US2565768A - Aluminum coating of ferrous metal and resulting product - Google Patents

Aluminum coating of ferrous metal and resulting product Download PDF

Info

Publication number
US2565768A
US2565768A US18727A US1872748A US2565768A US 2565768 A US2565768 A US 2565768A US 18727 A US18727 A US 18727A US 1872748 A US1872748 A US 1872748A US 2565768 A US2565768 A US 2565768A
Authority
US
United States
Prior art keywords
beryllium
aluminum
coating
bath
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US18727A
Inventor
Daniel O Gittings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Steel Corp
Original Assignee
United States Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Steel Corp filed Critical United States Steel Corp
Priority to US18727A priority Critical patent/US2565768A/en
Application granted granted Critical
Publication of US2565768A publication Critical patent/US2565768A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/939Molten or fused coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component

Definitions

  • This invention relates to hot-dip coating ferrous base metal with aluminum.
  • coated products depends to a large extent on their ability to withstand severe forming operations. This involves adherence of the coating to the base metal, 1. e. resistance to flaking or peeling, and ductility of the coating as conventionally determined by 180 flat bend tests. The latter characteristic is necessary to avoid cracking at the formed areas since cracking of the coating may seriously affect the corrosion resistance of the product and detract from its appearance. In addition to the foregoing characteristics, it is necessary for the coating to have a good appearance to meet the demands of the trade.
  • a coating bath containing up to 2% beryllium additions is sufliciently fluid to coat at temperatures below 1300 so that it is not necessary to exceed this maximum practical temperature.
  • temperatures above 1200 F. are necessary to have the bath sufficiently fluid, so that 1250 F. is a practical temperature throughout most of the range of beryllium additions.
  • higher temperatures up to 1625 F. may be used but above 1300 F. the process becomes less economical, the growth of alloy layer and the formation of aluminum oxide on the bath surface are accelerated.
  • the structure of the base metal may be undesirably affected for some purposes. Use of too low temperatures which cause the bath to be mushy or not sufliciently fluid should, however, be avoided.
  • a suitable ferrous metal base such as lowmetalloid steel sheet or strip preferably containing less than .10% carbon and .40% manganese, is fluxed by immersion in a solution of the chloride salts of zinc and ammonia or by heating at about 1250" F. in a suitable reducing atmosphere.
  • the surfaces thus prepared are protected against oxidation and immersed immediately in the molten aluminum coating bath which contains beryllium, preferably in the amount of .3 to .5%.
  • the bath may be prepared in a number of ways but a convenient manner is to add beryllium in base metal with aluminum,
  • the form of a beryllium rich aluminum-beryllium alloy to commercially pure molten aluminum additions of the alloy being made from time to time to keep the beryllium content within the desired range.
  • Aluminum may be added in bar form to keep the quantity or level of the bath at the level desired.
  • a suitable bath temperature is 1250 and the time of immersion will of course vary depending on the thickness of the base metal and its temperature as it enters the bath. It is desirable to keep the base metal in the bath the shortest practical time since additional time promotes the growth of the alloy layer. For ordinary gauges to be coated, an immersion time of 20 seconds or less is satisfactory.
  • the thickness of the coating may be controlled by pressure rolls at the exit side of the bath or by other available conventional means. It is desirable for the coated product to cool sufliciently for the coating to solidify before contacting rolls or conveying mechanism beyond the finishing rolls. If desired, forced cooling may be used.
  • the method of hot-dip coating ferrous base metal with aluminum comprising adding beryllium in effective amounts from about .1% up to 2% to the molten coating bath, maintaining the molten bath at a temperature below 1300 F. and dipping ferrous base metal having cleaned surfaces therein.
  • a hot-dipped coated product comprising a ferrous metal base and an outer layer of aluminum containing beryllium having a thin relatively soft beryllium-containing iron aluminum alloy layer therebetween and resulting from the process of claim 1.
  • a hot-dipped coated product comprising a ferrous metal base and an outer layer of beryllium-containing aluminum having a thin relatively soft beryllium-containing iron aluminum alloy layer therebetween and resulting from the process of claim 2.
  • a hot-dipped coated product comprising a ferrous metal base and an outer layer of beryllium-containing aluminum having a thin relatively soft beryllium-containing iron aluminum alloy layer therebetween and resulting from the process of claim 3.
  • a hot-dipped coated product comprising a ferrous metal base and an outer layer of beryllium-containing aluminum having a thin rela- 6 tively soft beryllium-containing iron aluminum Number Name Date alloy layer therebetween and resulting from the 1,515,082 Veazey Nov. 11, 1924 process of claim 4. 1,706,130 Ruder Mar. 19, 1929 DANIEL O. GITTINGS. 1,716,943 Archer June 11, 1929 5 1,764,132 Wehr June 17, 1930 REFERENCES CITED 2,135,652 Whitfield Nov.

Description

Patented Aug. 28, 1951 COATING OF FERBOUS METAL AND RESULTING PRODUCT Daniel 0. Gittings, Pittsburgh, Pa.,' assignor to United States Steel Company,
New Jersey a corporation of No Drawing. Application April 2, 1948, Serial No. 18,727
'8 Claims. (Cl. 29-1963) This invention relates to hot-dip coating ferrous base metal with aluminum.
The utility of coated products depends to a large extent on their ability to withstand severe forming operations. This involves adherence of the coating to the base metal, 1. e. resistance to flaking or peeling, and ductility of the coating as conventionally determined by 180 flat bend tests. The latter characteristic is necessary to avoid cracking at the formed areas since cracking of the coating may seriously affect the corrosion resistance of the product and detract from its appearance. In addition to the foregoing characteristics, it is necessary for the coating to have a good appearance to meet the demands of the trade.
It has heretofore been proposed to hot-dip coat ferrous base metal with aluminum. While such coatings have a satisfactory appearance, they are not sufficiently adherent and ductile to withstand severe forming operations. Various ways of overcoming these poor characteristics have been proposed but they do not result in coatings having the foregoing characteristics in a high degree. One of the chief factors in obtaining an adherent, ductile hot-dip coating is the control of the formation and growth of the alloy layer which forms almost immediately upon immersion in the molten coating metal. This layer tends to be hard and brittle and consists of an intermetallic compound, or compounds of the coating and base metal. Since physical properties of this a layer in combination with its thickness largely control the adherence and ductility, it is desired to obtain a thin relatively soft alloy layer.
'' The alloy layer formed from unalloyed aluminum baths tends to grow" rapidly at high temperatures so that it is desirable to coat at the lowest possible temperatures.
It is accordingly an object of this invention to provide hot-dipped aluminum coatings which combine good adherence, ductility and appearance.
It is a further object to improve the adherence and ductility of aluminum coatings without detracting from the appearance thereof.
It is another object of this invention to provide a method of producing a relatively soft interfacial alloy layer on hot-dipped aluminum coated ferrous base metals, and at the same time main tain said layer at a minimum thickness.
It is a still further object of the present invention to provide a method of hot-dip coating ferrous metal with aluminum which can be carried out at relatively low temperatures.
I have discovered that the foregoing and further objects can be obtained by the addition of small but effective amounts of beryllium to the molten aluminum coating bath. Such addition does not detract from the coating appearance and at the same time improves adherence and ductility to a very marked degree.
The effect on the thickness of the interfacial alloy layer of the aluminum or aluminum alloy coating will be evident from the following Table I which sets forth the reduced thickness of the alloy layer for various beryllium additions as compared to the thickness of the layer obtained when high purity aluminum (contains up to .08% silicon and .06% iron as impurities) bath metal is used. All of the coatings were obtained by dipping for 20 seconds in a bath maintained at 1250 F. With such time and temperature, an alloy layer of .00140 thickness with the pure aluminum was obtained.
Table I R'Igickness f e uction o ggg gfig Alloy Layer added to (per gent-oi Aluminum idtbtthti Bath Metal with pure Aluminum) Per cent by weight .05 35 l 50 3 4 82 .5 .6 79 .7 8; i 8 80 9 82 l. 0 76 1. 4 78 1.7 80 2.0 '82 This table shows that an average reduction in thickness of the alloy layer of 80.64% is obtained for .3 to 2% beryllium additions and that as little as .05% beryllium results in substantial reducons.
3 At the same time, a very substantial decrease in the hardness of the interfacial alloy layer is obtained. The results of Tukon microhardness tests on the interfacial alloy layer of an aluminum coating, and on that of an aluminum-beryllium coating are shown in the following Table II:
Table II Knoop Hardness Converted Coating Number Hardness 25 Gram (Brinell) Load A1 889 725 Al with .6% Beryllium 326 310 The high quality adherence and ductility, associated 'with the decrease in thickness and hardness of the alloy layer, were reflected in the results of fiat bend tests (180 bend over zero thickness) of coated 20 gauge material. These tests showed that the aluminum-beryllium alloy coatings of this invention, within the range of .1% to 2% beryllium contents, have good adherence and, therefore, do not flake or peel. In addition, the coatings containing over .1 and up to .6% beryllium have good ductility and are free of cracks. Pure aluminum coatings subjected to flat bends showed poor adherence and ductility. In addition to showing a slight tendency to crack, coatings containing more than .6 beryllium tended to have pimples, ridges, etc. on the surface. Likewise, although the appearance and adherence of coatings containing less than .l% beryllium is good, ductility as indicated by the flat bend test was not quite as good as those containing over .1% beryllium since the coatings with less than .1% beryllium exhibit a tendency to crack. For optimum results, a bath containing ,3 to .5% beryllium is preferred.
An additional important feature of the aluminum-beryllium coatings of my invention is the relatively low bath temperatures which they permit. A coating bath containing up to 2% beryllium additions is sufliciently fluid to coat at temperatures below 1300 so that it is not necessary to exceed this maximum practical temperature. With the exception of the eutectic composition, temperatures above 1200 F. are necessary to have the bath sufficiently fluid, so that 1250 F. is a practical temperature throughout most of the range of beryllium additions. If desired, higher temperatures up to 1625 F. may be used but above 1300 F. the process becomes less economical, the growth of alloy layer and the formation of aluminum oxide on the bath surface are accelerated. Likewise, the structure of the base metal may be undesirably affected for some purposes. Use of too low temperatures which cause the bath to be mushy or not sufliciently fluid should, however, be avoided.
To further illustrate the teachings of my invention, the following example is given:
A suitable ferrous metal base, such as lowmetalloid steel sheet or strip preferably containing less than .10% carbon and .40% manganese, is fluxed by immersion in a solution of the chloride salts of zinc and ammonia or by heating at about 1250" F. in a suitable reducing atmosphere. The surfaces thus prepared are protected against oxidation and immersed immediately in the molten aluminum coating bath which contains beryllium, preferably in the amount of .3 to .5%. The bath may be prepared in a number of ways but a convenient manner is to add beryllium in base metal with aluminum,
the form of a beryllium rich aluminum-beryllium alloy to commercially pure molten aluminum, additions of the alloy being made from time to time to keep the beryllium content within the desired range. Aluminum may be added in bar form to keep the quantity or level of the bath at the level desired. A suitable bath temperature is 1250 and the time of immersion will of course vary depending on the thickness of the base metal and its temperature as it enters the bath. It is desirable to keep the base metal in the bath the shortest practical time since additional time promotes the growth of the alloy layer. For ordinary gauges to be coated, an immersion time of 20 seconds or less is satisfactory. The thickness of the coating may be controlled by pressure rolls at the exit side of the bath or by other available conventional means. It is desirable for the coated product to cool sufliciently for the coating to solidify before contacting rolls or conveying mechanism beyond the finishing rolls. If desired, forced cooling may be used.
While I have shown and described several speciflc embodiments of my invention, it will be understood that these embodiments are merely for the purpose of illustration and description and that various other forms may be devised within the scope of my invention, as defined in the appended claims.
I claim:
1. In the method of hot-dip coating ferrous the step of adding at least .05% beryllium to the aluminum coating bath to substantially reduce the thickness and hardness of the alloy layer.
2. In the method of hot-dip coating ferrous base metal with aluminum, the step of adding between .1 and .6% beryllium to the hot-dip coating bath to materially reduce the thickness and hardness of the alloy layer.
3. In the method of hot-dip coating ferrous base metal with aluminum, the step of adding between .3 and .5% beryllium to the hot-dip coating bath to reduce the thickness and hardness of the alloy layer and obtain a coating having sufficient adherence and ductility to withstand fiat bend tests without flaking or cracking.
4. The method of hot-dip coating ferrous base metal with aluminum comprising adding beryllium in effective amounts from about .1% up to 2% to the molten coating bath, maintaining the molten bath at a temperature below 1300 F. and dipping ferrous base metal having cleaned surfaces therein.
5. A hot-dipped coated product comprising a ferrous metal base and an outer layer of aluminum containing beryllium having a thin relatively soft beryllium-containing iron aluminum alloy layer therebetween and resulting from the process of claim 1.
6. A hot-dipped coated product comprising a ferrous metal base and an outer layer of beryllium-containing aluminum having a thin relatively soft beryllium-containing iron aluminum alloy layer therebetween and resulting from the process of claim 2.
7. A hot-dipped coated product comprising a ferrous metal base and an outer layer of beryllium-containing aluminum having a thin relatively soft beryllium-containing iron aluminum alloy layer therebetween and resulting from the process of claim 3.
8. A hot-dipped coated product comprising a ferrous metal base and an outer layer of beryllium-containing aluminum having a thin rela- 6 tively soft beryllium-containing iron aluminum Number Name Date alloy layer therebetween and resulting from the 1,515,082 Veazey Nov. 11, 1924 process of claim 4. 1,706,130 Ruder Mar. 19, 1929 DANIEL O. GITTINGS. 1,716,943 Archer June 11, 1929 5 1,764,132 Wehr June 17, 1930 REFERENCES CITED 2,135,652 Whitfield Nov. a, 1938 The following references are of record in the 2394-546 Harrington Feb-12, 1946' file Of this patent: OTHER REFERENCES UNITED STATES PATENTS Bass-Beryllium as an alloying component (re- Number Name Date printed from April 1946 issue of Industrial Plas- 1,126,484 Kirby Jan. 26, 1915 tics) 4 pages. 1,254,987 Cooper Jan. 29, 1918

Claims (2)

  1. 4. THE METHOD OF HOT-DIP COATING FERROUS BASE METAL WITH ALUMINUM COMPRISING ADDING BERYLLIUM IN EFFECTIVE AMOUNTS FROM ABOUT .1% UP TO 2% TO THE MOLTEN COATING BATH, MAINTAINING THE MOLTEN BATH AT A TEMPERATURE BELOW 1300* F. AND DIPPING FERROUS BASE METAL HAVING CLEANED SURFACES THEREIN.
  2. 8. A HOT-DIPPED COATED PRODUCT COMPRISING A FERROUS METAL BASE AND AN OUTER LAYER OF BERYLLIUM-CONTAINING ALUMINUM HAVING A THIN RELATIVELY SOFT BERYLLIUM-CONTAINING IRON ALUMINUM ALLOY LAYER THEREBETWEEN AND RESULTING FROM THE PROCESS OF CLAIM 4.
US18727A 1948-04-02 1948-04-02 Aluminum coating of ferrous metal and resulting product Expired - Lifetime US2565768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18727A US2565768A (en) 1948-04-02 1948-04-02 Aluminum coating of ferrous metal and resulting product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US18727A US2565768A (en) 1948-04-02 1948-04-02 Aluminum coating of ferrous metal and resulting product

Publications (1)

Publication Number Publication Date
US2565768A true US2565768A (en) 1951-08-28

Family

ID=21789494

Family Applications (1)

Application Number Title Priority Date Filing Date
US18727A Expired - Lifetime US2565768A (en) 1948-04-02 1948-04-02 Aluminum coating of ferrous metal and resulting product

Country Status (1)

Country Link
US (1) US2565768A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782493A (en) * 1952-01-02 1957-02-26 Kaiser Aluminium Chem Corp Aluminum coated ferrous article
US2819380A (en) * 1953-03-23 1958-01-07 Du Mont Allen B Lab Inc Method and apparatus for making apertured masks
US2826519A (en) * 1953-07-09 1958-03-11 Aluminum Co Of America Aluminum base alloy article
US2826518A (en) * 1953-07-09 1958-03-11 Aluminum Co Of America Aluminum base alloy article
US2883739A (en) * 1951-04-11 1959-04-28 Kaiser Aluminium Chem Corp Composite article
US2908566A (en) * 1956-06-01 1959-10-13 North American Avation Inc Aluminum base alloy
US2937435A (en) * 1956-08-11 1960-05-24 Ver Leichtmetallwerke Gmbh Clad metal body and method of making the same
US3010190A (en) * 1957-02-25 1961-11-28 Kaiser Aluminium Chem Corp A composite metal body of a ferrous base and aluminum base alloy coat
US3044156A (en) * 1954-06-23 1962-07-17 Marshall G Whitfield Temperature resistant body
US3937858A (en) * 1973-02-20 1976-02-10 Metallgesellschaft Aktiengesellschaft Method of and bath for the plating of aluminum or an aluminum alloy on a metallic substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1126484A (en) * 1913-11-28 1915-01-26 John Kirby Method of manufacturing composite metallic articles.
US1254987A (en) * 1917-10-15 1918-01-29 Cooper Res Company Alloy.
US1515082A (en) * 1920-05-08 1924-11-11 Dow Chemical Co Method of making light metal alloys
US1706130A (en) * 1925-09-14 1929-03-19 Gen Electric Heat-resisting material
US1716943A (en) * 1926-11-22 1929-06-11 Aluminum Co Of America Aluminum-beryllium alloy and method of treatment
US1764132A (en) * 1926-09-13 1930-06-17 American Rolling Mill Co Heat-resistant metal sheet
US2135652A (en) * 1937-05-26 1938-11-08 Reynolds Metals Co Process for metal coating
US2394546A (en) * 1942-03-28 1946-02-12 Gen Electric Aluminum base alloy containing copper and beryllium and method of making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1126484A (en) * 1913-11-28 1915-01-26 John Kirby Method of manufacturing composite metallic articles.
US1254987A (en) * 1917-10-15 1918-01-29 Cooper Res Company Alloy.
US1515082A (en) * 1920-05-08 1924-11-11 Dow Chemical Co Method of making light metal alloys
US1706130A (en) * 1925-09-14 1929-03-19 Gen Electric Heat-resisting material
US1764132A (en) * 1926-09-13 1930-06-17 American Rolling Mill Co Heat-resistant metal sheet
US1716943A (en) * 1926-11-22 1929-06-11 Aluminum Co Of America Aluminum-beryllium alloy and method of treatment
US2135652A (en) * 1937-05-26 1938-11-08 Reynolds Metals Co Process for metal coating
US2394546A (en) * 1942-03-28 1946-02-12 Gen Electric Aluminum base alloy containing copper and beryllium and method of making the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2883739A (en) * 1951-04-11 1959-04-28 Kaiser Aluminium Chem Corp Composite article
US2782493A (en) * 1952-01-02 1957-02-26 Kaiser Aluminium Chem Corp Aluminum coated ferrous article
US2819380A (en) * 1953-03-23 1958-01-07 Du Mont Allen B Lab Inc Method and apparatus for making apertured masks
US2826519A (en) * 1953-07-09 1958-03-11 Aluminum Co Of America Aluminum base alloy article
US2826518A (en) * 1953-07-09 1958-03-11 Aluminum Co Of America Aluminum base alloy article
US3044156A (en) * 1954-06-23 1962-07-17 Marshall G Whitfield Temperature resistant body
US2908566A (en) * 1956-06-01 1959-10-13 North American Avation Inc Aluminum base alloy
US2937435A (en) * 1956-08-11 1960-05-24 Ver Leichtmetallwerke Gmbh Clad metal body and method of making the same
US3010190A (en) * 1957-02-25 1961-11-28 Kaiser Aluminium Chem Corp A composite metal body of a ferrous base and aluminum base alloy coat
US3937858A (en) * 1973-02-20 1976-02-10 Metallgesellschaft Aktiengesellschaft Method of and bath for the plating of aluminum or an aluminum alloy on a metallic substrate

Similar Documents

Publication Publication Date Title
US3505043A (en) Al-mg-zn alloy coated ferrous metal sheet
US3343930A (en) Ferrous metal article coated with an aluminum zinc alloy
US4128676A (en) Method of hot-dip coating a ferrous substrate with a zinc-aluminum alloy resistant to intergranular corrosion
US2703766A (en) Process of continuously galvanizing with control of spangle and corrosion
US4456663A (en) Hot-dip aluminum-zinc coating method and product
US2565768A (en) Aluminum coating of ferrous metal and resulting product
JPS5891162A (en) Manufacture of galvanized steel plate
US3505042A (en) Method of hot dip coating with a zinc base alloy containing magnesium and the resulting product
US3245765A (en) Process of improving general corrosion resistance of zinc coated strip
JPS6115948B2 (en)
JP3729233B2 (en) Hot-dip galvanized steel sheet with blackening resistance
US2708304A (en) Aluminum coated articles
US2782493A (en) Aluminum coated ferrous article
JPS5835257B2 (en) High corrosion resistance alloy plated steel products
US3010190A (en) A composite metal body of a ferrous base and aluminum base alloy coat
JPS61166961A (en) Highly corrosion resistant hot-dipped steel sheet
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPH02274851A (en) Zinc alloy for hot dip plating
JP3009269B2 (en) Hot-dip zinc alloy plating coating
JPS6032700B2 (en) Zinc alloy for hot-dip plating
JPS5952947B2 (en) Zinc alloy for hot-dip plating
JPS61179861A (en) Zn alloy hot dipped steel plate having high corrosion resistance
JPH0215152A (en) Hot dip galvanized steel sheet and its production
KR960003730B1 (en) Method for making a galvanized steel sheet with an excellent coating function
JPH04280952A (en) Zn-al alloy plating bath and plating method