JP2002098656A - On-line measurement method and device of amount of adhesion of metal phase contained in plated layer - Google Patents

On-line measurement method and device of amount of adhesion of metal phase contained in plated layer

Info

Publication number
JP2002098656A
JP2002098656A JP2000293792A JP2000293792A JP2002098656A JP 2002098656 A JP2002098656 A JP 2002098656A JP 2000293792 A JP2000293792 A JP 2000293792A JP 2000293792 A JP2000293792 A JP 2000293792A JP 2002098656 A JP2002098656 A JP 2002098656A
Authority
JP
Japan
Prior art keywords
ray
plating layer
metal phase
amount
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000293792A
Other languages
Japanese (ja)
Inventor
Toru Fujimura
亨 藤村
Akira Yamamoto
山本  公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000293792A priority Critical patent/JP2002098656A/en
Priority to KR1020027006225A priority patent/KR20020060741A/en
Priority to PCT/JP2001/008093 priority patent/WO2002025257A1/en
Priority to CN01802854A priority patent/CN1392956A/en
Priority to EP01970121A priority patent/EP1233265A4/en
Priority to CA002390236A priority patent/CA2390236A1/en
Priority to US10/130,711 priority patent/US6821361B2/en
Priority to TW090123387A priority patent/TW500922B/en
Publication of JP2002098656A publication Critical patent/JP2002098656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the measurement accuracy of the amount of adhesion of a metallic phase by improving X-ray diffraction intensity from the metallic phase in a method for measuring the amount of adhesion of the metallic phase contained in a plated layer using the X-ray diffraction method. SOLUTION: By measuring diffraction X rays from the metallic phase contained in the plated layer with a specific range on a Debey ring by the X rays, the number of count of the diffraction X rays per measurement time by a detection means is increased. Also, by integrating the obtained diffraction X-ray intensity data, the X-ray intensity data are improved and hence the measurement accuracy of the amount of adhesion of the metallic phase is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、めっき層に含まれ
る金属相、特にはめっき層に2以上含まれる金属相のう
ちの所望の金属相の付着量をX線回折手法により、非破
壊状態で正確に測定する方法に関する。
[0001] The present invention relates to a method for measuring the amount of a metal phase contained in a plating layer, in particular, a desired metal phase among two or more metal phases contained in a plating layer, in a nondestructive state by an X-ray diffraction technique. Related to the method for accurate measurement.

【0002】[0002]

【従来の技術】複数の金属相、特に合金相を含むめっき
の品質特性(加工時の耐剥離性、耐食性等)はめっき層
中の各金属相の付着量に依存して著しく変動する。従っ
て、高品質のめっき製品を製造するためには、めっき層
中の各金属相の付着量を正確に測定し、合金化処理等の
熱処理条件等の製造条件を管理することが重要である。
複数の金属相を含むめっき層を有するめっき製品の代表
例として、めっき層中に複数の異なるFe−Zn合金相
を有する合金化溶融亜鉛めっき鋼板がある。合金化溶融
亜鉛めっき鋼板は、溶接性、塗装後の耐食性および塗膜
密着性等の品質特性を向上させる目的で、溶融亜鉛めっ
き鋼板をめっき後に加熱して母材である鋼板のFeとめ
っき層のZnを相互拡散させ、めっき層を積極的に合金
化(合金化処理)させたものである。なお、合金化を積
極的に実施しない溶融亜鉛めっき鋼板においても、前記
Fe−Zn合金相が存在する場合があり、この場合、品
質特性に影響を及ぼす。合金化溶融亜鉛めっき鋼板のめ
っき層に含まれる金属相は、Fe−Zn合金相のうちδ
1 相(FeZn7 )を主体としたものとなるが、加熱処
理の過不足により鋼板側にはΓ相(Fe3 Zn10)、め
っき表面にはζ相(FeZn13)が少量存在する。合金
化溶融亜鉛めっき鋼板のめっき層におけるδ1 相、Γ相
およびζ相の分布の一例を合金化溶融亜鉛めっき鋼板の
めっき層の断面図として図1に示す。めっき層の品質特
性はめっき層中のΓ相およびζ相の付着量に依存して著
しく変動する。従って、高品質の合金化溶融亜鉛めっき
鋼板を製造するためには、Γ相およびζ相の付着量を正
確に測定し、加熱処理条件、例えば加熱温度または加熱
時間を制御して、常にこれらの相の付着量を適切に管理
することが重要である。
2. Description of the Related Art The quality characteristics (eg, peeling resistance and corrosion resistance during processing) of a plating containing a plurality of metal phases, particularly an alloy phase, fluctuate significantly depending on the amount of each metal phase in the plating layer. Therefore, in order to produce a high quality plated product, it is important to accurately measure the amount of each metal phase in the plating layer and to control production conditions such as heat treatment conditions such as alloying treatment.
As a typical example of a plating product having a plating layer containing a plurality of metal phases, there is an alloyed hot-dip galvanized steel sheet having a plurality of different Fe—Zn alloy phases in the plating layer. For the purpose of improving quality properties such as weldability, corrosion resistance after painting and coating film adhesion, the alloyed hot-dip galvanized steel sheet is heated after hot-dip galvanized steel sheet, and the Fe and plating layer of the base steel sheet are heated. Are mutually diffused, and the plating layer is positively alloyed (alloyed). In addition, even in the hot-dip galvanized steel sheet in which alloying is not actively performed, the Fe-Zn alloy phase may be present, and in this case, quality characteristics are affected. The metal phase contained in the plating layer of the galvannealed steel sheet is δ of the Fe-Zn alloy phase.
Although one phase (FeZn 7 ) is mainly used, a 過 phase (Fe 3 Zn 10 ) is present on the steel sheet side and a small amount of ζ phase (FeZn 13 ) is present on the plating surface due to excessive or insufficient heat treatment. FIG. 1 is a cross-sectional view of a plated layer of an alloyed hot-dip galvanized steel sheet, showing an example of the distribution of δ 1 phase, Γ phase, and ζ phase in the plated layer of the galvannealed steel sheet. The quality characteristics of the plating layer fluctuate significantly depending on the amount of the attached phase I and II in the plating layer. Therefore, in order to produce high quality alloyed hot-dip galvanized steel sheet, it is necessary to accurately measure the adhesion amount of the Γ phase and 、 phase and to control the heat treatment conditions, for example, the heating temperature or the heating time, so that these It is important to properly control the amount of phase deposition.

【0003】合金化溶融亜鉛めっき鋼板のめっき層に含
まれる金属相の付着量を比較的精度よく測定することが
可能な方法として、これまでに例えば特開平9−334
55号公報に開示されている方法がある。この方法は、
母材表面のめっき層側に形成された複数の合金相を有す
る合金化めっき金属板にX線を照射し、得られる回折X
線強度を用いて合金化めっき層の合金化度を測定するに
際し、試験材の前記各合金相および前記母材の所定の結
晶面間隔に対応する回折X線強度測定値と、同一めっき
層構造の基準材についての前記所定の結晶面間隔に対応
する回折X線の理論強度式とを用い、試験材の付着量を
求め、合金化度を算出するものである。しかし、このよ
うな回折X線を用いた測定法では、蛍光X線を用いた測
定法に比較してバックグランド成分が大きいという問題
がある。バックグランド成分は主に、他のピークの重
畳、コンプトン散乱X線、蛍光X線であり、これらのう
ち蛍光X線は、薄膜フィルターを用いることによりある
程度除去できるが、他のピークの重畳、コンプトン散乱
X線、エネルギーの近接した蛍光X線を完全に除去する
ことは難しい。これは上記合金化溶融亜鉛めっき鋼板の
めっき層に含まれるΓ相およびζ相の測定のように、複
数の金属相を含むめっき層中に微量に含まれる金属相の
付着量を測定する際に特に問題となる。複数の金属相を
含むめっき層に対する回折X線の使用では、上述した他
のピークの重畳が発生しやすく、かつ微量相からの回折
X線強度自体が弱いためである。さらに、めっき鋼板の
製造時のめっき処理工程のようなオンライン表面処理工
程中での測定または短時間で測定結果をフィードバック
することが必要とされる場合には、シンチレーションカ
ウンターでの検出時間を長くして、回折X線のカウント
数を増やすことができないため上記の問題が顕著とな
る。上記特開平9−33445号の発明では、適切な理
論強度式の設定により上記問題に対処しているが、根本
的な問題である回折X線強度が弱い点は何ら解消できて
いない。
As a method capable of relatively accurately measuring the adhesion amount of a metal phase contained in a plating layer of an alloyed hot-dip galvanized steel sheet, for example, Japanese Patent Application Laid-Open No. 9-334 discloses a method.
There is a method disclosed in Japanese Patent Publication No. 55-55. This method
X-rays are irradiated on the alloyed plated metal plate having a plurality of alloy phases formed on the plating layer side of the base material surface, and the obtained diffraction X
When measuring the degree of alloying of the alloyed plating layer using the line strength, the diffraction X-ray intensity measurement values corresponding to the predetermined crystal plane spacings of the alloy phases and the base material of the test material, and the same plating layer structure And the theoretical intensity formula of the diffracted X-ray corresponding to the above-mentioned predetermined crystal plane spacing for the reference material (1). However, such a measuring method using diffracted X-rays has a problem that the background component is large as compared with a measuring method using fluorescent X-rays. Background components are mainly superimposed other peaks, Compton scattered X-rays, and fluorescent X-rays. Among these, fluorescent X-rays can be removed to some extent by using a thin film filter. It is difficult to completely remove scattered X-rays and fluorescent X-rays having close energy. This is useful when measuring the amount of metal phase contained in traces in a plating layer containing multiple metal phases, such as the measurement of the Γ phase and the ζ phase contained in the plating layer of the galvannealed steel sheet. This is particularly problematic. This is because the use of diffracted X-rays for a plating layer containing a plurality of metal phases tends to cause the above-mentioned superimposition of other peaks, and the intensity of diffracted X-rays from trace phases is itself weak. In addition, if it is necessary to perform measurement in an online surface treatment step such as a plating step in the production of plated steel sheets or to feed back measurement results in a short time, increase the detection time in the scintillation counter. Therefore, the above problem becomes significant because the number of diffraction X-rays cannot be increased. In the invention of Japanese Patent Application Laid-Open No. 9-33445, the above problem is dealt with by setting an appropriate theoretical intensity formula, but the fundamental problem of weak diffraction X-ray intensity cannot be solved at all.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記事情に
鑑み、めっき層に含まれる金属相からの回折X線強度を
高め、それによりめっき層に含まれる金属相の付着量の
測定精度を向上させ、もって、高品質のめっき製品の製
造に寄与することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention increases the intensity of diffraction X-rays from a metal phase contained in a plating layer, thereby improving the measurement accuracy of the adhesion amount of the metal phase contained in the plating layer. The purpose is to improve and thereby contribute to the manufacture of high quality plated products.

【0005】[0005]

【課題を解決するための手段】上述したように、回折X
線を用いた測定では、バックグランド成分が蛍光X線を
用いた方法に比べて多く、特開平9−33445号公報
に記載されているように、各合金相の回折X線を該当す
るデバイ環上の1点で検出する方法では、該位置で測定
される回折X線が必ずしも十分な強度を有することは保
証されておらず、測定精度の向上は望めなかった。これ
は特に、複数の合金相を含むめっき層中に微量に存在し
ている薄い相の付着量をオンライン測定する場合に特に
顕著な問題であった。本発明者らは前記課題を解決する
ため鋭意研究を行い、デバイ環上の所定範囲に渡って回
折X線を測定することにより、X線強度を高めることが
できることを確認した。ここで、デバイ環上の所定の範
囲に渡って回折X線を測定する方法の例としては、デバ
イ環の一定範囲に渡って検出できる大きさを持った検出
器を用いる方法又はシンチレーションカウンターをデバ
イ環の一定範囲に渡ってスキャンする方法が挙げられ
る。前者の方法は、測定時間当たりの回折X線カウント
数を増やすことを理由に、後者の方法はスキャンさせて
測定した回折強度を積算すること及び1点で測定する場
合に比較して十分な回折強度を得る可能性が格段に高く
なることを理由に、X線回折強度を効果的に高めること
が出来るのである。本発明はこの知見に基づくものであ
り、その構成は以下のとおりである。 (1)X線回折法を用いて、めっき層に含まれる金属相
の付着量を測定する方法において、めっき層に含まれる
金属相からの回折X線を、デバイ環上の所定の範囲に渡
って測定し、得られる回折X線強度データを積算するこ
とを特徴とするめっき層に含まれる金属相の付着量の測
定方法。 (2)前記金属相が合金相である(1)のめっき層に含
まれる金属相の付着量の測定方法。 (3)前記金属相が2以上の相からなる(1)または
(2)のめっき層に含まれる金属相の付着量の測定方
法。 (4)前記2以上の相のうちの1以上の相の付着量を測
定することを特徴とする(3)のめっき層に含まれる金
属相の付着量の測定方法。 (5)前記めっきが溶融亜鉛めっき又は合金化溶融亜鉛
めっきであることを特徴とする(1)ないし(4)のめ
っき層に含まれる金属相の付着量の測定方法。 (6)前記測定を鋼板のオンライン表面処理を行う工程
中に行うことを特徴とする(1)ないし(5)のいずれ
かに記載のめっき層に含まれる金属相の付着量の測定方
法。 (7)めっき鋼板にX線ビームを照射するX線源と、め
っき層に含まれる金属相からの回折X線をデバイ環に沿
って所定の範囲に渡って検出する検出手段と、該検出手
段で得られるX線強度データを積算するデータ積算計と
を備える金属相量の測定装置。 (8)溶融亜鉛めっき層又は合金化溶融亜鉛めっき層に
含まれる金属相の付着量を測定することを特徴とする
(7)のめっき層に含まれる金属相の付着量の測定装
置。 (9)(1)の測定方法でめっき層に含まれる金属相の
付着量を測定し、その結果を用いて合金化処理条件を制
御することを特徴とする合金化溶融亜鉛めっき鋼板の製
造方法。
As described above, diffraction X
In the measurement using X-rays, the background component is larger than the method using fluorescent X-rays, and as described in JP-A-9-33445, the diffraction X-rays of each alloy phase are converted to the corresponding Debye ring. In the method of detecting at the above one point, it is not guaranteed that the diffracted X-ray measured at the position has a sufficient intensity, and improvement of the measurement accuracy cannot be expected. This is a particularly significant problem when online measuring the amount of a thin phase present in a trace amount in a plating layer containing a plurality of alloy phases. Means for Solving the Problems The present inventors conducted intensive research to solve the above-mentioned problems, and confirmed that X-ray intensity can be increased by measuring diffracted X-rays over a predetermined range on the Debye ring. Here, as an example of the method of measuring the diffracted X-rays over a predetermined range on the Debye ring, a method using a detector having a size that can be detected over a certain range of the Debye ring or a scintillation counter is used. There is a method of scanning over a certain range of the ring. The former method increases the number of diffracted X-rays per measurement time, and the latter method integrates the measured diffraction intensities and scans the diffraction intensity more than when measuring at one point. The X-ray diffraction intensity can be effectively increased because the possibility of obtaining the intensity is significantly increased. The present invention is based on this finding, and the configuration is as follows. (1) In the method of measuring the amount of the metal phase contained in the plating layer by using the X-ray diffraction method, diffracted X-rays from the metal phase contained in the plating layer are spread over a predetermined range on the Debye ring. A method for measuring the amount of adhesion of a metal phase contained in a plating layer, wherein the obtained data is integrated and the obtained diffraction X-ray intensity data is integrated. (2) The method for measuring the adhesion amount of a metal phase contained in a plating layer according to (1), wherein the metal phase is an alloy phase. (3) The method according to (1) or (2), wherein the metal phase comprises two or more phases. (4) The method for measuring the adhesion amount of a metal phase contained in a plating layer according to (3), wherein the adhesion amount of one or more phases of the two or more phases is measured. (5) The method according to any one of (1) to (4), wherein the plating is galvanizing or galvannealing. (6) The method according to any one of (1) to (5), wherein the measurement is performed during a step of performing an on-line surface treatment of the steel sheet. (7) An X-ray source for irradiating the plated steel sheet with an X-ray beam, detection means for detecting diffracted X-rays from a metal phase contained in the plating layer over a predetermined range along the Debye ring, and the detection means And a data integrator for integrating the X-ray intensity data obtained in step (a). (8) The apparatus for measuring the amount of metal phase contained in a galvanized layer according to (7), wherein the amount of metal phase contained in the galvanized layer or the alloyed galvanized layer is measured. (9) A method for producing an alloyed hot-dip galvanized steel sheet, comprising measuring the amount of the metal phase contained in the plating layer by the measurement method of (1), and controlling the alloying treatment conditions using the result. .

【0006】本発明の方法および装置は、上記構成によ
り、めっき層に含まれる金属相からの回折X線を、デバ
イ環上の所定の範囲に渡って測定する。この測定方法に
より金属相の付着量の測定精度が向上する。本発明の方
法および装置は上記作用を実現するため、デバイ環上の
所定の範囲に渡って回折X線を検出する。検出方法の例
としては、デバイ環の一定範囲に渡って検出できる大き
さを持った検出器を用いる方法が好ましいが、シンチレ
ーションカウンターをスキャンするような方法を用いて
もよい。このような回折X線を一定範囲に渡って検出す
ることができる検出器の例としては、日本金属学会誌2
1巻(1979)79−83頁等に記載されている位置
敏感型比例検出器がある。さらに、イメージングプレー
トのようなX線の積分型の2次元検出手段を用いてもよ
い。
According to the method and apparatus of the present invention, diffraction X-rays from a metal phase contained in a plating layer are measured over a predetermined range on a Debye ring by the above configuration. This measurement method improves the measurement accuracy of the amount of metal phase attached. The method and apparatus of the present invention detect diffracted X-rays over a predetermined range on the Debye ring to achieve the above-described operation. As an example of the detection method, a method using a detector having a size capable of detecting over a certain range of the Debye ring is preferable, but a method of scanning a scintillation counter may be used. Examples of such a detector that can detect such diffracted X-rays over a certain range include:
1 (1979), pp. 79-83 and the like. Further, an integral two-dimensional X-ray detecting means such as an imaging plate may be used.

【0007】[0007]

【発明の実施の形態】以下、図面を参照して本発明を更
に詳細に説明するが、本発明はこれらの例に限定されな
い。本発明のめっき層に含まれる金属相の付着量の測定
方法では、めっき層に含まれる金属相からの回折X線
を、デバイ環上の所定の範囲に渡って測定することによ
り、検出手段における測定時間当たりの回折X線のカウ
ント数が増加し、得られるX線強度データを積算するこ
とでX線強度データが高められ、その結果、金属相の付
着量の測定精度が向上する。本発明の測定方法は、複数
の金属相が含まれるめっき層中に微量に含まれる金属相
を測定する場合のように、バックグランド成分が多く、
かつ測定対象の金属相の回折X線の相対強度が顕著に弱
い場合でも、短時間で対象とする金属相の付着量を正確
に測定することができる。これはオンライン測定のよう
に短時間で測定データをフィードバックすることが必要
とされる状況で特に有効である。図2は、本発明の測定
方法における、X線源からのX線の照射から検出手段で
の回折X線の検出までの関係を示す。図2において、X
線源11からスリット12を介して照射されたX線は、
鋼板の表面13に入射し金属相(図示していない)によ
って回折X線を生じる。回折X線はX線の照射方向を軸
に円錐状に広がる。この円錐の底をなす部分がデバイ環
20である。本発明の測定方法では、該デバイ環上の所
定の範囲に渡って回折X線を測定する。図3はデバイ環
と回折X線の検出手段の関係を示す図2の部分拡大図で
ある。本発明の測定方法では、図3に示すように、所定
の長さを有し、デバイ環に沿って湾曲した検出手段16
をデバイ環上に配置することにより、回折X線をデバイ
環上の所定の範囲に渡って検出する。これにより測定時
間当たりの回折X線のカウント数が増加し、得られる回
折X線強度データをデータ処理装置(図示していない)
で積算することにより、X線強度データが高められ、金
属相の付着量の測定精度が向上する。但し、本発明の測
定方法において、デバイ環上を所定の範囲に渡ってX線
を測定する方法は、図3に示すようなデバイ環に沿って
湾曲したX線検出手段による測定に限定されず、シンチ
レーションカウンター等のX線検出器をデバイ環の方向
に所定の範囲に渡ってスキャンすることであってもよ
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited to these examples. In the method for measuring the adhesion amount of the metal phase contained in the plating layer according to the present invention, the diffracted X-rays from the metal phase contained in the plating layer are measured over a predetermined range on the Debye ring, whereby the detection means The count number of diffracted X-rays per measurement time increases, and the X-ray intensity data is increased by integrating the obtained X-ray intensity data. As a result, the measurement accuracy of the attached amount of the metal phase is improved. The measurement method of the present invention has many background components, such as when measuring a trace amount of a metal phase contained in a plating layer containing a plurality of metal phases,
Even when the relative intensity of the diffracted X-ray of the metal phase to be measured is remarkably weak, the amount of the metal phase to be measured can be accurately measured in a short time. This is particularly effective in a situation where measurement data needs to be fed back in a short time, such as in online measurement. FIG. 2 shows the relationship from the irradiation of X-rays from the X-ray source to the detection of diffracted X-rays by the detection means in the measurement method of the present invention. In FIG. 2, X
X-rays emitted from the source 11 via the slit 12 are:
The X-rays are diffracted by a metal phase (not shown) incident on the surface 13 of the steel sheet. The diffracted X-ray spreads conically around the X-ray irradiation direction. The bottom of this cone is the Debye ring 20. In the measuring method of the present invention, diffracted X-rays are measured over a predetermined range on the Debye ring. FIG. 3 is a partially enlarged view of FIG. 2 showing the relationship between the Debye ring and the means for detecting diffracted X-rays. In the measuring method of the present invention, as shown in FIG. 3, the detecting means 16 having a predetermined length and curved along the Debye ring is used.
Is arranged on the Debye ring to detect the diffracted X-rays over a predetermined range on the Debye ring. As a result, the number of diffraction X-rays per measurement time increases, and the obtained diffraction X-ray intensity data is converted into a data processing device (not shown).
, The X-ray intensity data is increased, and the measurement accuracy of the amount of metal phase attached is improved. However, in the measurement method of the present invention, the method of measuring X-rays over a predetermined range on the Debye ring is not limited to measurement by X-ray detection means curved along the Debye ring as shown in FIG. , An X-ray detector such as a scintillation counter may be scanned over a predetermined range in the direction of the Debye ring.

【0008】本発明の測定方法において、回折X線を検
出する所定の範囲は、適宜選択してよいが、めっき付着
量の少ない層を測定する場合に、検出に充分な精度が得
られる測定強度になる所定の範囲を選択する。本発明の
測定方法において、回折X線を検出する所定の範囲のデ
バイ環上における位置は特に限定されない。これはめっ
き層、特に合金化溶融亜鉛めっき層は、多結晶であるた
め、金属相からの回折X線がデバイ環上において有意な
配向性を示さないためである。そのため、検出手段を配
置する位置は、他の構成要素の配置等を考慮して適宜選
択してよい。
In the measuring method of the present invention, the predetermined range for detecting diffracted X-rays may be selected as appropriate, but when measuring a layer having a small amount of plating adhesion, a measurement intensity sufficient for detection is obtained. Is selected. In the measurement method of the present invention, the position on the Debye ring within a predetermined range for detecting diffracted X-rays is not particularly limited. This is because the plating layer, particularly the galvannealed layer, is polycrystalline, so that diffracted X-rays from the metal phase do not show significant orientation on the Debye ring. Therefore, the position at which the detection unit is arranged may be appropriately selected in consideration of the arrangement of other components.

【0009】本発明の測定方法は、めっき層に含まれる
複数の金属相に対し、各々対応するデバイ環上に回折X
線検出手段を配置し、複数の金属相の付着量を測定する
こともできる。例えば、合金化溶融亜鉛めっき層には図
1に示すようにζ相、δ1 相およびΓ相の3相が存在す
るので、3相の回折X線による各々のデバイ環の上に所
定の範囲に渡って回折X線強度を検出する手段を配置す
ることにより、同時に3相の付着量を得ることができ
る。図4は合金化溶融亜鉛めっき鋼板のめっき層に含ま
れるζ相、δ1 相およびΓ相の付着量を同時に測定する
本発明の測定装置の概念図である。X線源11からスリ
ット12を介して鋼板の表面13に照射されたX線は、
ζ相、δ1 相およびΓ相でそれぞれ対応する回折X線を
生じる。回折X線はX線の照射方向を軸に円錐状に広が
り、各合金相に対応したデバイ環20、21、22を形
成する。16〜18は各々のデバイ環上の所定の範囲に
渡って回折X線を検出する検出手段であり、16はδ1
相検出用、17はζ相検出用および18はΓ相検出用の
検出器である。ただし、実際の測定においては必ずしも
これら3相に対応するデバイ環が図4の順序になるとは
限らない。これらX線検出器で検出されたX線強度デー
タはデータ処理装置23で積算され、各金属相の付着量
を短時間で、かつ正確に測定される。なお、15および
19はバックグラウンド要素測定用のシンチレーション
カウンターである。なお、図4では、Γ相、δ1 相およ
びζ相の全てでデバイ環上の所定の範囲に渡って回折X
線を測定する態様を示したが、本発明の測定法は少なく
とも1つのデバイ環上で所定の範囲に渡って測定すれば
よく、全てのデバイ環上で所定の範囲に渡って回折X線
を測定する必要はなく、予想される回折X線強度を考慮
して所定の範囲に渡ってX線を測定するか、従来の方法
によりデバイ環上の1点でX線を測定してもよい。例え
ば、上記合金化溶融亜鉛めっき鋼板の場合、ζ相および
Γ相のようなめっき層に微量に存在する金属相に対して
はX線の検出強度を高めるためにデバイ環上で所定の範
囲に渡ってX線を測定し、δ1 相のようなめっき層中に
多量に含まれる金属相については、回折X線の強度が他
の金属相に比べて強いため、従来の方法によりデバイ環
上の1点でX線を測定してもよい。また、X線を測定す
るデバイ環上の所定の範囲は、全てのデバイ環で同一で
ある必要はなく、予想される回折X線強度に応じて、適
宜選択してよい。例えば、上記合金化溶融亜鉛めっき鋼
板の場合、めっき層に微量に存在するζ相およびΓ相に
ついては、回折X線強度をより高めるために、所定の範
囲をδ1 相に比べて広く設けてよい。
According to the measuring method of the present invention, a plurality of metal phases contained in a plating layer are diffracted by X-rays on a corresponding Debye ring.
It is also possible to arrange line detecting means and measure the adhesion amounts of a plurality of metal phases. For example, as shown in FIG. 1, the alloyed hot-dip galvanized layer has three phases, ζ phase, δ 1 phase, and Γ phase. By arranging the means for detecting the intensity of the diffracted X-rays over the range, it is possible to simultaneously obtain the adhesion amounts of the three phases. FIG. 4 is a conceptual diagram of the measuring apparatus of the present invention for simultaneously measuring the adhesion amounts of ζ phase, δ 1 phase and Γ phase contained in the galvannealed steel sheet. The X-rays emitted from the X-ray source 11 to the surface 13 of the steel plate via the slit 12 are as follows:
The 回 折 phase, the δ 1 phase and the Γ phase produce corresponding diffracted X-rays, respectively. The diffracted X-rays spread conically around the X-ray irradiation direction and form Debye rings 20, 21, and 22 corresponding to each alloy phase. Reference numerals 16 to 18 denote detection means for detecting diffracted X-rays over a predetermined range on each Debye ring, and 16 denotes δ 1
A detector 17 for detecting a phase, 17 is a detector for detecting a ζ phase, and 18 is a detector for detecting a Γ phase. However, in actual measurement, the Debye rings corresponding to these three phases are not always in the order shown in FIG. The X-ray intensity data detected by these X-ray detectors is integrated by the data processing device 23, and the amount of each metal phase attached can be accurately measured in a short time. In addition, 15 and 19 are scintillation counters for measuring background elements. In FIG. 4, diffraction X over a predetermined range on the Debye ring in all of the Γ phase, δ 1 phase and ζ phase
Although the embodiment of measuring the X-rays has been described, the measuring method of the present invention may be performed over at least one Debye ring over a predetermined range, and diffracted X-rays over all the Debye rings over a predetermined range. It is not necessary to measure, and the X-ray may be measured over a predetermined range in consideration of the expected diffraction X-ray intensity, or the X-ray may be measured at one point on the Debye ring by a conventional method. For example, in the case of the above alloyed hot-dip galvanized steel sheet, a metal phase present in a trace amount in the plating layer such as the ζ phase and the Γ phase falls within a predetermined range on the Debye ring in order to increase the X-ray detection intensity. over by measuring the X-ray, for the metal phase which contains a large amount of the plating layer, such as [delta] 1-phase, for the intensity of the diffracted X-ray is stronger than other metal phase, the Debye rings in a conventional manner The X-ray may be measured at one point. The predetermined range on the Debye ring for measuring X-rays does not need to be the same for all Debye rings, and may be appropriately selected according to the expected diffraction X-ray intensity. For example, in the case of the alloyed hot-dip galvanized steel sheet, for a ζ phase and a Γ phase present in a trace amount in the plating layer, in order to further increase the diffraction X-ray intensity, a predetermined range is provided wider than the δ 1 phase. Good.

【0010】本発明の測定方法は、鋼板のオンライン表
面処理を行う工程中に行ってもよい。本発明の測定方法
は、デバイ環上の所定の範囲に渡ってX線を測定し、得
られたX線強度データを積算することにより、X線強度
データが高められているため、短時間で高い精度で金属
相の付着量を測定できるので、鋼板のオンライン表面処
理工程中に測定することで、該測定結果を表面処置工程
にフィードバックし、めっき層に含まれる金属相の付着
量の最適化を図ることができる。なお、上記および後述
する実施例では合金化溶融亜鉛めっき鋼板を例に本発明
を説明するが、本発明の方法の測定対象はこれに限定さ
れずめっき層中に含まれる金属相の付着量の測定に広く
利用できる。
[0010] The measuring method of the present invention may be performed during a step of performing an on-line surface treatment of a steel sheet. The measurement method of the present invention measures X-rays over a predetermined range on the Debye ring, and accumulates the obtained X-ray intensity data. Since the adhesion amount of the metal phase can be measured with high accuracy, the measurement result is fed back to the surface treatment process by measuring during the online surface treatment process of the steel sheet, and the adhesion amount of the metal phase contained in the plating layer is optimized. Can be achieved. In the examples described above and below, the present invention will be described using a galvannealed steel sheet as an example.However, the measurement target of the method of the present invention is not limited to this, and the measurement amount of the metal phase contained in the plating layer is not limited thereto. Can be widely used for measurement.

【0011】本発明の測定装置は、X線ビームを照射す
るX線源と、該X線を照射された物質から生じる回折X
線をデバイ環に沿って所定の範囲に渡って検出するため
のX線検出手段と、該X線検出器で得られる回折X線強
度データを処理するデータ処理装置とを備えることを特
徴とする。
The measuring apparatus of the present invention comprises an X-ray source for irradiating an X-ray beam, and a diffraction X-ray generated from the substance irradiated with the X-ray.
X-ray detection means for detecting a line over a predetermined range along the Debye ring, and a data processing device for processing diffracted X-ray intensity data obtained by the X-ray detector. .

【0012】X線源は、X線ビームを発生するX線発生
装置と、X線ビームの発散を制限するスリットで構成さ
れる。本発明の装置に使用することができるX線発生装
置は、封入型X線管球または回転対陰極である。いずれ
もフィラメントと金属の対陰極の間に数十kVの高電圧
をかけた状態で、フィラメントに電流を流すことにより
発生した熱電子が高電圧により加速され、金属ターゲッ
トに衝突することでX線を発生させる。ターゲットは、
X線の試料による吸収や測定精度を考慮して選択され、
Cu、Cr、Fe、Co、Mo等が使用される。本発明
の測定装置では、鉄系試料の測定に適したCr、Fe、
Coが好ましく、CrがSN比が優れることから特に好
ましい。スリットは、X線ビームの縦方向の発散を抑制
するためのソーラスリットと、試料への水平面内の発散
角を制限するための発散スリットからなる。X線管球な
どの金属ターゲットから発生するX線は、目的とするK
α線の他に、Kβ線や白色X線成分が含まれるため、こ
れらの成分を除去し単色化する必要がある。X線ビーム
の単色化は、金属はくでつくられたKβフィルターを受
光スリットの前に挿入するか、またはモノクロメータを
用いるかにより行う。X線ビームを物質表面に照射する
ことにより生じた回折線は、受光スリットを介して集光
され、さらにソーラスリットと散乱スリットを介してデ
バイ環上に配置されたX線検出器で検出・測定される。
The X-ray source comprises an X-ray generator for generating an X-ray beam and a slit for limiting the divergence of the X-ray beam. An X-ray generator that can be used in the device of the present invention is an enclosed X-ray tube or a rotating anti-cathode. In each case, when a high voltage of several tens of kV is applied between the filament and the metal negative electrode, the thermoelectrons generated by applying a current to the filament are accelerated by the high voltage, and collide with the metal target to produce X-rays. Generate. The target is
It is selected in consideration of X-ray absorption by the sample and measurement accuracy,
Cu, Cr, Fe, Co, Mo and the like are used. In the measuring device of the present invention, Cr, Fe,
Co is preferable, and Cr is particularly preferable because of its excellent SN ratio. The slit includes a solar slit for suppressing the divergence of the X-ray beam in the vertical direction and a divergence slit for limiting a divergence angle in a horizontal plane to the sample. X-rays generated from a metal target, such as an X-ray tube,
In addition to α-rays, Kβ-rays and white X-ray components are included, and it is necessary to remove these components to make them monochromatic. The X-ray beam is made monochromatic by inserting a Kβ filter made of metal foil in front of the light receiving slit or by using a monochromator. Diffraction lines generated by irradiating the X-ray beam on the material surface are collected through the light receiving slit, and are detected and measured by the X-ray detector arranged on the Debye ring via the solar slit and the scattering slit. Is done.

【0013】本発明の装置で使用することができるX線
検出手段は、所定の範囲に渡ってX線を検出・測定でき
れば特に限定されない。このようなX線検出手段の代表
例として、位置敏感型比例検出器が挙げられる。これは
所定の長さで陽極芯線と陰極が配置され、そこに検出器
ガスを流して高電圧をかけ、入射X線によって検出器ガ
スがイオン化され、誘導電荷が陰極に発生し、それを測
定することにより、X線の検出位置と強度を測定できる
ようにしたものである。現在利用可能な位置敏感型比例
検出器は、直線型と湾曲型とに分けられる。上記の通
り、位置敏感型比例検出器は、所定の範囲に渡ってX線
を検出・測定することができ、しかも検出されたX線の
強度のみならず検出位置までも特定することができる装
置であるが、これら位置敏感型比例検出器を本発明の測
定装置に利用するには以下の問題がある。直線型の位置
敏感型比例検出器は、検出面が直線状であるため、デバ
イ環上に配置した際に、検出面とデバイ環の形状とが一
致せず、その結果、試料上の照射位置から検出面までの
距離、すなわち回折X線の到達距離が異なるため、検出
されるX線強度データを積算する際には補正が必要であ
る。また、湾曲型の場合も、本来回折角方向での検出を
目的とするものであるため、検出面の形状がデバイ環の
形状とは一致せず、デバイ環上に配置した場合、上記直
線型の位置敏感型比例検出器と同様の補正が必要であ
る。上記問題について検討した結果、検出面が所定の長
さを有し、かつデバイ環に沿って湾曲しており、それに
よりデバイ環上の所定の範囲に渡って回折X線を検出す
ることができる検出手段を作製すれば、本発明の測定装
置に要求されるX線検出手段が得られることになる。こ
のようなX線検出手段は、上記湾曲型の位置敏感型比例
検出器を、所定の長さを有し、測定対象とするデバイ環
に沿って湾曲するように作製したものであってよく、ま
た、通常の比例計数管を、所定の長さを有しデバイ環に
沿って湾曲するように作製したものであってもよい。さ
らに、イメージングプレートのように輝尽性蛍光体の微
結晶を柔軟なポリマー表面に塗布したフィルムを、所定
の長さを有し、デバイ環に沿うように配置し、X線照射
によるルミネッセンス作用によりX線を検出するもので
あってもよい。
The X-ray detecting means that can be used in the apparatus of the present invention is not particularly limited as long as X-rays can be detected and measured over a predetermined range. A typical example of such X-ray detecting means is a position-sensitive proportional detector. In this method, an anode core wire and a cathode are arranged at a predetermined length, and a detector gas is applied to the anode core and a high voltage is applied.The detector gas is ionized by incident X-rays, and induced charges are generated at the cathode. By doing so, the X-ray detection position and intensity can be measured. Currently available position sensitive proportional detectors are divided into linear and curved types. As described above, the position-sensitive proportional detector can detect and measure X-rays over a predetermined range, and can specify not only the intensity of the detected X-rays but also the detection position. However, the use of these position-sensitive proportional detectors in the measuring apparatus of the present invention has the following problems. The linear position-sensitive proportional detector has a linear detection surface, so when it is placed on the Debye ring, the shape of the detection surface does not match the shape of the Debye ring. Since the distance from the surface to the detection surface, that is, the arrival distance of the diffracted X-rays, is different, a correction is required when integrating the detected X-ray intensity data. Also, in the case of the curved type, the shape of the detection surface does not match the shape of the Debye ring because it is originally intended for detection in the diffraction angle direction. The same correction as that of the position-sensitive proportional detector is required. As a result of studying the above problem, the detection surface has a predetermined length and is curved along the Debye ring, so that diffracted X-rays can be detected over a predetermined range on the Debye ring. If the detecting means is manufactured, the X-ray detecting means required for the measuring apparatus of the present invention can be obtained. Such an X-ray detecting means may be one in which the curved position-sensitive proportional detector has a predetermined length and is formed so as to be curved along a Debye ring to be measured. Further, a normal proportional counter tube may be formed to have a predetermined length and bend along the Debye ring. Furthermore, a film in which microcrystals of a stimulable phosphor are coated on a flexible polymer surface, such as an imaging plate, having a predetermined length and arranged along the Debye ring, is illuminated by X-ray irradiation. It may detect X-rays.

【0014】本発明の測定装置において、上記X線検出
手段の検出面の所定の長さとは、特に限定されず、付着
量の少ない相を測定する場合に、検出に充分な精度が得
られる測定強度になる所定の長さを選択する。本発明の
測定装置において、デバイ環上におけるX線検出手段を
配置する位置は特に限定されず、必要に応じて適宜選択
してよい。めっき層、特に合金化溶融亜鉛めっき層のよ
うな多結晶面を測定する場合、多結晶面へX線を照射し
た場合の回折X線は、デバイ環上において有意な配向性
を示さないため、検出手段の配置位置は、装置における
他の構成要素の配置等を考慮して適宜選択してよい。一
方、単結晶面へX線照射した場合のように、デバイ環上
における回折X線強度に配向性がある場合には、配向性
を考慮して検出手段を配置する。
In the measuring apparatus according to the present invention, the predetermined length of the detection surface of the X-ray detecting means is not particularly limited, and a measurement capable of obtaining a sufficient accuracy for detection when measuring a phase having a small amount of adhesion. Select a predetermined length that will be the strength. In the measuring device of the present invention, the position of the X-ray detecting means on the Debye ring is not particularly limited, and may be appropriately selected as needed. When measuring a polycrystalline surface such as a plating layer, particularly an alloyed hot-dip galvanized layer, diffracted X-rays when irradiating the polycrystalline surface with X-rays do not show significant orientation on the Debye ring, The arrangement position of the detection means may be appropriately selected in consideration of the arrangement of other components in the apparatus. On the other hand, when the diffraction X-ray intensity on the Debye ring has an orientation, such as when a single crystal surface is irradiated with X-rays, the detection means is arranged in consideration of the orientation.

【0015】本発明の測定装置では、測定する回折X線
は1つに限定されず、複数であってもよい。この場合、
全てのデバイ環上に上記所定の長さに渡って、X線を測
定するX線検出器を配置することは必ずしも必要ではな
い。例えば、上記合金化溶融亜鉛めっき鋼板の場合、ζ
相およびΓ相のようにめっき層中に含まれる金属相から
の回折X線の検出には、上記所定の長さに渡ってX線を
検出する検出手段を用い、得られたX線強度データを後
述するデータ処理装置で積算し、X線強度データを高
め、δ1 相のようにめっき層に多量に存在する金属相か
らの回折X線の検出には通常の1点てX線を検出するX
線検出手段を用いてもよい。
In the measuring apparatus of the present invention, the number of diffracted X-rays to be measured is not limited to one, but may be plural. in this case,
It is not always necessary to dispose an X-ray detector for measuring X-rays over all the Debye rings over the predetermined length. For example, in the case of the galvannealed steel sheet,
X-ray diffraction data from the metal phase contained in the plating layer, such as the 相 phase and the Γ phase, are detected by the X-ray intensity data obtained by using the detection means for detecting the X-rays over the predetermined length. Is integrated by a data processor described later to increase the X-ray intensity data, and to detect diffracted X-rays from a metal phase present in a large amount in the plating layer such as the δ 1 phase, X-rays are detected at a normal point. X to do
Line detecting means may be used.

【0016】本発明の測定装置のデータ処理装置は、上
記X線検出手段で得られたX線強度を積算することがで
きれば特に限定されない。このようなデータ処理装置
は、複数の回折X線各々に対するものであってもよく、
また、測定対象のX線全てを1つの装置で積算できるも
のであってもよい。
The data processing device of the measuring device of the present invention is not particularly limited as long as the X-ray intensity obtained by the X-ray detecting means can be integrated. Such a data processing device may be for each of a plurality of diffracted X-rays,
Further, the apparatus may be capable of integrating all the X-rays to be measured by one apparatus.

【0017】なお、本発明の測定装置の対象とする測定
物は、必ずしもめっき層に含まれる金属相の付着量に限
定されず、例えば、組成物中の微量成分であってもよ
い。
The object to be measured by the measuring apparatus of the present invention is not necessarily limited to the amount of the metal phase contained in the plating layer, and may be, for example, a trace component in the composition.

【0018】本発明の別の1つの態様は、上記本発明の
測定方法を用いた合金化溶融亜鉛めっき鋼板の製造方法
である。本発明の製造方法では、本発明の測定方法を用
いて、鋼板のオンライン表面処理工程中にめっき層に含
まれる各金属相を測定し、得られた測定結果に基づい
て、めっき層の合金化処理条件、すなわち鋼板の加熱処
理条件、例えば加熱温度または加熱時間を制御して、め
っき層に含まれる各金属相の付着量を最適条件に管理す
ることにより、めっき層の各金属相の付着量が最適化さ
れた合金化溶融亜鉛めっき鋼板を製造する。好ましく
は、鋼板の表面処理工程におけるラインスピードが50
〜120m/minでの合金化処理後の溶融亜鉛めっき
鋼板のめっき層の付着量をδ1 相が20〜114g/m
2 、Γ相が0〜2g/m2 、ζ相が0〜4g/m2 の範
囲になるように制御する。
Another aspect of the present invention is a method for producing an alloyed hot-dip galvanized steel sheet using the above-described measuring method of the present invention. In the production method of the present invention, each metal phase contained in the plating layer is measured during the on-line surface treatment step of the steel sheet by using the measuring method of the present invention, and based on the obtained measurement result, alloying of the plating layer is performed. By controlling the treatment conditions, that is, the heating treatment conditions of the steel sheet, for example, the heating temperature or the heating time, and controlling the adhesion amount of each metal phase contained in the plating layer to the optimal condition, the adhesion amount of each metal phase of the plating layer Produces optimized galvannealed steel sheets. Preferably, the line speed in the steel sheet surface treatment step is 50
The amount of the coating layer of the hot-dip galvanized steel sheet after the alloying treatment at ~ 120 m / min was 20 to 114 g / m for the δ 1 phase.
2, gamma phase 0~2g / m 2, ζ phase is controlled to be in the range of 0~4g / m 2.

【0019】[0019]

【実施例】以下に、合金化溶融亜鉛めっき鋼板に関する
実施例により、本発明をさらに説明するが、いうまでも
なく本発明はこれに限定されない。本実施例では、合金
化溶融亜鉛めっき鋼板のめっき層に含まれる金属相δ1
相、ζ相およびΓ相のうち、鋼板製品の品質上もっとも
付着量精度を求められるζ相を測定対象とした。鋼板製
品においてζ相に要求される付着量測定値の±のばらつ
き幅(付着量精度)は0.37g/m2 である。ここで
付着量の測定値は、回折X線のカウント数を標準データ
を使ってめっき量に換算した場合の値である。実施例で
は、図4に示す装置において、X線源にCr管球を用
い、管電圧40kV、管電流70mAでX線(Kα線)
を照射し、ζ相の結晶面間隔d=1.26Åの回折ピー
ク強度をデバイ環上に配置した通常のシンチレーション
カウンターまたは本発明の検出面がデバイ環方向に湾曲
し、かつデバイ環上の所定の範囲に渡って回折X線を検
出する検出手段(本実施例では、検出面の長さが20c
mで、デバイ環方向に湾曲した形状の位置敏感型比例検
出器を使用した)とにより測定した。繰り返し精度は、
1点で測定するシンチレーションカウンターを用いた場
合は、4.0%であったが、本発明の検出方法を用いた
場合は、2.8%となった。ここで、繰り返し精度と
は、下記式(1)によって示されるものである。
EXAMPLES The present invention will be further described below with reference to examples relating to galvannealed steel sheets, but needless to say, the present invention is not limited to these examples. In the present embodiment, the metal phase δ 1 contained in the plating layer of the galvannealed steel sheet is described.
Of the phases, phase I and phase II, the phase I, which requires the highest amount of adhesion in terms of the quality of the steel sheet product, was measured. In steel sheet products, the range of ± variation in the measured adhesion amount required for the ζ phase (adhesion amount accuracy) is 0.37 g / m 2 . Here, the measured value of the adhesion amount is a value when the count number of the diffracted X-ray is converted into a plating amount using standard data. In the embodiment, in the apparatus shown in FIG. 4, a Cr tube is used as an X-ray source, X-ray (Kα ray) at a tube voltage of 40 kV and a tube current of 70 mA.
And a normal scintillation counter arranged on the Debye ring or the detection surface of the present invention is curved in the Debye ring direction and a predetermined peak on the Debye ring. Detecting means for detecting diffracted X-rays over the range (in this embodiment, the length of the detection surface is 20 c
m, a position-sensitive proportional detector having a shape curved in the direction of the Debye ring was used). The repeatability is
The value was 4.0% when the scintillation counter measuring at one point was used, but was 2.8% when the detection method of the present invention was used. Here, the repeatability is represented by the following equation (1).

【式1】 ただし、iはi回目の測定、nは全繰り返し測定回数、
i はi回目の回折X線強度、Xa はn回の回折X線強
度の平均値を示す。また、ζ相の付着量精度はそれぞれ
0,39g/m2 、0.28g/m2 となり、本発明の
方法を用いることにより、測定の繰り返し精度が向上
し、要求される付着量測定精度を達成することが出来る
ことが確認された。
(Equation 1) Where i is the i-th measurement, n is the total number of repeated measurements,
X i represents the i-th diffraction X-ray intensity, and X a represents the average value of the n-th diffraction X-ray intensity. The coating weight accuracy respectively 0,39g / m 2 of ζ-phase, 0.28 g / m 2 becomes, by using the method of the present invention, repeatability is improved measurement, the adhesion measuring accuracy required It was confirmed that this could be achieved.

【0020】[0020]

【発明の効果】以上述べたように、本発明のめっき層に
含まれる金属相の付着量の測定方法は、めっき層に含ま
れる金属相からの回折X線を、デバイ環上の所定の範囲
に渡って測定することにより、測定時間当たりの回折X
線のカウント数が増加し、得られたX線強度データを積
算することにより、X線強度データが高められ、その結
果、めっき層に含まれる金属相、特にめっき層に微量に
含まれる金属相の測定精度が向上している。さらに、本
発明の測定方法を用いる本発明の溶融亜鉛めっき鋼板の
製造方法は、精度の高い金属相の付着量に関する測定結
果を短時間で製造工程にフィードバックできることか
ら、高品質のめっき鋼板の製造に寄与する。また、本発
明の測定装置は、X線ビームを照射するX線源と、該X
線を照射された物質から生じる1または2以上の回折X
線をデバイ環に沿って所定の範囲に渡って検出する手段
と、該検出手段で検出されたX線強度データを処理する
データ処理装置を備えることにより、本発明の測定方法
の実施に好適である。また、本発明の測定装置は、該構
成により組成物中の微量物質の検出および測定に好適で
ある。
As described above, according to the method for measuring the amount of the metal phase contained in the plating layer of the present invention, the diffraction X-rays from the metal phase contained in the plating layer can be measured within a predetermined range on the Debye ring. , The diffraction per measurement time X
The X-ray intensity data is increased by increasing the count number of the lines and accumulating the obtained X-ray intensity data. As a result, the metal phase contained in the plating layer, in particular, the metal phase contained in a trace amount in the plating layer is increased. Measurement accuracy has been improved. Furthermore, the method for producing a hot-dip galvanized steel sheet according to the present invention using the measuring method according to the present invention can provide high-precision measurement results relating to the adhesion amount of a metal phase to the production process in a short time. To contribute. Further, the measuring apparatus of the present invention comprises an X-ray source for irradiating an X-ray beam,
One or more diffractions X resulting from the irradiated material
By providing means for detecting a line over a predetermined range along the Debye ring, and a data processing device for processing X-ray intensity data detected by the detection means, the apparatus is suitable for implementing the measurement method of the present invention. is there. Further, the measuring device of the present invention is suitable for detecting and measuring a trace substance in the composition by the above configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 合金化溶融亜鉛めっき鋼板のめっき層、特に
めっき層に含まれるδ 1 相、ζ相およびΓ相の分布を示
す断面図である。
Fig. 1 Plating layer of galvannealed steel sheet, especially
Δ contained in plating layer 1Shows the distribution of phase, phase and phase
FIG.

【図2】 本発明におけるX線源からのX線照射から検
出手段での回折X線の検出までの関係を示す図である。
FIG. 2 is a diagram showing a relationship from irradiation of X-rays from an X-ray source to detection of diffracted X-rays by a detection unit in the present invention.

【図3】 デバイ環上に配置された本発明の所定の長さ
を有し、かつデバイ環に沿って湾曲した回折X線検出手
段を示す部分拡大図である。
FIG. 3 is a partial enlarged view showing a diffracted X-ray detecting means having a predetermined length and curved along the Debye ring according to the present invention disposed on the Debye ring;

【図4】 合金化溶融亜鉛めっき鋼板のδ1 相、ζ相お
よびΓ相の付着量を測定する本発明のめっき層に含まれ
る金属相の付着量の測定装置の概念図である。
FIG. 4 is a conceptual diagram of an apparatus for measuring the adhesion amount of a metal phase contained in a plating layer of the present invention for measuring the adhesion amount of δ 1 phase, ζ phase and Γ phase of an alloyed hot-dip galvanized steel sheet.

【符号の説明】[Explanation of symbols]

11:X線源 12:スリット 13:鋼板の表面 14:スリット 15:バックグラウンド要素測定用シンチレーションカ
ウンター 16:検出手段又はδ1 相測定用検出手段 17:ζ相測定用検出手段 18:Γ相測定用検出手段 19:バックグラウンド要素測定用シンチレーションカ
ウンター 20:デバイ環又はデバイ環(δ1 相) 21:デバイ環(ζ相) 22:デバイ環(Γ相) 23:データ処理装置
11: X-ray source 12: Slit 13: Surface of steel plate 14: Slit 15: Scintillation counter for background element measurement 16: Detection means or detection means for δ 1 phase measurement 17: Detection means for ζ phase measurement 18: Γ phase measurement Detection means 19: scintillation counter for background element measurement 20: Debye ring or Debye ring (δ 1 phase) 21: Debye ring (ζ phase) 22: Debye ring (Γ phase) 23: Data processing device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 BA18 BA22 CA01 DA01 DA02 DA06 DA07 DA10 EA06 EA09 FA01 FA09 GA01 GA08 JA09 JA15 KA09 KA11 LA02 MA05 NA10 NA13 NA17 SA02 2G055 AA05 BA01 CA18 EA08 4K027 AA05 AA22 AB42 AC73 AE27 AE32  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 2G001 AA01 BA18 BA22 CA01 DA01 DA02 DA06 DA07 DA10 EA06 EA09 FA01 FA09 GA01 GA08 JA09 JA15 KA09 KA11 LA02 MA05 NA10 NA13 NA17 SA02 2G055 AA05 BA01 CA18 EA08 4K027 AA73 AE42 AB

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】X線回折法を用いて、めっき層に含まれる
金属相の付着量を測定する方法において、めっき層に含
まれる金属相からの回折X線を、デバイ環上の所定の範
囲に渡って測定し、得られる回折X線強度データを積算
することを特徴とするめっき層に含まれる金属相の付着
量の測定方法。
In a method for measuring the amount of a metal phase contained in a plating layer by using an X-ray diffraction method, diffracted X-rays from the metal phase contained in the plating layer are measured in a predetermined range on a Debye ring. A method for measuring the amount of adhesion of the metal phase contained in the plating layer, wherein the measurement is performed over a period of time and the obtained diffraction X-ray intensity data is integrated.
【請求項2】前記金属相が合金相である請求項1に記載
のめっき層に含まれる金属相の付着量の測定方法。
2. The method according to claim 1, wherein the metal phase is an alloy phase.
【請求項3】前記金属相が2以上の相からなる請求項1
または2に記載のめっき層に含まれる金属相の付着量の
測定方法。
3. The method of claim 1, wherein said metal phase comprises two or more phases.
Or the method for measuring the adhesion amount of the metal phase contained in the plating layer according to 2.
【請求項4】前記2以上の相のうちの1以上の相の付着
量を測定することを特徴とする請求項3に記載のめっき
層に含まれる金属相の付着量の測定方法。
4. The method according to claim 3, wherein the amount of adhesion of one or more phases of the two or more phases is measured.
【請求項5】前記めっきが溶融亜鉛めっき又は合金化溶
融亜鉛めっきであることを特徴とする請求項1ないし4
のいずれかに記載のめっき層に含まれる金属相の付着量
の測定方法。
5. The method according to claim 1, wherein said plating is hot-dip galvanizing or alloyed hot-dip galvanizing.
The method for measuring the amount of metal phase adhered to a plating layer according to any one of the above.
【請求項6】前記測定を鋼板のオンライン表面処理を行
う工程中に行うことを特徴とする請求項1ないし5のい
ずれかに記載のめっき層に含まれる金属相の付着量の測
定方法。
6. The method according to claim 1, wherein the measurement is performed during a step of performing an on-line surface treatment of the steel sheet.
【請求項7】めっき層にX線ビームを照射するX線源
と、めっき層に含まれる金属相からの回折X線をデバイ
環に沿って所定の範囲に渡って検出する検出手段と、該
検出手段で検出されたX線強度データを処理するデータ
処理装置とを備える金属相の付着量の測定装置。
7. An X-ray source for irradiating a plating layer with an X-ray beam, a detecting means for detecting a diffracted X-ray from a metal phase contained in the plating layer over a predetermined range along a Debye ring, A data processing device for processing the X-ray intensity data detected by the detection means.
【請求項8】溶融亜鉛めっき層又は合金化溶融亜鉛めっ
き層に含まれる金属相の付着量を測定することを特徴と
する請求項7に記載のめっき付着量の測定装置。
8. The apparatus according to claim 7, wherein the coating amount of the metal phase contained in the hot-dip galvanized layer or the alloyed hot-dip galvanized layer is measured.
【請求項9】請求項1に記載の測定方法でめっき層に含
まれる金属相の付着量を測定し、その結果を用いて合金
化処理条件を制御することを特徴とする合金化溶融亜鉛
めっき鋼板の製造方法。
9. An alloyed hot-dip galvanizing method comprising: measuring the amount of a metal phase contained in a plating layer by the measuring method according to claim 1; and controlling the alloying treatment conditions based on the measured result. Steel plate manufacturing method.
JP2000293792A 2000-09-22 2000-09-27 On-line measurement method and device of amount of adhesion of metal phase contained in plated layer Pending JP2002098656A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000293792A JP2002098656A (en) 2000-09-27 2000-09-27 On-line measurement method and device of amount of adhesion of metal phase contained in plated layer
KR1020027006225A KR20020060741A (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
PCT/JP2001/008093 WO2002025257A1 (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
CN01802854A CN1392956A (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using X-ray diffraction method, and method for making plated steel sheet using them
EP01970121A EP1233265A4 (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
CA002390236A CA2390236A1 (en) 2000-09-22 2001-09-18 Method and apparatus for quantitatively measuring metal phase by x-ray diffractometry and method of producing galvanized steel sheet using the method and apparatus
US10/130,711 US6821361B2 (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
TW090123387A TW500922B (en) 2000-09-22 2001-09-21 Quantitative measuring method and apparatus of metal phase using X-ray diffraction method, and method for making plated steel sheet using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000293792A JP2002098656A (en) 2000-09-27 2000-09-27 On-line measurement method and device of amount of adhesion of metal phase contained in plated layer

Publications (1)

Publication Number Publication Date
JP2002098656A true JP2002098656A (en) 2002-04-05

Family

ID=18776518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000293792A Pending JP2002098656A (en) 2000-09-22 2000-09-27 On-line measurement method and device of amount of adhesion of metal phase contained in plated layer

Country Status (1)

Country Link
JP (1) JP2002098656A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127088A (en) * 2011-12-16 2013-06-27 Jfe Steel Corp Reliability monitoring device and reliability monitoring method of continuous hot-dip galvanizing apparatus
JP2014211328A (en) * 2013-04-17 2014-11-13 株式会社リガク X-ray diffraction device, method for measuring x-ray diffraction, and control program
JP2014219345A (en) * 2013-05-10 2014-11-20 パルステック工業株式会社 X-ray diffraction measurement apparatus
CN104656120A (en) * 2013-11-22 2015-05-27 株式会社理学 Correction information generation method and correction information generation apparatus
JP5740401B2 (en) * 2010-07-30 2015-06-24 株式会社リガク X-ray diffraction method and apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035834B1 (en) * 1971-07-06 1975-11-19
JPS5137285A (en) * 1974-09-25 1976-03-29 Mitsubishi Heavy Ind Ltd X senoryokusokuteihoho
JPS51108884A (en) * 1975-03-14 1976-09-27 Nippon Electron Optics Lab x senkaisetsusokuteisochi
JPS5220320A (en) * 1975-08-08 1977-02-16 Nisshin Steel Co Ltd Method of measuring grain size of a cold rolled stainless steel strip which is being annealed and apparatus for the same
JPS5518989A (en) * 1978-07-28 1980-02-09 Hitachi Ltd Two-dimensional position detecting type counting tube
JPS56143949A (en) * 1980-04-10 1981-11-10 Rigaku Denki Kk X-ray diffraction apparatus
JPH02253144A (en) * 1989-03-27 1990-10-11 Mitsubishi Electric Corp X-ray diffraction device
JPH04161843A (en) * 1990-10-25 1992-06-05 Rigaku Corp X-ray measuring apparatus
JPH06347247A (en) * 1993-06-10 1994-12-20 Sumitomo Metal Ind Ltd Measuring method of thickness of alloy phase of plated layer
JPH0933455A (en) * 1995-07-14 1997-02-07 Sumitomo Metal Ind Ltd Method for measuring alloyed degree of alloying plated layer
JPH1144662A (en) * 1997-07-29 1999-02-16 Rigaku Corp Minute part x-ray analysis device
JP2000147200A (en) * 1998-11-06 2000-05-26 Rigaku Corp Monochromator device and x-ray device
JP2002098657A (en) * 2000-09-22 2002-04-05 Kawasaki Steel Corp Measurement method and device of amount of adhesion of metal phase contained in plated layer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035834B1 (en) * 1971-07-06 1975-11-19
JPS5137285A (en) * 1974-09-25 1976-03-29 Mitsubishi Heavy Ind Ltd X senoryokusokuteihoho
JPS51108884A (en) * 1975-03-14 1976-09-27 Nippon Electron Optics Lab x senkaisetsusokuteisochi
JPS5220320A (en) * 1975-08-08 1977-02-16 Nisshin Steel Co Ltd Method of measuring grain size of a cold rolled stainless steel strip which is being annealed and apparatus for the same
JPS5518989A (en) * 1978-07-28 1980-02-09 Hitachi Ltd Two-dimensional position detecting type counting tube
JPS56143949A (en) * 1980-04-10 1981-11-10 Rigaku Denki Kk X-ray diffraction apparatus
JPH02253144A (en) * 1989-03-27 1990-10-11 Mitsubishi Electric Corp X-ray diffraction device
JPH04161843A (en) * 1990-10-25 1992-06-05 Rigaku Corp X-ray measuring apparatus
JPH06347247A (en) * 1993-06-10 1994-12-20 Sumitomo Metal Ind Ltd Measuring method of thickness of alloy phase of plated layer
JPH0933455A (en) * 1995-07-14 1997-02-07 Sumitomo Metal Ind Ltd Method for measuring alloyed degree of alloying plated layer
JPH1144662A (en) * 1997-07-29 1999-02-16 Rigaku Corp Minute part x-ray analysis device
JP2000147200A (en) * 1998-11-06 2000-05-26 Rigaku Corp Monochromator device and x-ray device
JP2002098657A (en) * 2000-09-22 2002-04-05 Kawasaki Steel Corp Measurement method and device of amount of adhesion of metal phase contained in plated layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740401B2 (en) * 2010-07-30 2015-06-24 株式会社リガク X-ray diffraction method and apparatus
JP2013127088A (en) * 2011-12-16 2013-06-27 Jfe Steel Corp Reliability monitoring device and reliability monitoring method of continuous hot-dip galvanizing apparatus
JP2014211328A (en) * 2013-04-17 2014-11-13 株式会社リガク X-ray diffraction device, method for measuring x-ray diffraction, and control program
JP2014219345A (en) * 2013-05-10 2014-11-20 パルステック工業株式会社 X-ray diffraction measurement apparatus
CN104656120A (en) * 2013-11-22 2015-05-27 株式会社理学 Correction information generation method and correction information generation apparatus
JP2015102397A (en) * 2013-11-22 2015-06-04 株式会社リガク Correction information generation method and correction information generation device

Similar Documents

Publication Publication Date Title
US6821361B2 (en) Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
KR101572765B1 (en) METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
JP2007108165A (en) X-ray fluorescence spectrometer
CN105659073B (en) The online plating adaptation decision maker and alloyed hot-dip galvanized steel plate manufacturing line of alloyed hot-dip galvanized steel plate
CN108680127B (en) Method and apparatus for measuring plating
JPH04232448A (en) Apparatus for measuring amount of iron contained in zinc layer
JP2002098656A (en) On-line measurement method and device of amount of adhesion of metal phase contained in plated layer
JPH0739987B2 (en) Simultaneous measurement of film thickness and composition
JP2002098657A (en) Measurement method and device of amount of adhesion of metal phase contained in plated layer
JP2002168811A (en) Method and apparatus for measuring alloy phase adhesion in plated layer using x-ray diffraction method
KR100489298B1 (en) Method of measuring alloying degree for galvannealed steels by XRD
JP2014055353A (en) Method for measuring alloying degree of alloyed galvanized steel
JPS61132847A (en) Method and instrument for fluorescent x-ray analysis of two-layered plating film
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
CN108895994B (en) Method and apparatus for measuring plating
JP2563016B2 (en) Fluorescent X-ray analysis method and apparatus using effective wavelength
JPH01301155A (en) Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet
JPS5991343A (en) Method for measuring alloying degree of galvannealed steel plate
KR20040056245A (en) X-ray optics system for measuring phase fraction and alloying degree of galvannealed steels
JPH07109406B2 (en) Method and apparatus for measuring coating weight of plated steel sheet and plating film composition
JPS61277041A (en) Method and apparatus for fluorescent x-ray analysis of metal film
JP2002228430A (en) Method for measuring mass of deposit per unit area of plating or of surface-treating coating
JP2016217808A (en) Sample measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330