JPH01301155A - Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet - Google Patents
Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheetInfo
- Publication number
- JPH01301155A JPH01301155A JP63130410A JP13041088A JPH01301155A JP H01301155 A JPH01301155 A JP H01301155A JP 63130410 A JP63130410 A JP 63130410A JP 13041088 A JP13041088 A JP 13041088A JP H01301155 A JPH01301155 A JP H01301155A
- Authority
- JP
- Japan
- Prior art keywords
- alloying
- degree
- ray diffraction
- galvanized steel
- alloyed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005275 alloying Methods 0.000 title claims abstract description 48
- 238000002441 X-ray diffraction Methods 0.000 title claims abstract description 34
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 28
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 229910000765 intermetallic Inorganic materials 0.000 claims 2
- 238000007747 plating Methods 0.000 abstract description 74
- 238000005259 measurement Methods 0.000 abstract description 12
- 230000008021 deposition Effects 0.000 abstract description 3
- 229910000905 alloy phase Inorganic materials 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 34
- 238000012360 testing method Methods 0.000 description 17
- 229910000831 Steel Inorganic materials 0.000 description 14
- 239000010959 steel Substances 0.000 description 13
- 238000000227 grinding Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000004993 emission spectroscopy Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005246 galvanizing Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 1
- 101100450563 Mus musculus Serpind1 gene Proteins 0.000 description 1
- 101100432968 Mus musculus Yrdc gene Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、亜鉛めっき後に加熱処理を施して製造する合
金化亜鉛めっき鋼板の合金化度をX線回折法を用いてめ
っき厚さに影響されることなく非破壊且つ連続的に測定
する方法及び該方法を用いて合金化亜鉛めっき鋼板製造
ラインにおいて合金化度を制御する方法に関するもので
ある。[Detailed Description of the Invention] [Industrial Application Field] The present invention uses X-ray diffraction to determine the degree of alloying of an alloyed galvanized steel sheet that is produced by heat treatment after galvanizing to influence the plating thickness. The present invention relates to a method of non-destructively and continuously measuring the degree of alloying without being affected by the process, and a method of controlling the degree of alloying in an alloyed galvanized steel sheet manufacturing line using the method.
従来より亜鉛めっき鋼板の耐食性に加えて、塗装性、塗
膜密着性及び溶接性を付与した合金化亜鉛めっき鋼板が
製造され、様々な分野に使用されている。この合金化亜
鉛めっき鋼板は鋼板に溶融亜鉛めっき、電気亜鉛めっき
又は真空蒸着亜鉛めっきを施した後に加熱処理を施し、
亜鉛めっき層と鋼板素地を合金化させて製造されている
。BACKGROUND OF THE INVENTION In addition to the corrosion resistance of galvanized steel sheets, alloyed galvanized steel sheets have been produced that have paintability, paint film adhesion, and weldability, and are used in various fields. This alloyed galvanized steel sheet is produced by hot-dip galvanizing, electrolytic galvanizing, or vacuum evaporation galvanizing a steel plate, followed by heat treatment.
Manufactured by alloying a galvanized layer with a steel base.
このように鋼板に亜鉛めっきを施した後に加熱処理を施
した場合、合金化が進むにつれてFeとZnとの相互拡
散によりζ相(FeZr+13) * δ1相(FeZ
r+v ) 。In this way, when a steel sheet is galvanized and then heat treated, as alloying progresses, Fe and Zn mutually diffuse into ζ phase (FeZr+13) * δ1 phase (FeZ
r+v).
r相(Fe5Zn、□)が順次生成してめっき層中を表
面に向かって成長する。従来からの研究で、めっき層表
面までζ相又はδ、相が成長した時点、すなわちめっき
層中の平均Fe濃度が9〜11wt%となった時点で塗
装性等の品質特性が最も良好になると言われている。こ
の理由は、めっき層中の平均Fs濃度が9%未満ではめ
つき層表面に金属Znが残存して塗装性、塗膜密着性及
び溶接性において劣っており、11wt%を超えると硬
くて脆いr相が厚く成長してプレス成型等の加工時にめ
っき層が粉状に剥離するいわゆるパウダリング現象を起
こすからである。このパウダリング現象が著しい場合、
めっき層の耐食性が低下するばかりでなく、プレス成型
等の加工作業にも悪影響を及ぼす。従って適切な合金化
の程度すなわち合金化度となるように合金化処理条件を
制御する必要がある。The r-phase (Fe5Zn, □) is sequentially generated and grows in the plating layer toward the surface. Previous research has shown that quality characteristics such as paintability are best when the ζ or δ phase grows to the surface of the plating layer, that is, when the average Fe concentration in the plating layer is 9 to 11 wt%. It is said. The reason for this is that when the average Fs concentration in the plating layer is less than 9%, metallic Zn remains on the surface of the plating layer, resulting in poor paintability, film adhesion, and weldability, and when it exceeds 11wt%, it becomes hard and brittle. This is because the r-phase grows thickly and causes a so-called powdering phenomenon in which the plating layer peels off into powder during processing such as press molding. If this powdering phenomenon is significant,
This not only reduces the corrosion resistance of the plating layer, but also adversely affects processing operations such as press molding. Therefore, it is necessary to control the alloying treatment conditions to obtain an appropriate degree of alloying, that is, an appropriate degree of alloying.
従来から以下に説明するように合金化度の種々な測定方
法が知られている。Conventionally, various methods for measuring the degree of alloying have been known as described below.
最も簡易な方法として、合金化直後のめつき層表面の色
調の目視又は光度計による判定や、サンプリング試料の
曲げ・曲げ戻し試験で剥離しためつき層の量の目視判定
(いわゆるパウダリング試験)があるが、いずれも不正
確である。The simplest method is to visually determine the color tone of the surface of the plated layer immediately after alloying or with a photometer, or to visually determine the amount of the plated layer that has peeled off during a bending/unbending test of a sample sample (so-called powdering test). However, both are inaccurate.
他方、試料のめつき層中の平均Fe1fi度を測定する
化学分析法は、合金化度を表わす平均Fe1度そのもの
を正確に測定することができる好ましい方法であるが、
サンプリングから測定終了までに長時間を要するため、
合金化処理装置へのフィードバックが遅れるという欠点
を有している。On the other hand, the chemical analysis method that measures the average Fe1 degree in the plated layer of the sample is a preferred method that can accurately measure the average Fe1 degree itself, which represents the degree of alloying.
Since it takes a long time from sampling to completion of measurement,
This has the disadvantage that feedback to the alloying processing equipment is delayed.
合金化度を製造ライン内で非破壊且つ連続的に測定する
方法として、X線の回折特性を合金化亜鉛めっき鋼板の
合金化度の指標として用いる方法が種々提案されている
。このX線の回折特性例えばX線回折強度は、合金層が
厚い(めっき付着量が多い)場合と薄い場合とでは同一
合金化度でもその測定値は変動する。ところで合金化溶
融亜鉛めっき鋼板の場合、その製造工程においてめっき
付着量の制御を気体吹拭法で行うため、溶融めっき直後
の鋼板のバタッキや鋼板の反りによりめつき付着量が板
幅方向とライン方向とで変動する。As a method for non-destructively and continuously measuring the degree of alloying within a production line, various methods have been proposed in which X-ray diffraction characteristics are used as an index of the degree of alloying of an alloyed galvanized steel sheet. Regarding this X-ray diffraction characteristic, for example, the X-ray diffraction intensity, the measured value varies depending on whether the alloy layer is thick (large amount of plating deposited) or thin, even if the degree of alloying is the same. By the way, in the case of alloyed hot-dip galvanized steel sheets, the amount of plating deposited is controlled by a gas wiping method during the manufacturing process, so the amount of plating deposited may vary in both the sheet width direction and the line direction due to flapping or warping of the steel sheet immediately after hot-dip coating. It fluctuates with.
従ってX線の回折特性を用いた合金化度の指標としては
、めっき付着量の大小に影響されないものであることが
望まれ、従来の各種提案もそれぞれそのような考えによ
り示されているものが多い。Therefore, it is desirable that the index of alloying degree using X-ray diffraction characteristics be unaffected by the amount of plating deposited, and various conventional proposals have been based on this idea. many.
例えば特公昭58−47659号にはζ相、δ、相、r
相のうちの二相についてのX線の回折特性値すなわち回
折強度7回折線の拡がり程度及びピーク角度の一つ以上
を二つの相について求めてその比を算出し、予め求めて
おいたこの比と加工性(合金化度)との関係から加工性
(合金化度)の水準を知る方法が開示されている。また
、特公昭56−12314号には上記特公昭58−47
659号と同様にして得た回折強度の比を基準設定値と
比較してその偏差値に応じて合金化処理条件を自動制御
して合金化亜鉛鉄板を製造する方法が示されている。更
に特開昭61−148355号には格子面間隔が約1.
22人のr相のX線の回折強度と格子面間隔が約1.4
4人のα−Fe相のX線の回折強度とを測定し、予め求
めておいたr相のX線の回折強度とα−Fe相のX線回
折強度を変数とするめつき層中の平均Fea度の関数式
に上記2つの測定値を代入することにより、めっき層中
の平均Fefi度を測定する方法が示されている。しか
しながら、上記のX線回折特性を用いる各方法はいずれ
も二つの相についてX線回折特性を測定する方法である
ために、それぞれの測定値の誤差によりその測定値の比
は誤差を更に拡大する場合があって誤った判定をする恐
れがあり、また特開昭61−148355号の方法はめ
つき鋼板の製造履歴によって結晶面配向が種々変化する
α−Fe相について測定するのであるから、合金化度を
正確に測定することができないという問題点があった。For example, in Japanese Patent Publication No. 58-47659, ζ phase, δ, phase, r
One or more of the X-ray diffraction characteristic values, that is, the degree of spread and peak angle of the diffraction intensity 7 diffraction lines for two of the phases, are determined for the two phases, and the ratio is calculated, and this ratio determined in advance. A method is disclosed for determining the level of workability (alloying degree) from the relationship between and workability (alloying degree). In addition, the above-mentioned Special Publication No. 58-47
No. 659 discloses a method for producing an alloyed galvanized iron plate by comparing the ratio of diffraction intensities obtained in the same manner as with a standard set value and automatically controlling the alloying treatment conditions according to the deviation value. Furthermore, in JP-A-61-148355, the lattice spacing is approximately 1.
The diffraction intensity and lattice spacing of 22 r-phase X-rays is approximately 1.4.
The X-ray diffraction intensity of the α-Fe phase of four people was measured, and the average in the plating layer was calculated using the previously determined X-ray diffraction intensity of the r-phase and the X-ray diffraction intensity of the α-Fe phase as variables. A method is shown in which the average Fefi degree in the plating layer is measured by substituting the above two measured values into the Fea degree functional formula. However, since each of the above methods using X-ray diffraction characteristics measures the X-ray diffraction characteristics of two phases, the error in the ratio of the measured values further increases due to the error in each measurement value. In addition, since the method of JP-A-61-148355 measures the α-Fe phase whose crystal plane orientation varies depending on the manufacturing history of the plated steel sheet, alloying There was a problem that the degree could not be measured accurately.
本発明は上記従来の技術の問題点を解決し、合金化亜鉛
めっき鋼板の合金化度を製造ライン内で非破壊連続的に
、めっき付着量の大小に影響されることなく且つ正確に
測定する方法及び該方法を用いて合金化亜鉛めっき鋼板
製造ラインにおいて合金化度を制御する方法を提案する
ことを課題とする。The present invention solves the above-mentioned problems of the conventional technology, and measures the degree of alloying of an alloyed galvanized steel sheet non-destructively and continuously within a production line, without being influenced by the amount of coating applied. It is an object of the present invention to propose a method and a method using the method to control the degree of alloying in an alloyed galvanized steel sheet production line.
亜鉛めっき鋼板を合金化処理するとめつき層中の平均F
a濃度が約9wt%になった時点でr相が生成し始め、
r相が成長するにつれてめっき層中の平均Fe濃度が高
くなる。また、めっき層中の平均Fe′a度の増加に対
してr相のXa回折強度は単調に増加する。本発明者ら
はこれらの現象に着[1して種々検討の結果、合金相の
うち「相におけるX線回折強度丁r測定の際のバックグ
ラウンド強度Hpは、めっき付着量に直線的に比例する
こと及び真の「相のX線回折強度(Ir −If’ )
が全X線回折強度■1に占める割合(IrIP)/Ir
は合金化度が同じならめっき付着量の大小に関係なく同
じであることを究明して、r相のみのX線回折強度の測
定によって得られる上記割合を合金化度と対応させるこ
とによって前記課題を解決することのできることを究明
して本発明を完成したのである。When a galvanized steel sheet is alloyed, the average F in the plating layer
When the a concentration reaches approximately 9 wt%, the r phase begins to form,
As the r-phase grows, the average Fe concentration in the plating layer increases. Further, the Xa diffraction intensity of the r phase increases monotonically with an increase in the average Fe'a degree in the plating layer. The present inventors arrived at these phenomena [1] and, as a result of various studies, found that the background intensity Hp when measuring the X-ray diffraction intensity in the alloy phase is linearly proportional to the coating weight. and the true X-ray diffraction intensity of the phase (Ir-If')
is the proportion of the total X-ray diffraction intensity ■1 (IrIP)/Ir
The above problem was solved by finding out that if the degree of alloying is the same, it is the same regardless of the amount of plating deposited, and by correlating the above ratio obtained by measuring the X-ray diffraction intensity of only the r phase with the degree of alloying. The present invention was completed by discovering that the problem can be solved.
以下に図面によって本発明方法について詳細に説明する
。The method of the present invention will be explained in detail below with reference to the drawings.
第1図は合金化溶融亜鉛めっき鋼板のめつき層中の平均
Fe13度と(Iy−Ii’)/Irとの関係を示す図
、第2図はめつき付着量とバックグラウンド強度BPと
の関係を示す図、第3図はICP発光分光分析法で測定
しためつき層中の平均Fa濃度の測定値と本発明法で測
定しためつき層中の平均Fed度の測定値の関係を示す
図、第4図は「相のX線回折曲線の一般説明図である。Figure 1 shows the relationship between the average Fe13 degree and (Iy-Ii')/Ir in the plating layer of an alloyed hot-dip galvanized steel sheet, and Figure 2 shows the relationship between the amount of plating and the background strength BP. Figure 3 is a diagram showing the relationship between the measured value of the average Fa concentration in the blocked layer measured by ICP emission spectrometry and the measured value of the average Fed degree in the blocked layer measured by the method of the present invention. , FIG. 4 is a general illustration of the X-ray diffraction curve of the phase.
先ず本発明による合金化亜鉛めっき層中の(平均Fe濃
度)の測定原理を説明する。First, the principle of measuring (average Fe concentration) in an alloyed galvanized layer according to the present invention will be explained.
F相のX線回折強度■1及びバックグラウンド強度1i
Iをピーク角度2θと共に示せば第4図の如くになる。X-ray diffraction intensity of F phase ■1 and background intensity 1i
If I is shown together with the peak angle 2θ, the result will be as shown in FIG.
また、溶融亜鉛めっき鋼板を実験室規模で合金化処理し
て作製した合金化溶kA、il!鉛めつき鋼板の格子面
間隔約1.22人のr相のX線回折強度■、とバックグ
ラウンド強度Hpとを測定し、それから求めた(IrI
P)/Irとめつき層中の平均Fei度との関係を示す
と第1図となる。第1図中の実線はめつき層中の平均F
e)4度に対する(IrJP)/Irの回帰直線である
。なお、工、及びHPの測定には直径45mの試験片を
用いた。まためっき層中の平均Fea度は、上記の如く
にしてF相のX線回折強度■、及びバックグラウンド強
度■イを測定した後に試験片を25%濃度のHCII水
溶液に浸漬してめっき層を溶解した溶解液をICP発光
分光分析法で分析してKl’l定した。その際、めつへ
層溶解前後の試験片重量差からめつき付着量(従ってめ
っき付着量とはZnのみでなくFeと溶融亜鉛めっき金
属中のAQ及びSLとの合計敬である)を測定し、めっ
き付着量の大小に従って3つのグループに分けて第1図
中にプロットの表示を異にして区別し、めっき付着量大
小の影響有無の状況を判り易くした。第1図に示すよう
に、(Ir IP)/Irとめつき層中の平均Fe7
1度の関係は、めっき付着量の大小と無関係に一つの回
帰直線で表されるのである。めっき層中の平均Fe′a
度に対する( Ip−Ti’ ) / Irの相関係数
は0.98、回帰直線に対する(Ir −IBr)/
Irの標準偏差値は0.02で、めっき層中の平均FO
濃度と(工r −律)/ Irの間には強い正の相関が
あり、しかもバラツキ範囲が非常に狭い。従って、合金
化溶融亜鉛めっき鋼板のr相のX線回折強度■1及びバ
ックグラウンド強度■いを測定して(rr−Itl)/
rrを算出し。In addition, alloyed melts kA and il! were prepared by alloying hot-dip galvanized steel sheets on a laboratory scale. The X-ray diffraction intensity ■ of the r-phase of the lead-plated steel plate with a lattice spacing of approximately 1.22 mm and the background intensity Hp were measured, and then determined (IrI
FIG. 1 shows the relationship between P)/Ir and the average Fei degree in the plating layer. The average F in the solid line in the fitted layer in Figure 1
e) It is a regression line of (IrJP)/Ir for 4 degrees. Note that a test piece with a diameter of 45 m was used to measure the mechanical strength and HP. In addition, the average Fea degree in the plating layer can be determined by measuring the X-ray diffraction intensity (■) and the background intensity (b) of the F phase as described above, and then immersing the test piece in a 25% concentration HCII aqueous solution. The dissolved solution was analyzed by ICP emission spectroscopy to determine Kl'l. At that time, the plating adhesion amount (therefore, the plating adhesion amount is the total amount of not only Zn but also Fe and AQ and SL in the hot-dip galvanized metal) was measured from the difference in the weight of the test piece before and after dissolving the metal layer. The samples were divided into three groups according to the amount of plating deposited, and the plots in FIG. As shown in Figure 1, the average Fe7 in (Ir IP)/Ir plating layer
A 1 degree relationship is expressed by a single regression line regardless of the amount of plating deposited. Average Fe'a in plating layer
The correlation coefficient of (Ip-Ti')/Ir with respect to degree is 0.98, and (Ir-IBr)/with respect to regression line is 0.98.
The standard deviation value of Ir is 0.02, and the average FO in the plating layer
There is a strong positive correlation between the concentration and (Er-law)/Ir, and the variation range is very narrow. Therefore, by measuring the X-ray diffraction intensity (1) and the background intensity (2) of the r-phase of the alloyed hot-dip galvanized steel sheet,
Calculate rr.
これと予め求めておいためつき層中の平均Fe濃度に対
する(Tr Ip) / irの直線回帰式とから合
金化度(めっき層中の平均Fe71度)を正確に測定で
きるのである。The degree of alloying (average Fe in the plating layer is 71 degrees) can be accurately measured from this and the previously determined linear regression equation of (Tr Ip)/ir for the average Fe concentration in the plating layer.
どの程度正確に測定できるかを次の例により説明する。The following example explains how accurately measurements can be made.
第3図は本発明法により各試験片の■、とHpとを測定
して得た(IrrP)/Irと第1図の回帰直線とから
求めためつき層中の平均F e ′a度のK11l定値
(以下M Feで示す)と、上記の測定後にその試験片
を25%濃度のHCil、水溶液に浸漬溶解させてその
溶液をICP発光分光分析法で分析して測定して求めた
めつき層中の平均Fe′I3度の測定値(以下、CFn
で示す)との関係を示すものであり、直線はCFeに対
するMFoの回帰直線である。CFeに対するMF。FIG. 3 shows the average F e 'a degree in the test layer determined from (IrrP)/Ir obtained by measuring (IrrP)/Ir and the regression line of FIG. The constant value of K11l (hereinafter referred to as M Fe) and the stent layer determined by immersing and dissolving the test piece in a 25% concentration HCil aqueous solution and analyzing the solution by ICP emission spectrometry after the above measurement. Measured value of average Fe'I3 degree (hereinafter referred to as CFn
), and the straight line is a regression line of MFo against CFe. MF for CFe.
の相関係数は0.981回帰直線に対するM Feの標
準偏差値は0.4であり、本発明に係る測定法によるめ
っき層中の平均Fe41度の測定値はICP発光分光分
析法による測定値と良く一致している。The correlation coefficient is 0.981, and the standard deviation value of M Fe with respect to the regression line is 0.4, and the measured value of the average Fe41 degree in the plating layer by the measurement method according to the present invention is the measured value by ICP emission spectrometry. It is in good agreement with
ここで目r −IF) / Irとめつき層中の平均F
e濃度との関係が、めっき付着量の大小とは無関係に一
つの回帰直線で表わされる理由は次のようである。where r −IF) / average F in the Ir and mating layer
The reason why the relationship with e concentration is expressed by one regression line regardless of the amount of plating deposited is as follows.
上記めっき付着量(g / m )とバックグラウンド
強度I?とをプロットした第2図から、めっき付着量の
増加に対してバックグラウンド強度■ijは直線的に増
加していることが判る。このめっき付着量とバックグラ
ウンド強度IPとが直線的関係にある理由は次のように
推測される。バックグランド強度■pが生ずるのは、試
料からの散乱X線及び試料からの蛍光X線が検出器内に
取り込まれることが原因となっている。この内、散乱X
線はFeとZnの散乱印紙がほぼ等しく、めっき層中の
平均Fe濃度が約8〜20%の範囲ではめつき付着量の
増加に対するバックグランド強度坪の増加に余り寄与し
ない。蛍光X線はめつき層のFeとZn及び鋼素地のF
eが励起されて発生するものであるから、鋼素地からの
Feの蛍光X線強度はめつき層を通過する際にめっき層
に吸収されるためにめっき付着量が多くなるほど減少し
、逆にめっき層からの蛍光X線強度はめつき層による吸
収の影響が小さくてめっき付着にが多くなるほど増加す
る。そして更に。The above plating deposition amount (g/m) and background intensity I? It can be seen from FIG. 2, which plots . The reason why there is a linear relationship between the amount of plating and the background intensity IP is presumed as follows. The background intensity ■p is caused by the fact that scattered X-rays from the sample and fluorescent X-rays from the sample are taken into the detector. Of these, scattered
In the line, the scattering stamps of Fe and Zn are almost equal, and when the average Fe concentration in the plating layer is in the range of about 8 to 20%, it does not contribute much to the increase in the background strength tsubo with respect to the increase in the amount of plating deposited. Fe and Zn in the fluorescent X-ray plating layer and F in the steel base
Since the fluorescent X-ray intensity of Fe from the steel substrate is absorbed by the plating layer when passing through the plating layer, it decreases as the amount of plating increases; The intensity of fluorescent X-rays from the layer is less influenced by absorption by the plated layer, and increases as the amount of plating increases. And even more.
蛍光X線の励起効率はFeよりもZnの方が高いこと、
Feの蛍光X線がZnに吸収される時の質量吸収係数よ
りもZnの蛍光X線がZnに吸収される時の質量吸収係
数の方が小さいこと、めっき層の主成分はZnであって
めっき層中のZnの蛍光X線強度はFeの蛍光X線強度
に比べてきわめて大きいこと、これらのことが総合され
てめっき付着量の増加とともに主としてZnの蛍光X線
の寄与によってバックグラウンド強度Ijlが直線的に
増加するのである。The excitation efficiency of fluorescent X-rays is higher for Zn than for Fe;
The mass absorption coefficient when the fluorescent X-rays of Zn are absorbed by Zn is smaller than the mass absorption coefficient when the fluorescent X-rays of Fe are absorbed by Zn, and the main component of the plating layer is Zn. The fluorescent X-ray intensity of Zn in the plating layer is extremely large compared to the fluorescent X-ray intensity of Fe, and these facts combine to increase the amount of plating and increase the background intensity Ijl mainly due to the contribution of Zn fluorescent X-rays. increases linearly.
また、めっき層中の平均Fe濃度が等しい場合、めっき
付着量が多くなるほどr相の絶対量も多くなり、r相の
X8回折強度丁、が大きくなる。しかしながら、めっき
付着量が多くなると第2図により説明したようにバック
グラウンド強度Hpも直線的比例関係で大きくなるため
、真の「相のX線回折強度(Ir tP)がバックグ
ラウンド強度坪を含めたX線回折強度■、に占める割合
(Ir II’)/Irはめつき付着量が変わっても
変化しないのである。従つて予めめっき層中の平均Fe
′a度と(Ir −IBr)/Irとの関係を得てお
けば、r相のみについてX線回折強度Irとバックグラ
ウンド強度岸とを測定して上記比を算出することにより
めっき付着量の大小と無関係に簡単に合金化度を得るこ
とができる。Furthermore, when the average Fe concentration in the plating layer is the same, the greater the amount of plating deposited, the greater the absolute amount of the r-phase, and the greater the X8 diffraction intensity of the r-phase. However, as the amount of plating increases, the background intensity Hp also increases in a linearly proportional relationship as explained in Figure 2, so the true X-ray diffraction intensity of the phase (Ir tP) including the background intensity tsubo The ratio (Ir II')/Ir of the X-ray diffraction intensity (■) does not change even if the amount of plating is changed.Therefore, the average Fe in the plating layer is
Once the relationship between 'a degree and (Ir - IBr)/Ir is obtained, the coating weight can be determined by measuring the X-ray diffraction intensity Ir and background intensity for only the r phase and calculating the above ratio. Alloying degree can be easily obtained regardless of size.
そしこのような測定操作を製造ライン内の合金化処理後
の鋼板走行域内の鋼板表裏の適宜な個所で非破壊、連続
的に行うことは容易であり、合金化度均一化のための条
件調整動作、すなわち合金化用の加熱炉の温度調整及び
/又は鋼板の通板速度の変更を直ちに実施することがで
きるのである。It is easy to perform such measurement operations non-destructively and continuously at appropriate locations on the front and back of the steel plate in the steel plate running area after alloying treatment in the production line, and it is possible to adjust the conditions for uniformity of the degree of alloying. The operation, that is, the temperature adjustment of the heating furnace for alloying and/or the change of the steel plate threading speed can be carried out immediately.
なおr相のX線回折強度■1を測定する場合、格子面間
隔約1.22人以外の「相の結晶格子面を用いても、同
様の結果が得られることが確認できた。In addition, when measuring the X-ray diffraction intensity (1) of the r-phase, it was confirmed that similar results could be obtained even if crystal lattice planes of a phase with a lattice spacing other than about 1.22 were used.
また、めっき後に加熱処理を施して作製した合金化電気
亜鉛めっき鋼板1合金化蒸着亜鉛めっき鋼板の合金化度
めっき層中の平均Fe濃度の測定についても同様の結果
が得られ、本発明に係る測定法はめつき後に加熱処理を
施して製造する合金化亜鉛めっき鋼板すべてに適応でき
る。In addition, similar results were obtained for the measurement of the average Fe concentration in the alloying degree plating layer of alloyed electrogalvanized steel sheet 1 alloyed vapor deposited galvanized steel sheet produced by heat treatment after plating. The measurement method can be applied to all galvannealed steel sheets manufactured by heat treatment after plating.
合金化溶融亜鉛めっき鋼板の製造ラインにおいて本発明
に係る測定法を用いてめっき層中の平均Fa濃度を測定
した6
■1及びIllの測定は以下に示す条件で行った。The average Fa concentration in the plating layer was measured using the measuring method according to the present invention in a production line for alloyed hot-dip galvanized steel sheets.6 The measurements of 1 and Ill were carried out under the conditions shown below.
X線管球: Cr(Cr−K a 、 、波長d =2
.28962人)管電圧: 40KV
管電流: 70mA
ダイバージェンス・スリット:4゜
レシービング・スリット:4′′
ソーラー・スリット:4″
フィルター:V
検出器:シンチレーション・カウンター格子面間隔:約
1.22人
■1及びIPの測定は合金化溶融亜鉛めっき鋼板の表裏
とも板幅方向及びライン方向のそれぞれ10個所及び2
0000個所い、得られた(Ir IP) / Tr
と予め上記と同じ工r、i、測定条件で作成しておいた
第1図と同様の回帰直線とからめつき層中の各個所にお
ける平均Fc1度を求めた。X-ray tube: Cr(Cr-K a , wavelength d = 2
.. 28962 people) Tube voltage: 40KV Tube current: 70mA Divergence slit: 4゜Receiving slit: 4'' Solar slit: 4'' Filter: V Detector: Scintillation counter Grid spacing: Approx. 1.22 people■1 and IP measurements were made at 10 locations and 2 locations on the front and back sides of the alloyed hot-dip galvanized steel sheet in the width direction and line direction, respectively.
0000 locations and obtained (Ir IP) / Tr
The average Fc1 degree at each location in the intertwined layer was determined using a regression line similar to that shown in FIG.
このようにして求めためつき層中の平均Fe′a度を合
金化処理条件へフィードバックして合金化用の加熱炉の
雰囲気温度を調整することにより、めっき層中の平均F
6濃度が9〜11wt%の範囲となるように合金化処理
条件を制御したゆこうして製造した各合金化亜鉛めっき
鋼板の50コイルのトップ部、センタ一部、エンド部の
両サイド部とセンタ一部から表裏とも試験片を採取し、
前記ICP発光分光分析法でめっき層中の平均Fe濃度
を測定した。By feeding back the average Fe'a degree in the plating layer determined in this way to the alloying treatment conditions and adjusting the atmospheric temperature of the heating furnace for alloying, the average Fe'a degree in the plating layer can be adjusted.
6. The alloying treatment conditions were controlled so that the concentration was in the range of 9 to 11 wt%. Collect test pieces from both the front and back sides of the
The average Fe concentration in the plating layer was measured by the above-mentioned ICP emission spectrometry.
その結果、全試験片の90%が9〜11wt%の範囲内
であった。9〜11νt%の範囲から外れたものも8〜
12wt%の範囲内であった。サンプリングした全試験
片について板厚の3倍の曲げ半径で180°の曲げ・曲
げ戻しを行い、内側に曲げた部分にセロハンテープを貼
着して剥離試験を行った後、めっき層の表面と断面とを
走査型電子顕微鏡を用いて倍率1000倍で[9し、め
っき層の耐パウダリング性を評価した。評価基準を以下
に示す。As a result, 90% of all test pieces were within the range of 9 to 11 wt%. Those outside the range of 9~11νt% are also 8~
It was within the range of 12 wt%. All sampled test pieces were bent and unbended by 180° with a bending radius three times the board thickness, and cellophane tape was pasted on the inwardly bent part and a peel test was performed, then the surface of the plating layer and The cross section was examined using a scanning electron microscope at a magnification of 1000 times [9] to evaluate the powdering resistance of the plating layer. The evaluation criteria are shown below.
1:めっき層に変化なし
2:局部的に極く僅かな剥離あり
3:大きなりラックと局部的な剥離あり4:めっき層全
面が剥離
評価基準1ど2とは耐パウダリング性良好、3と4とは
耐パウダリング性不良で不良品と判定されるものである
、サンプリングした全試験片の内、95%の試験片は評
価基準1と2であった。塗装性。1: No change in the plating layer 2: Very slight peeling locally 3: Large rack and local peeling 4: The entire surface of the plating layer peels Evaluation criteria 1 and 2 indicate good powdering resistance, 3 and 4 are determined to be defective products due to poor powdering resistance. Of all the sampled test pieces, 95% of the test pieces met evaluation standards 1 and 2. Paintability.
塗膜密着性及び溶接性についても調査した結果、不良品
と判定されたものは全試験片の内で僅かに0.1%であ
った。As a result of investigating coating film adhesion and weldability, only 0.1% of all test pieces were determined to be defective.
以上詳述した如く、本発明に係る測定法によればめっき
直後に加熱処理を施して製造する合金化亜鉛めっき鋼板
の製造ライン内において、従来から合金化度を表すもの
として用いられているめっき層中の平均Fe濃度を非破
壊、連続的に測定できることは勿論、その測定はめつき
条件の変動によるめっき付着量の大小変動にも影響され
ることがなく、またr相のみが測定対象であることから
非常に正確に測定することができる。As detailed above, according to the measuring method according to the present invention, the plating, which has been conventionally used as an indicator of the degree of alloying, is used in the production line of alloyed galvanized steel sheets that are manufactured by heat treatment immediately after plating. Not only can the average Fe concentration in the layer be measured non-destructively and continuously, but the measurement is also unaffected by changes in the amount of plating deposited due to changes in plating conditions, and only the r-phase is measured. Therefore, it can be measured very accurately.
そしてこの本発明に係る測定法によるめっき層中の平均
Fe濃度の測定値から、速やかに合金化処理条件を適正
範囲内に制御することにより1表裏とも耐パウダリング
性等の品質特性に優れた合金化亜鉛めっき鋼板が製造で
きるのである。From the measured value of the average Fe concentration in the plating layer using the measurement method according to the present invention, it was found that by promptly controlling the alloying treatment conditions within an appropriate range, both the front and back sides had excellent quality characteristics such as powdering resistance. Alloyed galvanized steel sheets can be produced.
その結果、従来は出荷試験として各コイルからサンプリ
ングした試験片を化学分析し、めっき層中の平均Fef
i度を測定していたが、本発明に係る測定法を用いた合
金化度の制御法により充分な品質管理が行える上、出荷
試験を省略することができるので製造工程の短縮及び省
力化がもたらされ、製造コストが安くなるばかりか、更
にめっき層中の平均Fe濃度の算出においてめっき付着
量による補正を必要とせずまた簡単な一次関数式を用い
るのみであるから1本発明に係る測定法を用いた合金化
度の制御法を自動化する場合でも小容量の演算装置でよ
く、装置作製に要する費用も安価で済む利点がある。As a result, conventionally, as a shipping test, test pieces sampled from each coil were chemically analyzed, and the average Fe in the plating layer was
However, by controlling the degree of alloying using the measurement method according to the present invention, sufficient quality control can be performed, and shipping tests can be omitted, which shortens the manufacturing process and saves labor. 1. The measurement according to the present invention not only reduces the manufacturing cost, but also eliminates the need for correction based on the amount of plating and only uses a simple linear function equation in calculating the average Fe concentration in the plating layer. Even when automating the method for controlling the degree of alloying using the method, a small-capacity computing device is required, and the cost required for manufacturing the device is low.
第1図は合金化溶融亜鉛めっき鋼板のめつき層中の平均
Fe’ffJ度と(Ir I!’ )/ Irとの関
係を示す図、第2図はめつき付着量とバックグラウンド
強度T?との関係を示す図、第3図はICI’発光分光
分析法で測定しためつき層中の平均Fe濃度の測定値と
本発明法で測定しためつき層中の平均Fe′a度の測定
値の関係を示す図、第4図はr相のX線回折曲線の一般
説明図である。
特許出願人 日新製鋼株式会社 −
′l′
′・―、・′
(Ir−Ir)/l「
バックグラウンド5釦隻C(X100 c、p、s、)
第3図
基
(ICP受光受光分析分析
法4°図
よ
屯
\、I
2θ (崖)Fig. 1 shows the relationship between the average Fe'ffJ degree and (Ir I!')/Ir in the plating layer of an alloyed hot-dip galvanized steel sheet, and Fig. 2 shows the relationship between the plating amount and the background strength T? Figure 3 is a diagram showing the relationship between the measured values of the average Fe concentration in the blocking layer measured by ICI' emission spectrometry and the measurement of the average Fe'a concentration in the blocking layer measured by the method of the present invention. FIG. 4, a diagram showing the relationship between values, is a general explanatory diagram of the X-ray diffraction curve of the r phase. Patent applicant Nisshin Steel Co., Ltd. - 'l''・-,・' (Ir-Ir)/l "Background 5 button boat C (X100 c, p, s,)
Figure 3 Base (ICP photoreception analysis method 4° diagram, I 2θ (cliff)
Claims (1)
のうちのΓ相のX線回折強度(I_r)とバックグラウ
ンド強度(I^B_r)とから(I_r−I^B_r)
/I_rを算出して合金化度を測定することを特徴とす
るX線回折法による合金化亜鉛めつき鋼板の合金化度の
測定方法。 2 合金化亜鉛めつき鋼板製造ラインにおいて合金化処
理され走行して来る合金化亜鉛めつき鋼板のFe−Zn
金属間化合物相のうちのΓ相のX線回折強度(I_r)
とバックグラウンド強度(I^B_r)とを非破壊且つ
連続的に測定して該測定値から(I_r−I^B_r)
/I_rを算出し、該算出値が所定の値の範囲内に入る
ように合金化処理条件を調整することを特徴とする合金
化亜鉛めつき鋼板製造ラインにおける合金化度の制御方
法。[Claims] 1 From the X-ray diffraction intensity (I_r) of the Γ phase of the Fe-Zn intermetallic compound phase of the alloyed galvanized steel sheet and the background intensity (I^B_r), (I_r-I^ B_r)
A method for measuring the degree of alloying of an alloyed galvanized steel sheet using an X-ray diffraction method, characterized in that the degree of alloying is measured by calculating /I_r. 2 Fe-Zn in alloyed galvanized steel sheets that have been alloyed and run on the alloyed galvanized steel sheet production line
X-ray diffraction intensity (I_r) of Γ phase among intermetallic compound phases
and the background intensity (I^B_r) are measured non-destructively and continuously, and from the measured values (I_r - I^B_r)
1. A method for controlling the degree of alloying in an alloyed galvanized steel sheet manufacturing line, the method comprising: calculating /I_r, and adjusting alloying treatment conditions so that the calculated value falls within a predetermined value range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63130410A JP2542906B2 (en) | 1988-05-30 | 1988-05-30 | Method for measuring alloying degree of galvannealed steel sheet by X-ray diffraction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63130410A JP2542906B2 (en) | 1988-05-30 | 1988-05-30 | Method for measuring alloying degree of galvannealed steel sheet by X-ray diffraction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01301155A true JPH01301155A (en) | 1989-12-05 |
JP2542906B2 JP2542906B2 (en) | 1996-10-09 |
Family
ID=15033604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63130410A Expired - Lifetime JP2542906B2 (en) | 1988-05-30 | 1988-05-30 | Method for measuring alloying degree of galvannealed steel sheet by X-ray diffraction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2542906B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0473154A2 (en) * | 1990-08-31 | 1992-03-04 | Nisshin Steel Co., Ltd. | System for making an on-line determination of degree of alloying in galvannealed steel sheets |
WO2013161922A1 (en) | 2012-04-25 | 2013-10-31 | 新日鐵住金株式会社 | METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET |
US9927378B2 (en) | 2013-10-25 | 2018-03-27 | Nippon Steel & Sumitomo Metal Corporation | On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123935A (en) * | 1976-04-13 | 1977-10-18 | Nisshin Steel Co Ltd | Method of fabricating alloyed zinc iron plate |
JPS61145439A (en) * | 1984-12-19 | 1986-07-03 | Kawasaki Steel Corp | Method for measuring alloying degree of alloyed molten zinc plated steel plate |
-
1988
- 1988-05-30 JP JP63130410A patent/JP2542906B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123935A (en) * | 1976-04-13 | 1977-10-18 | Nisshin Steel Co Ltd | Method of fabricating alloyed zinc iron plate |
JPS61145439A (en) * | 1984-12-19 | 1986-07-03 | Kawasaki Steel Corp | Method for measuring alloying degree of alloyed molten zinc plated steel plate |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0473154A2 (en) * | 1990-08-31 | 1992-03-04 | Nisshin Steel Co., Ltd. | System for making an on-line determination of degree of alloying in galvannealed steel sheets |
EP0473154A3 (en) * | 1990-08-31 | 1993-03-24 | Nisshin Steel Co., Ltd. | System for making an on-line determination of degree of alloying in galvannealed steel sheets |
WO2013161922A1 (en) | 2012-04-25 | 2013-10-31 | 新日鐵住金株式会社 | METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET |
US9417197B2 (en) | 2012-04-25 | 2016-08-16 | Nippon Steel & Sumitomo Metal Corporation | Method of measuring thickness of Fe—Zn alloy phase of galvannealed steel sheet and apparatus for measuring the same |
US9927378B2 (en) | 2013-10-25 | 2018-03-27 | Nippon Steel & Sumitomo Metal Corporation | On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line |
Also Published As
Publication number | Publication date |
---|---|
JP2542906B2 (en) | 1996-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900008955B1 (en) | Method of measuring layer theckness and composition of alloy plating | |
JPH04110644A (en) | Apparatus for measuring on-line alloyed degree of alloyed galvanized steel plate | |
MX2014010409A (en) | METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET. | |
DE2636145A1 (en) | METHOD OF DETERMINING THE DEGREE OF ALLOYING OF STEEL SHEETS HEAT TREATED AFTER GALVANIZED | |
EP0348574B1 (en) | Method of simultaneously measuring thickness and composition of film and apparatus therefor | |
JPH01301155A (en) | Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet | |
JPH0933455A (en) | Method for measuring alloyed degree of alloying plated layer | |
JP2745428B2 (en) | X-ray diffraction method for evaluating the processing performance of alloyed zinc plated steel sheets for high processing | |
JP5962615B2 (en) | Method for measuring the degree of alloying of galvannealed steel sheets | |
KR100348065B1 (en) | Method of measuring plating amount and alloying degree using fluorescence X-ray | |
JP2707865B2 (en) | Method of measuring alloying degree of alloyed galvanized layer | |
JP2873125B2 (en) | Method and apparatus for measuring coating weight | |
JP3221547B2 (en) | Measuring method of zinc adhesion on galvannealed steel sheet | |
JP2672929B2 (en) | Quantitative analysis method for upper layer plating of double-layered alloyed hot dip galvanized steel sheet by glow discharge emission spectrometry | |
JP3114108B2 (en) | Measuring method of alloying degree of alloyed zinc coated steel sheet | |
JPH0610660B2 (en) | Method for measuring film thickness and composition of alloy film | |
JPH0442044A (en) | Measuring method for characteristic of metal layer | |
JP3270781B2 (en) | Analysis method of alloy layer | |
JPS6014109A (en) | Measuring device of buld-up quantity of plating of galvanized steel plate | |
JPH08297106A (en) | Measuring method for plating stuck quantity and mg percentage content of zn-mg alloy-plated steel plate | |
JPS646269B2 (en) | ||
JPH0440655B2 (en) | ||
JPH0435028B2 (en) | ||
JPH09159428A (en) | Method for measuring deposition quantities of mg, and surface layer zn of zn-mg based plated steel plate | |
JPH09152409A (en) | Method of judging degree of alloying for alloyed zinc plated steel plate |