
【符号の説明】
1:鋼板 2:溶融亜鉛浴
3:シンクロール 4:メッキ機
5:誘導加熱装置 6:電力制御装置
7:保熱帯 8:保熱帯制御装置
9:電源装置 10:放射型板温計、
11:気水冷却装置 12:トップロール
13:放射型板温計 14:板温計補正演算器
15:電力指令 16a,16b:炉温計
17:板温指示計 18:放射型板温計
19:電熱ヒーター 20:炉温制御装置
21:放射型板温計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to alloying control in which a galvanized layer is alloyed by rapid cooling after heating and heat-retaining a steel plate immediately after plating in a continuous hot dip galvanizing line for steel plates. Material size, material, plating The present invention relates to an alloying control method and apparatus in a hot dip galvanizing line capable of performing optimum alloying control according to the product type.
[0002]
[Prior art]
FIG. 6 is a view showing an example of a conventional continuous hot dip galvanizing line. In FIG. 6, the steel plate 1 is pulled vertically upward through the sink roll 3 in the hot dip zinc pot 2 and adjusted to a predetermined plating thickness by the plating machine 4. The plating machine 4 employs a gas wiping method or a wiping method using electromagnetic force. The plated steel sheet 1 adjusted to a predetermined plating thickness by the plating machine 4 is subsequently reheated by the induction heating device 5 and then heated by the heat retention zone 7 equipped with the electric heater 19 for a predetermined time. The alloying treatment of the plating layer is performed by the above. The plated steel sheet 1 exiting the retentive zone 7 is rapidly cooled in the air / water cooling device 11 and sent to the next process via the top roll 12.
[0003]
In the induction heating device 5 and the tropical retentive zone 7, in order to perform an optimal alloying process, a radial plate thermometer 13 is provided on the exit side of the induction heating device 5, and based on the measurement result of the radial plate thermometer 13. For example, Japanese Patent No. 3074933 proposes a method of controlling the amount of electric power supplied to the induction heating device 5 by the power control device 6 so that the temperature of the plated steel sheet becomes a predetermined temperature.
[0004]
In addition, in the tropical zone 7, the plate temperature indicator 17 is used to output the tropical zone on the exit side of the tropical zone 7 and based on the measurement result of the radial plate thermometer 21 provided between the tropical zone 7 and the cooling device 11. There has been proposed a method for controlling the input power from the plate temperature indicator 17 to the heat retention zone 7 so that the plate temperature at the side becomes a predetermined temperature.
[0005]
Moreover, in order to prevent the so-called powdering in which the plating layer of the bent portion at the time of processing or the like is peeled off in a powdery state in the plated steel sheet, as shown by the broken line in FIG. In the alloying treatment of galvanization, a method of rapidly heating to a predetermined temperature t1 ° C. by an induction heating device and subsequently maintaining the temperature at t1 ° C. in a tropical region has been adopted. Further, as disclosed in JP-A-4-341550, after the basis weight control is completed, the plate is heated to a plate temperature of 500 ° C. or more and 600 ° C. or less in the first stage heating alloying process, and then unalloyed. It has been proposed to complete the alloying process by heating in a plate temperature range of 510 ° C. or lower and 470 ° C. or higher in the second stage heating alloying process in this state. It was considered effective to be within seconds.
[0006]
[Problems to be solved by the invention]
However, as shown in FIG. 6, a radiation-type plate thermometer 13 is provided on the outlet side of the induction heating device, the plate temperature of the plated steel plate 1 is measured, and the amount of electric power supplied to the induction heating device 5 is controlled based on the measurement result. However, a definite defect was inherent in the above. That is, after the plated steel sheet 1 is reheated by the induction heating device 5, alloying of the plating layer proceeds in the process of heat retention for a predetermined time in the retentive zone 7, and almost alloyed in the latter stage of the retentive zone. At the stage when the plating is completed, the surface irradiance of the alloyed plated steel sheet converges to a substantially constant value depending on the plating bath components. However, the emissivity of the plating surface immediately after induction heating depends on the plating thickness and heating temperature. Therefore, it is practically difficult to measure the accurate plate temperature with the radiation plate thermometer on the induction heating device exit side.
[0007]
In addition, based on the measurement result of the radial plate thermometer 21 provided on the exit side of the retentive zone 7 and between the retentive zone 7 and the cooling device 11, the plate temperature on the outgoing side of the retentive zone becomes a predetermined temperature. As described above, in the technology for controlling the input power from the plate temperature indicator 17 to the retentive zone 7, the plated steel sheet 1 is brought into contact with the outside air from the time of leaving the retentive zone 7, cold air from the subsequent cooling device 11, etc. Since the plate temperature starts to fall under the influence, the plate temperature measured by the radiation type plate thermometer 21 provided between the heat retaining zone 7 and the cooling device 11 is measured in the middle of the temperature drop. Since the temperature drop changes depending on the line passing conditions such as the thickness of the steel sheet and the line passing speed, the measured temperature of the radial plate thermometer 21 correctly represents the holding temperature of the plated steel sheet 1 in the retentive zone 7. It was difficult.
[0008]
On the other hand, the temperature of the entrance side plated steel sheet of the induction heating device is determined in the process in which the plated steel sheet exiting the hot dipping bath passes through a gas wiping type plating machine and the plating thickness is adjusted to a predetermined thickness. The plating steel plate temperature at the inlet side of the induction heating device changes depending on the plating wiping conditions such as the gas pressure and flow velocity of the machine wiping nozzle, so that the power output of the induction heating device is the same and the heating rate in the induction heating device is constant. Even if it exists, since the plated steel plate temperature on the induction heating device exit side changes, it is difficult to accurately control the plated steel plate temperature on the induction heating device exit side.
[0009]
In addition, in the conventional alloying method, it has been difficult to obtain a high-quality alloyed steel sheet that has both adhesion and powdering resistance and is excellent in slidability with a mold during press working. That is, in the alloying process of the plated steel sheet, alloy layers are formed in the order of Γ phase, δ 1 phase, ζ phase, and η phase from the bare metal side. The alloying phases in γ are almost δ 1 phase and ζ phase, and a slight Γ phase remains on the bare metal side. In order to maintain excellent plating adhesion and good workability, it is important to keep the ratio of δ 1 phase and ζ phase within a certain range by making the degree of alloying (Fe%) appropriate. . For example, an alloy plating layer having excellent workability can be obtained by setting the ζ phase / δ 1 phase ratio to 0.1 to 0.2. When the degree of alloying is low, that is, when the ζ phase / δ 1 phase ratio is large, a relatively soft ζ phase (FeZn 13 ) is formed on the surface layer of the plating layer, which becomes a sliding resistance during press working and causes press cracking. Cause it to happen. On the other hand, when the degree of alloying is high, that is, when the ζ phase / δ 1 phase ratio is small, a Γ phase (Fe 5 Zn 21 ) is generated at the boundary surface between the metal and the plating layer, and the Γ phase breaks during the press working and is plated. The problem of poor adhesion occurs. This ζ phase / δ 1 phase ratio is shown in FIG. 5 in comparison with the difference in temperature pattern of the alloying treatment cycle. Under the constant heat retention indicated by the wavy line in FIG. 4 of the conventional method, the ζ phase / δ 1 phase ratio becomes large, and it is difficult to maintain good workability. In addition, with regard to the suppression of Γ phase formation, which is important for improving plating adhesion, the conventional method makes it easy for Γ phase to grow due to overalloy due to the high temperature of the plated steel sheet on the tropical rain discharge side. There was a problem that plating adhesion was hindered. On the other hand, in the method disclosed in JP-A-4-341550, when the heating time in the second stage is performed in a short time of 3 seconds or less, the heating plate temperature is set to 600 in the first heating in order to complete the alloying process. There is a need for heating to a high temperature around 0 ° C., and a device having a strong heating capability is required for the first heating device, which increases the equipment cost.
[0010]
Therefore, the present invention provides an alloying control method and apparatus for a hot dip galvanizing line capable of accurately controlling the alloying process in a hot dip galvanizing facility for steel sheets.
[0011]
[Means for Solving the Problems]
The alloying control method in the hot dip galvanizing line according to the present invention is a method of plating a steel plate with a hot dip galvanizing bath, adjusting the plating thickness to a predetermined thickness, then reheating it with an induction heating device, and installing an electric heater. In the alloying control method in the hot dip galvanizing line that is held for a predetermined time and subsequently cooled, the required heating in the induction heating device based on the preset target plate temperature and passage condition on the outlet side of the induction heating device The amount of electric power supplied to the induction heating device is calculated by further adding the heating coil efficiency to the required heating amount, and a plate thermometer near the exit side in the warmer and a plurality of furnaces in the warmer zone Using the measurement results by the thermometer, the plate temperature on the outlet side of the induction heating device is calculated, the target plate temperature is corrected based on the calculated value, the input electric energy is corrected, and the temperature is again set to 520 ° C. to 560 ° C. Heated, It was subjected to gradient heat retaining lowering the reheating temperature of the serial 520 ° C. to 560 ° C. gradual plate temperature 511 ℃ ~522 ℃ during heat-keeping time, 250 ° C. to 300 ° C. The cooling rate 30 ° C. / sec or more until in that rapid cooling it characterized.
[0012]
The alloying control device of the present invention is an induction heating device that heats a hot-dip galvanized steel sheet, and an alloying control device for a hot-dip galvanizing facility that sequentially has a cooling zone and a cooling zone. Calculate the required heating amount in the induction heating device based on the target plate temperature and the passing plate conditions on the device exit side, and further command the electric power input to the induction heating device by adding the heating coil efficiency to the required heating amount A power command setter is provided, and a thermometer is provided in the vicinity of the exit side in the heat retention zone and a furnace thermometer is provided at a plurality of locations in the heat retention zone, and the measurement results obtained by the plate thermometer and the furnace thermometer are used to A plate temperature correction calculator for calculating the plate temperature at the induction heating device outlet side is provided, and the target plate temperature of the power command setter is corrected based on the calculated value in the plate temperature correction calculator to the induction heating device. again the input power amount in compensation to 520 ℃ ~560 ℃ Heat the 520 ° C. was subjected to gradient heat retaining lowering the gradual plate temperature 511 ℃ ~522 ℃ from reheating temperature to 560 ° C. during the heat-keeping time, cooling rate 30 ° C. up to 250 ° C. to 300 ° C. / it characterized in that no such rapid cooling in seconds or more.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
FIG. 1 is a view showing an embodiment of the hot dip galvanizing equipment of the present invention. In FIG. 1, the steel plate 1 enters the molten zinc bath 2, and then is pulled upward through the sink roll 3, and the zinc layer adhering to the soaked plated steel plate 1 is adjusted to a predetermined adhesion amount by the plating machine 4. Be controlled. The steel sheet 1 having the adjusted plating thickness is reheated to a temperature of about 500 ° C. to 570 ° C. by the induction heating device 5 and is subsequently maintained at the tropical region 7. Thereafter, the plated steel sheet 1 is cooled by the air / water cooling device 11 and sent to the next process through the top roll 12.
[0015]
As for the input power to the induction heating device 5, the set value S1 calculated and set by the power command setter 15 is transmitted to the power control device 6, and the input power amount to the induction heating device 5 is controlled. At this time, the temperature Pt2 of the plated steel plate is actually measured by the radial plate thermometer 10 which is a rear stage portion of the tropical zone 7 and is installed in the tropical zone 7, and at the same time, the inside of the furnace which is measured by the furnace thermometers 16a and 16b. Using the temperature results Pfa and Pfb, the plate temperature correction calculator 14 calculates the plate temperature Pt1 on the outlet side of the induction heating device. That is, the heat transfer amount Q from the plated steel sheet in the tropical zone 7 can be expressed as Q = Qr + Qc, where Qr is the heat transfer amount due to radiation, and Qc is the heat transfer amount due to convection, and is obtained by the following equations.
[0016]
Qr = 4.88 × 10 −8 × φcg × {(Ts + 273) 4 − (Ts−Tg + 273) 4 } × A
Qc = α × (Ts−Tf) × A
here,
φcg: Gas radiation coefficient Ts: Plated steel plate temperature Tf: Temperature inside the retentive furnace (Pfa, Pfb)
Tg: Logarithmic average temperature difference α: Convection heat transfer coefficient A: Surface area of plated steel plate in the tropical zone On the other hand, the temperature change Qs due to the heat quantity of the plated steel plate in the tropical zone is W, the processing amount of the steel plate is W, and the specific heat of the steel plate is Cs Then, Qs = W × Cs × (Ptl−Pt2).
[0017]
Therefore, if φcg and α are obtained in advance by calculation, the furnace temperature Tf in the corresponding zone is known by obtaining the temperature retention results Pfa and Pfb of the tropical retentive furnace, and the induction heating device outlet plate is obtained from Qs = Qr + Qc. The temperature Ptl is obtained. The induction heating device outlet side plate temperature result calculation value Ptl calculated in this way is transmitted to the power command setter 15.
[0018]
Further, the electric heater 19 installed in the retentive zone 7 is supplied with electric power by the retentive control device 8 so that the furnace temperature results Pfa and Pfb become a predetermined set furnace temperature in the furnace temperature control device 20. Be controlled. The gas and liquid injection amounts of the air-water cooling device 11 are controlled so that the measurement results obtained by the radiation-type plate thermometer 18 match the preset plate temperature range of 250 ° C. to 350 ° C.
[0019]
FIG. 2 is a diagram showing arithmetic logic in the power command setter 15 of the present invention. First, the required heating amount is calculated from the processing amount obtained from line passing data such as plate thickness, plate width, and line speed, and the difference ΔT between the induction heating device inlet plate temperature and the target plate temperature. The At this time, the plate temperature at the inlet of the induction heating device is obtained by calculating the temperature drop until the steel plate leaves the plating bath, passes through the gas wiping portion and enters the induction heating device, by heat transfer calculation. Furthermore, the power input command is output using the heating coil efficiency (η) in the induction heating device. Here, the power input command is corrected and output by correcting the actual plate temperature calculation value Pt1. The At this time, the correction by the actual plate temperature calculation value Ptl is corrected only at the time of steady operation in which the threading plate size does not change. That is, the heating coil efficiency in the induction heating apparatus can be obtained in advance by a performance test. Further, based on the correction by the actual plate temperature calculation value Ptl according to the present invention, the plate of the plated steel plate is used. The heating efficiency of the induction heating device can be calculated backwards for each thickness and plate width and accumulated as data. Therefore, by using the heating efficiency data accumulated in this way, more accurate electric energy setting and alloying control are possible even in the transition period when the plate thickness and width change when the steel plate connection part passes. Thus, it is possible to prevent the occurrence of defective parts such as unalloyed plating due to response delay.
[0020]
Example 2
FIG. 3 is a diagram showing an example of the control of the tropical zone of the present invention. In FIG. 3, after the steel plate 1 enters the molten zinc bath 2, the steel plate 1 is pulled upward through the sink roll 3, and the zinc layer adhering to the soaked plated steel plate 1 is adjusted to a predetermined adhesion amount by the plating machine 4. Be controlled. The plated steel sheet 1 is reheated to a temperature of about 500 ° C. to 570 ° C. by the induction heating device 5, and then the temperature is maintained in the retentive zone 7. Thereafter, the plated steel sheet 1 is rapidly cooled by the air / water cooling device 11 so that the temperature of the plated steel sheet is 250 ° C. to 350 ° C. at a cooling rate of 30 ° C./second or more, and is sent to the next process through the top roll 12. . At this time, excessive generation of the Γ phase in the plating layer can be suppressed by rapidly cooling the plated steel sheet temperature to 250 ° C. to 350 ° C. This is because rapid cooling can prevent the plating layer from being easily overalloyed by the latent heat of the alloyed plated steel sheet.
[0021]
As described in the first embodiment, the input power to the induction heating device 5 is preset according to the steel plate size and the plate passing speed so that the temperature of the plated steel plate on the outlet side of the induction heating device 5 is T1 ° C. Is done.
[0022]
Moreover, the electric heater 19 equipped in the inside of the tropical retentive zone 7 is passed through the furnace temperature control device 20 by the tropical retentive control device 8 so that the temperature of the plated steel plate near the outlet side of the tropical retentive zone 7 becomes T2 ° C. Input power is controlled. Thus, the furnace temperature can be controlled more accurately by using an electric heater as a heat source for the tropical region. In the air-water cooling device 11, the temperature of the plated steel sheet is controlled so as to match the plate temperature set value in the range of 250 ° C to 350 ° C by adjusting the injection amounts of the gas and the liquid refrigerant.
[0023]
FIG. 4 shows a temperature pattern of the alloying treatment cycle according to the present invention. Conventionally, the plated steel sheet reheated by the induction heating device has been maintained at a constant temperature within the tropical region as indicated by the broken line in FIG. In this invention, when it is set as the plating steel plate temperature T1 in the induction heating apparatus exit side and the plating steel plate temperature T2 in the tropical retentate exit side, heat retention is implemented as T1-T2 = Δt.
[0024]
Here, Δt is obtained by the following equation.
[0025]
Δt = C1, C2, C3, exp {n · w}
However,
C1: Coefficient determined by the Al concentration in the bath (0.9 to 1.O)
C2: Coefficient determined by the amount of added components such as Mn and Si in the original plate (0.5 to 1.5)
C3: Constant (500 to 900)
n: Coefficient (-0.04 to -0.06)
w: Zinc adhesion amount (g / m 2 )
For example, zinc adhesion amount w = 55 g / m 2 , C1 = 0.9 when Al concentration in the bath = 0.09%, C2 = 1.0, C3 = 700, n = −0. In the case of 05, from the above equation, it is required to perform a gradient heat retention of Δt = about 40 ° C. The coefficient C1 is determined by the Al concentration in the bath. C1 = 0.9 when the Al concentration in the bath is 0.09% or less, and C1 = 1.0 when the Al concentration in the bath is 0.1% or more. desirable.
[0026]
The coefficient C2 depends on the amount of added components such as Mn and Si in the original plate, and the reaction with zinc on the surface of a high-tensile steel plate in which the content of these components increases is slow, so C2 is 1.5 at maximum. In addition, when plating a soft cold-rolled steel sheet, an optimum value can be obtained in the range of 0.5 to 1.0. C3 is a constant unique to the hot dip galvanizing line and is determined according to the retention time in the tropical zone, etc., so if the retention time in the tropical zone is 7 seconds, C3 = 900, but the retention time is, for example, 15 seconds or more C3 = 500 can be obtained. As the coefficient n, an optimum value is selected in the range of -0.04 to -0.06.
[0027]
As described above, in order to maintain excellent plating adhesion and good workability, it is important to keep the ratio of the δ 1 phase and the ζ phase within a certain range. For example, an alloy plating layer having excellent workability can be obtained by setting the ζ phase / δ 1 phase ratio to 0.1 to 0.2. This ζ phase / δ 1 phase ratio is shown in FIG. 5 in comparison with the difference in temperature pattern of the alloying treatment cycle. Under the temperature pattern of the conventional method, whereas as shown in broken line ζ phase / [delta] 1 phase ratio is increased, the present invention ζ is inclined retaining heat by phase / [delta] 1 phase ratio of 0.1 Since it can control to the appropriate range of -0.2, the plated steel plate excellent in workability can be obtained.
[0028]
Furthermore, in the gradient heat retention according to the present invention, since the plate temperature gradually decreases during the heat retention time, the generation of the Γ phase generated near the boundary with the metal can be suppressed, and the thickness of the Γ phase is less than 0.6 μm. Therefore, excellent plating adhesion can be obtained.
[0029]
In addition, by rapidly reheating the plated steel sheet to a high temperature of 520 ° C. to 560 ° C. with the induction heating device 5, it becomes possible to shorten the heat retention time required for alloying, so the alloying treatment device is compact. The advantage of being able to be obtained can be obtained. For example, when performing an alloying treatment with a plating adhesion amount of 30 to 60 g / m 2 and a plating layer iron amount of 7 to 13% and the remaining zinc, a heat retention time of 20 to 25 seconds is required in the conventional uniform temperature maintaining method. However, according to the method of the present invention, the alloying process can be completed in 8 to 10 seconds.
[0030]
Next, four examples of the present invention are shown in Table 1 in comparison with comparative examples. In Table 1, a flat steel plate (plate thickness 0.7 mm, plate width 1050 mm) is continuously plated, the amount of adhesion is controlled by gas wiping just above the bath, and a 430 ° C plated steel strip is introduced into the induction heating device. And reheated. The induction heating device employs high frequency induction heating of 100 KHz, and the tropical rain is equipped with an electric heater. In the rapid cooling, the plated steel strip after the alloying treatment was directly cooled by air-water jet.
[0031]
[Table 1]
Figure 0003787320
As apparent from Table 1, excellent powdering resistance and plating adhesion can be obtained by the present invention.
[0032]
【The invention's effect】
According to the present invention, a radiation type thermometer is provided on the outlet side of the induction heating device to measure the plate temperature of the plated steel plate, and based on the measurement result, the conventional technique for controlling the amount of power input to the induction heating device In practice, it is practically difficult to accurately measure the plate temperature with a radiant plate thermometer on the exit side of the induction heating device due to the emissivity fluctuation on the surface of the plated steel plate. In addition, even if there is a fluctuation in the temperature of the induction-plated steel sheet on the induction heating device due to the wiping conditions of the plating machine, the method of the present invention can accurately correct the temperature of the induction-plated steel sheet on the outlet side of the induction heating device. It has become possible to obtain an accurate heating temperature in a steady operation state.
[0033]
In addition, it is possible to back-calculate the heating coil efficiency in the induction heating device and accumulate it as actual data. Therefore, even in the transition period, by using data such as the heating efficiency accumulated as actual data, the line passing plate By preferentially controlling the input power amount command according to the conditions, the alloying plating control can be performed without causing a time delay in the power amount command and causing insufficient alloying.
[0034]
Furthermore, the radiant plate thermometer installed in the latter part of the tropics is compared with the case where the radiating plate thermometer is located on the exit side of the tropics and is provided between the tropics and the cooling device as in the conventional case. The temperature in the middle of the plate temperature is starting to drop due to the influence of cold air coming from the cooling system and the cooling device installed later is not measured. Therefore, the plate temperature can be measured with high accuracy. Therefore, the accurate plate temperature can be measured without being affected by the plate size and the plate passing speed, and it is possible to stably produce an alloy plated steel plate having excellent plating adhesion and workability. became.
[0035]
Furthermore, in the gradient heat retention according to the present invention, since the plate temperature gradually decreases during the heat retention time, it is possible to suppress the formation of the Γ phase generated near the boundary with the metal and to obtain excellent plating adhesion. become able to.
[0036]
In addition, it is possible to shorten the heat retention time required for alloying by rapidly reheating the plated steel sheet to a high temperature of 520 ° C. to 560 ° C. by means of an induction heating device, so that the alloying processing device can be made compact. it can.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a hot dip galvanizing facility of the present invention.
FIG. 2 is a diagram showing arithmetic logic in a power command setter 15 of the present invention.
FIG. 3 is a diagram showing an example of the control of the tropical zone of the present invention.
FIG. 4 is a diagram showing an alloying cycle and a conventional method in the present invention.
FIG. 5 is a graph showing the relationship between the ζ phase / δ 1 phase ratio and workability of the present invention and the conventional method.
FIG. 6 is an explanatory view showing an example of a conventional hot dip galvanizing facility.
[Explanation of symbols]
1: Steel plate 2: Molten zinc bath 3: Sink roll 4: Plating machine 5: Induction heating device 6: Power control device 7: Insulation zone 8: Insulation zone controller 9: Power supply device 10: Radiation type plate thermometer,
11: Air-water cooling device 12: Top roll 13: Radiation type thermometer 14: Plate thermometer correction calculator 15: Electric power command 16a, 16b: Furnace thermometer 17: Plate temperature indicator 18: Radiation type thermometer 19 : Electric heater 20: Furnace temperature control device 21: Radiation type plate thermometer

Claims (2)

鋼板に溶融亜鉛めっき浴でめっきを施し、所定のめっき厚さに調整した後、誘導加熱装置で再加熱し、電気ヒーターを装備した保熱帯で所定時間保持し、引き続いて冷却する溶融亜鉛めっきラインにおける合金化制御方法において、
予め設定されている誘導加熱装置出側の目標板温及び通板条件に基づいて前記誘導加熱装置での必要加熱量を算出し、更に該必要加熱量に加熱コイル効率を加味して誘導加熱装置への投入電力量を算出するとともに、保熱帯内の出側近傍の板温計及び保熱帯の複数箇所の炉温計による測定実績を用いて前記誘導加熱装置出側の板温を算定し、該算定値に基づき前記目標板温度に補正をかけ、前記投入電力量を補正して520℃〜560℃に再加熱し、前記520℃〜560℃の再加熱温度から保熱時間中に漸次板温度を511℃〜522℃に低下させる傾斜保熱を施した後、250℃〜300℃までを冷却速度30℃/秒以上で急速冷却することを特徴とする溶融亜鉛めっきラインにおける合金化制御方法。
Steel sheet plated with molten zinc plating bath was adjusted to a predetermined plating thickness, induction heating and reheating the apparatus, and held for a predetermined time, the electric heater equipped with holding tropical subsequently cooled galvanizing line In the alloying control method in
An induction heating device that calculates a required heating amount in the induction heating device based on a preset target plate temperature and a passing plate condition on the outlet side of the induction heating device that is set in advance, and further takes the heating coil efficiency into consideration with the required heating amount And calculating the plate temperature on the outlet side of the induction heating device using the measurement results by the plate thermometer near the outlet side in the heat retention zone and the furnace thermometers at multiple locations in the heat retention zone, Based on the calculated value, the target plate temperature is corrected, the input electric power is corrected, the plate is gradually reheated from 520 ° C. to 560 ° C. , and gradually heated during the heat retention time. A method of controlling alloying in a hot dip galvanizing line, characterized in that, after performing gradient heat retention to lower the temperature to 511 ° C to 522 ° C , rapid cooling is performed at a cooling rate of 30 ° C / second or more from 250 ° C to 300 ° C. .
溶融亜鉛めっきされた鋼板を加熱する誘導加熱装置、保熱帯、冷却帯を順次有する溶融亜鉛めっき設備の合金化制御装置において、
予め設定されている誘導加熱装置出側の目標板温及び通板条件に基づいて前記誘導加熱装置での必要加熱量を算出し、更に該必要加熱量に加熱コイル効率を加味して誘導加熱装置への投入電力量を指令する電力指令設定器を設け、保熱帯内には出側近傍に板温計を設けると共に保熱帯の複数箇所に炉温計を設け、該板温計及び炉温計による測定実績を用いて前記誘導加熱装置出側の板温を算定する板温補正演算器を設け、該板温補正演算器での算定値に基づき前記電力指令設定器の目標板温に補正をかけ、前記誘導加熱装置への投入電力量を補正して520℃〜560℃に再加熱し、前記520℃〜560℃の再加熱温度から保熱時間中に漸次板温度を511℃〜522℃に低下させる傾斜保熱を施した後、250℃〜300℃までを冷却速度30℃/秒以上で急速冷却するようになしたことを特徴とする溶融亜鉛めっきラインにおける合金化制御装置
In an induction heating device for heating a hot dip galvanized steel sheet, a hot spring, an alloying control device for a hot dip galvanizing facility having a cooling zone in sequence,
An induction heating device that calculates a required heating amount in the induction heating device based on a preset target plate temperature and a passing plate condition on the outlet side of the induction heating device that is set in advance, and further takes the heating coil efficiency into consideration with the required heating amount A power command setter is provided to command the amount of power input to the inside. A plate thermometer is provided in the vicinity of the exit, and a thermometer is provided at a plurality of locations in the tropical region. The plate thermometer and the furnace thermometer A plate temperature correction calculator that calculates the temperature at the outlet side of the induction heating device is provided using the measurement results obtained by the calculation, and the target plate temperature of the power command setter is corrected based on the calculated value in the plate temperature correction calculator. Then, the amount of electric power applied to the induction heating device is corrected and reheated to 520 ° C. to 560 ° C., and the gradual plate temperature is changed from 520 ° C. to 560 ° C. during the heat retention time. After applying the gradient heat retention to lower the temperature, the cooling rate is from 250 ° C to 300 ° C. Alloying controller in galvanizing line, characterized in that no such rapid cooling at 30 ° C. / sec or more.
JP2002291381A 2002-08-21 2002-10-03 Method and apparatus for controlling alloying in hot dip galvanizing line Expired - Fee Related JP3787320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291381A JP3787320B2 (en) 2002-08-21 2002-10-03 Method and apparatus for controlling alloying in hot dip galvanizing line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002241155 2002-08-21
JP2002291381A JP3787320B2 (en) 2002-08-21 2002-10-03 Method and apparatus for controlling alloying in hot dip galvanizing line

Publications (2)

Publication Number Publication Date
JP2004137511A JP2004137511A (en) 2004-05-13
JP3787320B2 true JP3787320B2 (en) 2006-06-21

Family

ID=32472564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291381A Expired - Fee Related JP3787320B2 (en) 2002-08-21 2002-10-03 Method and apparatus for controlling alloying in hot dip galvanizing line

Country Status (1)

Country Link
JP (1) JP3787320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648310B1 (en) * 2015-06-19 2016-08-12 현대제철 주식회사 Control apparatus for alloying galvannealing sheet steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231397A (en) * 2010-04-06 2011-11-17 Nippon Steel Corp Method, device and program for deciding alloying position
CN103764867B (en) * 2011-08-26 2016-05-25 新日铁住金株式会社 Alloying location determining method, alloying position determining means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648310B1 (en) * 2015-06-19 2016-08-12 현대제철 주식회사 Control apparatus for alloying galvannealing sheet steel

Also Published As

Publication number Publication date
JP2004137511A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP3787320B2 (en) Method and apparatus for controlling alloying in hot dip galvanizing line
JPH03100154A (en) Production of alloying hot dip galvanized steel strip
US20240158885A1 (en) Continuous annealing equipment, continuous annealing method, method of producing cold-rolled steel sheets and method of producing coated or plated steel sheets
JP3209408B2 (en) Cooling method in alloying process
JPH04329856A (en) Method for controlling infiltrating sheet temperature into galvanizing bath in continuous galvanizing for steel strip
JPH02254146A (en) Induction heating device, induction heating-type alloying furnace, and alloying method
JP4990448B2 (en) Continuous annealing furnace cooling zone in IF steel combined with continuous annealing and hot dipping.
JP5673586B2 (en) Method for calculating degree of alloying of hot-dip galvanized steel sheet and method for controlling alloying
JPS5944367B2 (en) Water quenching continuous annealing method
JP3175802B2 (en) Method for controlling alloying of hot-dip galvanized steel sheet
JP4428096B2 (en) Method for controlling temperature of metal strip entering plate to hot dipping bath
JPH03146649A (en) Production of alloying galvanized steel strip
JP3393750B2 (en) Method and apparatus for controlling alloy layer thickness of continuous galvanized steel sheet
JP3755492B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3227326B2 (en) Method for controlling alloying of galvannealed steel strip
JP2789946B2 (en) Manufacturing method of galvannealed steel sheet
JP2715739B2 (en) Control method of alloying furnace in alloying hot-dip galvanized steel sheet manufacturing facility
JP3411712B2 (en) Alloying furnace for hot-dip galvanized steel sheet and its operation method
JP2005054199A (en) Galvannealed steel sheet manufacturing method
JP2004315901A (en) Hot dip zinc coating method
JPH059697A (en) Alloying treating device for galbanized steel sheet
JP2545653B2 (en) Heat input control method for alloying furnace of hot-dip galvanized steel strip
JPH04329857A (en) Method for controlling alloying of galvannealed steel strip
JPH06330276A (en) Method for controlling degree of alloying of hot dip metal coated steel sheet in induction heating type alloying furnace
JPH08199324A (en) Control of steel sheet temperature in alloying furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R151 Written notification of patent or utility model registration

Ref document number: 3787320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees