JPS6115948B2 - - Google Patents

Info

Publication number
JPS6115948B2
JPS6115948B2 JP5515480A JP5515480A JPS6115948B2 JP S6115948 B2 JPS6115948 B2 JP S6115948B2 JP 5515480 A JP5515480 A JP 5515480A JP 5515480 A JP5515480 A JP 5515480A JP S6115948 B2 JPS6115948 B2 JP S6115948B2
Authority
JP
Japan
Prior art keywords
magnesium
plating
corrosion resistance
steel sheet
discoloration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5515480A
Other languages
Japanese (ja)
Other versions
JPS56152955A (en
Inventor
Hajime Hinoto
Kango Sakai
Katsushi Saito
Motoo Kabeya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5515480A priority Critical patent/JPS56152955A/en
Publication of JPS56152955A publication Critical patent/JPS56152955A/en
Publication of JPS6115948B2 publication Critical patent/JPS6115948B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐食性、密着加工性に優れ経時変色の
ない溶融亜鉛合金メツキ鋼板のメツキ組成に関す
るものである。亜鉛合金メツキ鋼板は現在年間
700万t近く生産され耐久素材として広範囲に使
用されている。しかしながら近年においては、自
動車々体材料で代表されるように腐食し易い環境
で使用される材料に対して従来の亜鉛メツキ鋼板
は品質的に不充分であり耐食性の優れたメツキ鋼
板が強く望まれている。又、現在用いられている
用途についても耐食性向上によつて低付着量化出
来、溶接性、密着加工性等の品質向上に併せて亜
鉛の省資源対策にも連る。この様な目的で過去多
くの研究が行われているが、いずれも耐食性向上
は果せるが、添加元素の添加量が多く亜鉛メツキ
鋼板を全く異質なものにするため特定の用途にし
か実用化されていない。本発明は、亜鉛メツキの
一般的性質を変えない微量の添加で耐食性を向上
させる合金メツキ鋼板の組成である。 溶融亜鉛メツキ鋼板のメツキ組成においてマグ
ネシウムを添加したものは微量の添加で非常に優
れた耐食性を示す。日本工業規格(JIS)Z―
2371で規定されている塩水噴霧試験(S.S.T)に
おいては、第1図に示す如くマグネシウムを含ま
ない場合に比べ数倍から数十倍の耐食性を示すよ
うになる。第1図は、ゼンジマー法によつて製造
した亜鉛メツキ鋼板の耐食性を示したもので、第
1図中の曲線は、調合亜鉛号浴(分析組成A
0.15%、Pb0.03%、Fe0.02%)450℃に第1図横
軸に相当するマグネシウムを添加溶解させた浴か
ら得たメツキ鋼板の塩水噴霧試験72時間後の結果
である。第1図の縦軸は、試験前後の重量から算
出した腐食減量を示す。耐食性はマグネシウム
0.1%以上から効果が出始め2%で飽和する。2
%超のマグネシウム添加は意味がなくむしろ密着
加工性、製造面で悪影響を及ぼす。又アルミニウ
ムは0.1〜1.0%の添加によつて加工性の悪い鉄亜
鉛合金層の成長が抑制されて密着性の良いメツキ
鋼板が得られる。0.1%未満では鉄亜鉛合金層を
抑制出来ず密着性が悪い。又、1.0%超では、メ
ツキの粒界腐食が鉛等の不純物によつて生じ易く
好ましくない。 本発明はマグネシウムの耐食性向上、アルミニ
ウムの密着性、酸化防止効果を利用したメツキ鋼
板に関して、両者の欠点を改善し実用化出来るメ
ツキ組成を提供するものである。即ちマグネシウ
ムの添加は非常に優れた耐食性を付与するが、反
面酸素との親和力が強いため、製造時におけるト
ツプドロスの増大、酸化による粘性増大による目
付制御不良、メツキ表面酸化および皮張りによる
外観不良等製造面、品質面で欠点がある。これ等
の問題点について本発明者らはメツキ時の雰囲気
中の酸素濃度を制御することによつて解決した。
しかしながら本発明者らはマグネシウム添加の研
究を進める過程でメツキ製品が経時によつて変色
し易い課題に直面しその解決に研究を重ね本発明
を見出した。 マグネシウム添加亜鉛合金メツキ鋼板の変色は
高温多質な環境ほど発生し易く、メツキの耐食性
には影響しない。しかしながら変色はメツキ製品
としての価値を低下せしめるためその解決は重要
である。経時変色は、マグネシウムを単独に添加
した場合にも発生するが、アルミニウムとマグネ
シウムを合せて添加した場合発生し易く、色調も
強くなる。アルミニウムは前述した如く鉄亜鉛合
金層の成長抑制、浴の酸化防止から通常0.1%以
上添加されるため変色が生ずる条件は揃つてい
る。変色の原因は、メツキ表面の酸化および水和
によつて生じた酸化物、炭酸塩、水酸化物を主成
分とする緻密な腐食生成物の薄膜によつて光学的
に観察されるものでメツキ製品の品質への影響は
無視出来る。マグネシウム、アルミニウムの添加
は緻密な連続薄膜の形成を速めると考えられる。
従つて、メツキ表面の変色を防止するためにはメ
ツキ表面に生成する皮膜を制御する必要がある。
本発明はメツキ浴に特定元素を添加することによ
つてメツキ表面の変色を防止するために種々の添
加実験および解析を重ねた結果、ケイ素が変色防
止に効果的であることを見出した。これらの元素
であるマグネシウムおよびアルミニウムによつて
吸収される。これらの金属の変色防止に対する機
構は明らかではないが凝固過程の表面濃縮もしく
はマグネシウム、アルミニウム、亜鉛との金属間
化合物を形成することに起因していると考えられ
る。従つて、理論上ケイ素の添加量はマグネシウ
ムとの金属間化合物即ちMg2Si生成相当量で効果
が最大に発揮される。しかしながら通常のメツキ
浴温430〜450℃においては溶解量に限界があるた
め実用的な添加量範囲は0.01〜0.5%である。0.01
未満の添加量では、マグネシウム0.1%以上に対
して効果がなく、0.5%超ではケイ素は溶解せず
にメツキ浴表面に浮遊するためメツキの外観を悪
化させる。 本発明の溶融合金メツキ鋼板を得る方法として
は、連続亜鉛メツキ鋼板としてゼンジマー法、無
酸化炉方式、クツクノートマン、脱脂酸洗方式の
いずれも適用出来るが、フラツクスを用いる方法
はフラツクスと浴成分特にマグネシウムが反応し
生成した浮遊ドロスが作業性を悪くするため、ラ
イン内焼鈍型のゼンジマー、無酸化炉方式が望ま
しい。浴成分は母合金を添加して制御することが
望ましい。又、マグネシウムの酸化を防止する目
的でメツキが未凝固状態にあるメツキ浴面から鋼
板の表面の一部又は全ての雰囲気の酸素濃度を制
御する方法が最も良い。酸素濃度の制御法として
は特開昭54―65138号に記載された方法が一例と
して挙げることが出来る。 以下本発明の実施例を示す。 実施例 0.34mmの冷延鋼板(成分C:0.015、Si:0.02、
Mn:0.12、P:0.02、S:0.01、A:0.01%)
を用いてゼンジマー式の溶融メツキパイロツトラ
イン(板巾50m/m、ラインスピード20m/分)
で溶融合金メツキを行つた。得られたメツキ鋼板
の品質を試験して第1表に示す結果を得た。尚、
各条件は次に示す。 パイロツトラインの条件:酸化炉780℃、還元
炉900℃、浴温450℃、浴面から500mmの高さまで
窒素ガスを吹き込み酸素濃度を10ppm以下に制
御した。 品質試験:塩水噴霧はJIS―Z―2371に準拠し
て3日間試験した後、白錆を除去し重量差から腐
食減量(g/m23日間)で示す。経時黒変はカツ
トサンプルを室内に暴露し黒変を目視評価した。
湿潤試験はJISZ0228法に準拠(49℃95%)して
7日間試験した後黒変を目視評価した。
The present invention relates to a plating composition of a hot-dip zinc alloy plated steel sheet that has excellent corrosion resistance and adhesion workability and does not discolor over time. Zinc alloy plated steel sheets are currently sold annually.
Nearly 7 million tons have been produced and it is widely used as a durable material. However, in recent years, conventional galvanized steel sheets are insufficient in quality for materials used in corrosive environments, such as automobile body materials, and galvanized steel sheets with excellent corrosion resistance are strongly desired. ing. In addition, for the applications currently used, improved corrosion resistance can reduce the amount of zinc deposited, and in addition to improving quality such as weldability and adhesion workability, it can also lead to resource saving measures for zinc. Many studies have been conducted in the past for this purpose, but all of them can improve corrosion resistance, but because the amount of added elements is large and makes galvanized steel sheets completely different, they have only been put to practical use in specific applications. Not yet. The present invention is a composition of an alloy-plated steel sheet that improves corrosion resistance with the addition of a trace amount that does not change the general properties of the galvanized steel sheet. Hot-dip galvanized steel sheets with magnesium added to the plating composition exhibit excellent corrosion resistance even with the addition of a small amount of magnesium. Japanese Industrial Standard (JIS) Z-
In the salt spray test (SST) specified in 2371, as shown in Figure 1, the corrosion resistance is several to several tens of times higher than that of the case without magnesium. Figure 1 shows the corrosion resistance of galvanized steel sheets manufactured by the Sendzimer method.
0.15%, Pb 0.03%, Fe 0.02%) These are the results after 72 hours of a salt water spray test on a plated steel sheet obtained from a bath in which magnesium was added and dissolved at 450°C and corresponds to the horizontal axis in Figure 1. The vertical axis in FIG. 1 shows the corrosion loss calculated from the weight before and after the test. Corrosion resistance is magnesium
The effect begins to appear at 0.1% or higher and saturates at 2%. 2
Addition of more than % of magnesium is meaningless and rather has a negative effect on adhesion processability and manufacturing. Further, by adding aluminum in an amount of 0.1 to 1.0%, the growth of the iron-zinc alloy layer, which has poor workability, is suppressed, and a plated steel sheet with good adhesion can be obtained. If it is less than 0.1%, the iron-zinc alloy layer cannot be suppressed and adhesion is poor. Moreover, if it exceeds 1.0%, intergranular corrosion of plating tends to occur due to impurities such as lead, which is not preferable. The present invention relates to a plated steel sheet that utilizes the improved corrosion resistance of magnesium and the adhesion and antioxidation effect of aluminum, and provides a plated composition that can improve the drawbacks of both and can be put into practical use. In other words, the addition of magnesium provides extremely excellent corrosion resistance, but on the other hand, it has a strong affinity with oxygen, resulting in increased top loss during manufacturing, poor control of basis weight due to increased viscosity due to oxidation, and poor appearance due to oxidation of the plating surface and skinning. There are drawbacks in terms of manufacturing and quality. The present inventors solved these problems by controlling the oxygen concentration in the atmosphere during plating.
However, in the process of researching the addition of magnesium, the present inventors encountered the problem that plating products tend to discolor over time, and after conducting research to solve this problem, they discovered the present invention. Discoloration of magnesium-added zinc alloy plated steel sheets occurs more easily in high temperature and rich environments, and does not affect the corrosion resistance of the plate. However, since discoloration reduces the value of the metallized product, it is important to solve the problem. Discoloration over time occurs even when magnesium is added alone, but it is more likely to occur when aluminum and magnesium are added together, and the color tone becomes stronger. As mentioned above, aluminum is usually added in an amount of 0.1% or more to inhibit the growth of the iron-zinc alloy layer and prevent oxidation of the bath, so the conditions for discoloration are met. The cause of discoloration is optically observed as a thin film of dense corrosion products mainly composed of oxides, carbonates, and hydroxides produced by oxidation and hydration on the plating surface. The impact on product quality is negligible. It is believed that the addition of magnesium and aluminum accelerates the formation of a dense continuous thin film.
Therefore, in order to prevent discoloration of the plating surface, it is necessary to control the film formed on the plating surface.
The present invention has conducted various addition experiments and analyzes to prevent discoloration of the plating surface by adding a specific element to the plating bath, and as a result, it has been found that silicon is effective in preventing discoloration. Absorbed by these elements magnesium and aluminum. Although the mechanism for preventing discoloration of these metals is not clear, it is thought to be due to surface concentration during the solidification process or the formation of intermetallic compounds with magnesium, aluminum, and zinc. Therefore, theoretically, the effect is maximized when the amount of silicon added is equivalent to the formation of an intermetallic compound with magnesium, that is, Mg 2 Si. However, since there is a limit to the amount dissolved at a normal plating bath temperature of 430 to 450°C, the practical range of addition is 0.01 to 0.5%. 0.01
If the amount added is less than 0.1%, it will not be effective for magnesium at 0.1% or more, and if it exceeds 0.5%, silicon will not dissolve and float on the surface of the plating bath, worsening the appearance of the plating. As a method for obtaining the molten alloy plated steel sheet of the present invention, any of the Sendzimer method, non-oxidation furnace method, drying method, and degreasing and pickling method can be applied as a continuous galvanized steel sheet, but the method using flux uses flux and bath components. In particular, floating dross produced by the reaction of magnesium impairs workability, so in-line annealing type Sendzimer and non-oxidation furnace systems are desirable. It is desirable to control the bath components by adding a master alloy. Furthermore, for the purpose of preventing oxidation of magnesium, the best method is to control the oxygen concentration in the atmosphere of a part or all of the surface of the steel sheet from the surface of the plating bath where the plating is in an unsolidified state. An example of a method for controlling oxygen concentration is the method described in JP-A-54-65138. Examples of the present invention will be shown below. Example 0.34mm cold rolled steel plate (component C: 0.015, Si: 0.02,
Mn: 0.12, P: 0.02, S: 0.01, A: 0.01%)
Sendzimer type melt plating pilot line (width 50m/m, line speed 20m/min) using
I did the molten metal plating. The quality of the plated steel plate obtained was tested and the results shown in Table 1 were obtained. still,
Each condition is shown below. Pilot line conditions: oxidation furnace at 780°C, reduction furnace at 900°C, bath temperature at 450°C, nitrogen gas was blown to a height of 500 mm from the bath surface to control the oxygen concentration to 10 ppm or less. Quality test: Salt spray was tested for 3 days in accordance with JIS-Z-2371, white rust was removed, and the weight difference was expressed as corrosion loss (g/m 2 for 3 days). For blackening over time, cut samples were exposed indoors and blackening was visually evaluated.
The moisture test was conducted in accordance with the JISZ0228 method (49°C, 95%) for 7 days, and then blackening was visually evaluated.

【表】 以上説明したように本発明による溶融亜鉛合金
メツキ鋼板は耐食性が良く、経時変化による変色
もなかつた。
[Table] As explained above, the hot-dip zinc alloy plated steel sheet according to the present invention had good corrosion resistance and did not discolor due to aging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゼンジマー方式によつて製造した本発
明溶融亜鉛メツキ鋼板の塩水噴霧試験結果を示す
図表である。
FIG. 1 is a chart showing the results of a salt spray test on a hot-dip galvanized steel sheet of the present invention manufactured by the Sendzimer method.

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシウム0.1〜2.0%およびアルミニウム
0.1〜1.0%を含み第三合金成分としてケイ素0.01
〜0.5%を含有することを特徴とする溶融亜鉛合
金メツキ鋼板のメツキ組成物。
1 Magnesium 0.1-2.0% and aluminum
Contains 0.1-1.0% silicon as the third alloy component 0.01
A plating composition for a hot-dip zinc alloy plating steel sheet, characterized in that it contains ~0.5%.
JP5515480A 1980-04-25 1980-04-25 Hot dipping composition for steel sheet coated with zinc alloy by hot dipping Granted JPS56152955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5515480A JPS56152955A (en) 1980-04-25 1980-04-25 Hot dipping composition for steel sheet coated with zinc alloy by hot dipping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5515480A JPS56152955A (en) 1980-04-25 1980-04-25 Hot dipping composition for steel sheet coated with zinc alloy by hot dipping

Publications (2)

Publication Number Publication Date
JPS56152955A JPS56152955A (en) 1981-11-26
JPS6115948B2 true JPS6115948B2 (en) 1986-04-26

Family

ID=12990826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5515480A Granted JPS56152955A (en) 1980-04-25 1980-04-25 Hot dipping composition for steel sheet coated with zinc alloy by hot dipping

Country Status (1)

Country Link
JP (1) JPS56152955A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000039A1 (en) * 1982-06-15 1983-01-05 Nippon Soda Co Molten zinc-plated alloy and plated steel strips and steel materials coated with said alloy
US4401727A (en) * 1982-06-23 1983-08-30 Bethlehem Steel Corporation Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method
JPS6052569A (en) * 1983-08-31 1985-03-25 Taiyo Seikou Kk Plated steel sheet for colored galvanized steel sheet
JPS60125360A (en) * 1983-12-12 1985-07-04 Nippon Soda Co Ltd Zinc alloy hot-dipped steel material and its production and flux composition
JP2627788B2 (en) * 1988-09-07 1997-07-09 新日本製鐵株式会社 High corrosion resistance hot-dip zinc-aluminum alloy coated steel sheet with excellent surface smoothness
FR2697031B1 (en) * 1992-10-21 1994-12-16 Lorraine Laminage Process for galvanizing steel products and steel products thus obtained.
JP3113188B2 (en) * 1995-11-15 2000-11-27 新日本製鐵株式会社 High workability hot-dip Zn-Mg-Al alloy plated steel sheet
JP4834922B2 (en) * 2001-06-14 2011-12-14 住友金属工業株式会社 Method for producing hot-dip galvanized steel sheet
JP2005082834A (en) * 2003-09-05 2005-03-31 Nippon Steel Corp Highly corrosion-resistant hot-dip plating steel sheet and manufacturing method therefor
KR101439694B1 (en) 2012-12-26 2014-09-12 주식회사 포스코 Zn-Mg ALLOY COATED STEEL SHEET AND MEHTDOD FOR MANUFACTURING THE SAME
KR102266075B1 (en) * 2017-03-17 2021-06-18 닛폰세이테츠 가부시키가이샤 galvanized steel

Also Published As

Publication number Publication date
JPS56152955A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
US3505043A (en) Al-mg-zn alloy coated ferrous metal sheet
US4029478A (en) Zn-Al hot-dip coated ferrous sheet
JP2001295015A (en) HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
JP4199404B2 (en) High corrosion resistance plated steel sheet
JPS648702B2 (en)
US4456663A (en) Hot-dip aluminum-zinc coating method and product
CN114787411B (en) Hot dip galvanized steel sheet excellent in bending workability and corrosion resistance and method for producing same
KR900700648A (en) Hot-dip zinc-aluminum alloy plated steel sheet for prepainted steel sheet, preparation method thereof and prepainted steel sheet
JPS6115948B2 (en)
US3505042A (en) Method of hot dip coating with a zinc base alloy containing magnesium and the resulting product
US4056657A (en) Zinc-aluminum eutectic alloy coated ferrous strip
KR101568474B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BLACKENING-RESISTANCE AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE SAME
JPS6350421B2 (en)
JP2007107050A (en) HOT DIP Al BASED PLATED STEEL SHEET HAVING EXCELLENT WORKABILITY AND METHOD FOR PRODUCING THE SAME
JP2848250B2 (en) Hot-dip galvanized steel sheet
JPS648704B2 (en)
JPH11199956A (en) Zinc-aluminum-magnesium alloy for hot dip coating excellent in corrosion resistance
JP4696364B2 (en) Hot-dip galvanized steel sheet with excellent corrosion resistance and surface appearance
JP3126622B2 (en) Rustproof steel plate for fuel tank
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPS60204875A (en) Manufacture of alumin hot dip aluminum coated steel sheet
JPH0397840A (en) Alloying hot dip galvanized steel sheet
CA1065204A (en) Zinc-aluminum eutectic alloy coating process and article
JPS5952947B2 (en) Zinc alloy for hot-dip plating
KR100478725B1 (en) Manufacturing Method of High Strength Alloying Hot-Dip Galvanized Steel Sheet with Excellent Plating Adhesion and Alloying Process