JPS61145439A - Method for measuring alloying degree of alloyed molten zinc plated steel plate - Google Patents

Method for measuring alloying degree of alloyed molten zinc plated steel plate

Info

Publication number
JPS61145439A
JPS61145439A JP26768984A JP26768984A JPS61145439A JP S61145439 A JPS61145439 A JP S61145439A JP 26768984 A JP26768984 A JP 26768984A JP 26768984 A JP26768984 A JP 26768984A JP S61145439 A JPS61145439 A JP S61145439A
Authority
JP
Japan
Prior art keywords
steel plate
alloying
degree
temperature
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26768984A
Other languages
Japanese (ja)
Other versions
JPH0426424B2 (en
Inventor
Junji Kawabe
川辺 順次
Tadao Fujinaga
藤永 忠男
Kazuya Oshiba
押場 和也
Tadahiro Abe
安部 忠廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26768984A priority Critical patent/JPS61145439A/en
Publication of JPS61145439A publication Critical patent/JPS61145439A/en
Publication of JPH0426424B2 publication Critical patent/JPH0426424B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To measure an alloying degree with good accuracy and to enhance the automatic control accuracy of the alloying degree, by measuring the temp. of a steel plate at a predetermined point and allowing X-rays to be incident to the surface of the steel plate to measure the diffraction X-ray intensity of a surface alloy phase. CONSTITUTION:At a predetermined point after the alloying heat treatment furnace in the manufacturing line of an alloyed molten zinc plated steel plate but before a skin pass process and a leveling process, the temp. of the steel plate is measured in such a state the temp. of the alloyed molten zinc plated steel plate is set to a temp. range of + or -15 deg.C in a range of room temp. - 50 deg.C or in a range of above 50 deg.C-400 deg.C. At the same point, X-rays are incident to the surface of the steel plate to measure the diffraction X-ray intensity of the alloy phase on the surface of the steel plate. The alloying degree in an alloy phase is calculated from these measured results, the preliminarily calculated temp. of the steel plate and X-ray diffraction intensity and the corresponding relation of the diffraction X-ray intensity and the alloying degree.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は1合金化溶融亜鉛めっき鋼板を連続的に製造す
る設備において、合金化度を連続的に測定する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for continuously measuring the degree of alloying in equipment for continuously manufacturing single-alloyed hot-dip galvanized steel sheets.

〈従来技術とその問題点〉 合金化溶融亜鉛めっき鋼板の合金化度を測定する方法と
して、例えば特公昭58−47659号が開示されてい
る。しかし1発明者らの研究によれば、同公報に開示さ
れる技術は、合金化度測定値が目付量の影響を強く受け
る。このため、目付量水準が不可避的に変動する合金化
溶融亜鉛めっき鋼板の連続的製造設備においては、同技
術による測定誤差の発生は不可避である。従って、同技
術の目的が、合金化溶融亜鉛めっき鋼板の合金化度を制
御することによって、めっき層の品質特性を管理するこ
とにあるにもかかわらず、十分な品質特性管理が殆どで
きない。
<Prior art and its problems> For example, Japanese Patent Publication No. 58-47659 discloses a method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet. However, according to research by one of the inventors, in the technique disclosed in the publication, the measured value of the degree of alloying is strongly influenced by the basis weight. Therefore, in a continuous production facility for alloyed hot-dip galvanized steel sheets where the basis weight level inevitably changes, measurement errors due to this technique are unavoidable. Therefore, although the purpose of this technique is to control the quality characteristics of the coating layer by controlling the degree of alloying of the galvannealed steel sheet, it is hardly possible to adequately control the quality characteristics.

そこで、発明者らは新たな技術(特願昭59−2409
5号)を提案し、上述の問題に対処した。その技術とは
、X線回折法により目付量を測足し得るという新知見に
もとづくもので、前記技術(#公開58−47659号
)の欠点である目付″量変動による合金化度の測定誤差
発生を抑制することに一応の効果を上げることができる
ものである。しかし、この技術をもってしても、合金化
溶融亜鉛めっき鋼板を連続的に製造する設備上に設置し
、連続的に合金化度を測定した場合、その測定精度は必
ずしも十分でないことが判った。
Therefore, the inventors developed a new technology (patent application No. 59-2409).
No. 5) was proposed to address the above-mentioned problems. This technology is based on the new knowledge that the basis weight can be measured by X-ray diffraction method, and the disadvantage of the above technology (#Publication No. 58-47659) is that measurement errors in the degree of alloying occur due to variations in the basis weight. However, even with this technology, it is installed on equipment that continuously manufactures alloyed hot-dip galvanized steel sheets, and the degree of alloying is continuously increased. It was found that the measurement accuracy was not necessarily sufficient when measuring.

すなわち、実製造設備上での合金化度測定値と、測定し
た同鋼板を現状で最も正確と考えられる化学分析で求め
た合金化度との間に、比較的大きな正または負の誤差が
生ずるのである。
In other words, a relatively large positive or negative error occurs between the alloying degree measured on actual manufacturing equipment and the alloying degree determined by chemical analysis of the same steel sheet, which is currently considered the most accurate method. It is.

第1表は、発明者らの調査によるところの合金化度の真
値、すなわち化学分析による合金化度と、製造設備(鋼
板の温度40〜400”Cり上で測定した合金化度およ
び冷却状態(室温)で測定した合金化度との関係を示す
が、製造設備上での合金化度は化学分析による合金化度
に比べて、低い値を示す場合と高い値を示す場合の両方
がある。また、冷却状態での合金化度は製造設備上の合
金化度よりも高い値を示すことが判る。
Table 1 shows the true value of the degree of alloying according to the inventors' investigation, that is, the degree of alloying determined by chemical analysis, the degree of alloying measured on the manufacturing equipment (the temperature of the steel plate is 40 to 400"C), and the degree of alloying determined by cooling. The relationship between the degree of alloying measured at room temperature is shown, and the degree of alloying measured on manufacturing equipment is both lower and higher than the degree of alloying determined by chemical analysis. It is also found that the degree of alloying in the cooled state is higher than the degree of alloying in the manufacturing equipment.

第   1   表 ところで、一般的な合金化溶融亜鉛めっき鋼板の連続的
製造設備の工程上の特徴は、溶融亜鉛めっき直後の鋼板
を加熱炉に導き、ここで鋼板温度を500〜650℃に
まで上昇させて、めっき層の亜鉛と鋼板素地の鉄との合
金化反応を促進させ、めっき層を鉄−亜鉛金属間化合物
でなる層に変化させた後、空冷、水冷などによって冷却
し、さらに鋼板に2%以下の軽圧下を加える調質圧延工
程やレベラ一工程を経て最終工程に至る。
Table 1 By the way, the process characteristics of general continuous manufacturing equipment for alloyed hot-dip galvanized steel sheets are that the steel sheet immediately after hot-dip galvanization is guided into a heating furnace, where the temperature of the steel sheet is raised to 500 to 650°C. This process accelerates the alloying reaction between the zinc in the plating layer and the iron in the base steel sheet, converting the plating layer into a layer consisting of an iron-zinc intermetallic compound, and then cooling by air cooling, water cooling, etc., and further forming the steel sheet. It goes through a temper rolling process that applies a light reduction of 2% or less and a leveler process before reaching the final process.

また、合金化溶融亜鉛めっき鋼板の合金化度を測定し、
これに基づいて合金化度を自動制御する際、測定値が正
確であることは不可欠な要件であるが、合金化度測定位
置と自動制御対象位置とが位置的に可能な限り近いこと
が肝要である。
In addition, the degree of alloying of alloyed hot-dip galvanized steel sheets was measured,
When automatically controlling the alloying degree based on this, it is essential that the measured value is accurate, but it is also important that the alloying degree measurement position and the position to be automatically controlled are as close as possible. It is.

すなわち、自動制御対象としては、合金化反応を併進さ
せる加熱炉の加熱エネルギー、すなわちガス燃焼エネル
ギーあるいは電気的加熱エネルギーを選択するのが一般
的であるが、測定位置が加熱炉から遠く離れる程、合金
化度変化への制御の対応が遅れることになり、その結果
、不良品を多量に製造することになるのである。
In other words, the heating energy of the heating furnace that causes the alloying reaction to proceed concurrently, that is, gas combustion energy or electrical heating energy, is generally selected as the automatic control target, but the farther the measurement position is from the heating furnace, the more Control response to changes in alloying degree is delayed, and as a result, a large number of defective products are manufactured.

従って、測定位置は加熱炉に近いほど望ましいのである
が、一般的な製造設備においては、鋼板温度は、鋼板が
上述の加熱炉を出た直後の鋼板温度は500〜650℃
にもなり、その後、段階的に冷却されるが、鋼板厚みや
加熱条件により板温か変動するところに問題がある。
Therefore, the closer the measurement position is to the heating furnace, the better; however, in general manufacturing equipment, the steel plate temperature is 500 to 650°C immediately after the steel plate leaves the heating furnace.
After that, the steel plate is cooled in stages, but the problem is that the plate temperature fluctuates depending on the steel plate thickness and heating conditions.

すなわち、発明者らの研究から、合金化亜鉛めっき層を
構成する各合金層のX線回折強度は、室温から400℃
までの温度範囲においては、鋼板の温度が高温になるほ
ど小さくなる。また、鋼板温度が450℃以上の高温に
おいては、数秒の間に合金化反応が進行し、合金化度が
変化するという問題のあることが判った。すなわち、鋼
板温度の工程で合金化度が異なり、また、測定時と冷却
され製品となった場合の合金化度とが異なるのである。
That is, from the research conducted by the inventors, the X-ray diffraction intensity of each alloy layer constituting the alloyed galvanized layer is
In the temperature range up to , the higher the temperature of the steel sheet, the smaller it becomes. Furthermore, it has been found that when the steel sheet temperature is at a high temperature of 450° C. or higher, the alloying reaction proceeds within a few seconds, causing a problem in that the degree of alloying changes. In other words, the degree of alloying differs depending on the steel sheet temperature process, and the degree of alloying differs between the time of measurement and the time of cooling into a product.

上述のように、発明者らの研究から、合金化度の測定誤
差のひとつの要因として鋼板温度の変動に係る問題が考
えられた。しかし、第1表から判るように、鋼板温度だ
けが誤差発生の原因ではない、すなわち、化学分析によ
る合金化度と冷却状態での合金化度とが一致しないので
ある。
As mentioned above, the research conducted by the inventors has led to the conclusion that one of the causes of measurement errors in the degree of alloying is the problem related to fluctuations in steel sheet temperature. However, as can be seen from Table 1, the steel plate temperature is not the only cause of the error; that is, the degree of alloying determined by chemical analysis does not match the degree of alloying in the cooled state.

〈発明の目的〉 前述のように、本発明の目的は、合金化溶融亜鉛めっき
鋼板を連続的に製造する設備において。
<Object of the Invention> As mentioned above, the object of the present invention is to provide a facility for continuously manufacturing alloyed hot-dip galvanized steel sheets.

合金化度を連続的に測定し1合金化度を自動制御して、
最終製品の合金化度を正確にコントロールすることによ
って、目的とする合金化度を外れる製品(不良品)の発
生を最小にすることができる合金化亜鉛めっき鋼板の合
金化度測定方法を提供することにある。
Continuously measure the degree of alloying and automatically control the degree of alloying.
To provide a method for measuring the degree of alloying of an alloyed galvanized steel sheet, which can minimize the occurrence of products (defective products) that deviate from the desired degree of alloying by accurately controlling the degree of alloying of the final product. There is a particular thing.

〈発明の構成〉 本発明は5合金化溶融亜鉛めっき鋼板の製造ライン中、
合金化熱処理炉以後であって、調質圧延工程およびレベ
リング工程以前の所定の地点において、合金化溶融亜鉛
めっき鋼板の温度を室温〜50℃あるいは50℃〜40
0℃の範囲では±15℃の温度範囲になるよう制御した
状態で鋼板温度を測定し、かつ、前記温度測定地点と同
じ地点において鋼板表面上にX線を入射して該鋼板表面
の合金相の回折X線強度を測定し、それらの測定結果と
予め求めておいた鋼板温度とX線回折強度、および回折
X線強度と合金化度の対応関係とから合金相中の合金化
度を算出することを特徴とする合金化溶融亜鉛めっき鋼
板の合金化度測定方法を提供するものである。
<Structure of the Invention> The present invention provides a method for manufacturing a 5-alloyed hot-dip galvanized steel sheet,
At a predetermined point after the alloying heat treatment furnace and before the temper rolling process and the leveling process, the temperature of the alloyed hot-dip galvanized steel sheet is adjusted to room temperature to 50°C or 50°C to 40°C.
The temperature of the steel plate is measured under a controlled temperature range of ±15°C in the range of 0°C, and X-rays are incident on the surface of the steel plate at the same point as the temperature measurement point to determine the alloy phase on the surface of the steel plate. Measure the diffraction X-ray intensity of The present invention provides a method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet.

実験室において、めっき中鉄濃度(化学分析値)が8.
10,12,14,16wt%の合金化亜鉛めっき鋼板
について、鋼板の温度を25℃から約400℃の範囲に
コントロールして、各温度毎に各Fe−Zn合金相のX
線回折強度を測定した。
In the laboratory, the iron concentration in the plating (chemical analysis value) was 8.
Regarding 10, 12, 14, and 16 wt% alloyed galvanized steel sheets, the temperature of the steel sheets was controlled within the range of 25°C to approximately 400°C, and the X of each Fe-Zn alloy phase was adjusted at each temperature.
Linear diffraction intensity was measured.

その結果、各回折強度は温度が高くなると弱くな”す、
その弱くなる程度は、Fe−Zn合金相の種類によって
異なることが判った。また、各相とも温度が高くなると
回折角(2θ)が移動することも判った。このことから
、測定時の板温の変化が測定誤差の原因になることが判
った。
As a result, each diffraction intensity becomes weaker as the temperature increases.
It was found that the degree of weakening differs depending on the type of Fe-Zn alloy phase. It was also found that the diffraction angle (2θ) of each phase shifts as the temperature increases. From this, it was found that changes in plate temperature during measurement caused measurement errors.

また、実験室において、めっき中鉄濃度(化学分析値)
が12%の合金化溶融亜鉛めっき鋼板について、調質圧
延とレベリングを行い、0.1〜2.0%の範囲の圧下
率と、めっき層中各Fe−Zn合金相の回折強度との関
係を調べた。その結果、各相の回折強度は圧下率の変化
に対応して著しく変化し、また、その変化量は各合金相
で一様でないことが判った。このことから、調質圧延に
よる僅かな圧下率の相違が測定誤差の原因になることが
判った。
In addition, in the laboratory, iron concentration in plating (chemical analysis value)
An alloyed hot-dip galvanized steel sheet with 12% was subjected to temper rolling and leveling, and the relationship between the rolling reduction in the range of 0.1 to 2.0% and the diffraction intensity of each Fe-Zn alloy phase in the coating layer I looked into it. As a result, it was found that the diffraction intensity of each phase changed significantly in response to changes in rolling reduction, and that the amount of change was not uniform for each alloy phase. From this, it was found that slight differences in rolling reduction due to temper rolling caused measurement errors.

そこで、発明者らは、板温、調質圧延およびレベリング
による測定誤差を極力微小にするための方策を種々検討
した。その結果、X線回折強度測定時の鋼板温度を、室
温〜50℃以下または400℃以下の所定温度を中心と
した±15℃の範囲内に制御し、かつ1合金化度測定装
置を調質圧延工程やレベリング工程の主工程に設置する
ことによって、測定誤差を最小にすることができる ゛
ことを見出した。
Therefore, the inventors investigated various measures to minimize measurement errors due to plate temperature, temper rolling, and leveling. As a result, the steel plate temperature during X-ray diffraction intensity measurement can be controlled within a range of ±15°C around a predetermined temperature between room temperature and 50°C or lower or 400°C or lower, and the alloying degree measuring device can be tempered. It has been found that measurement errors can be minimized by installing it in the main processes of the rolling process and leveling process.

また、板温とX線回折強度との関係は、ある種の関数で
表現でき、板温とX線回折強度とを測定することによっ
て、例えばある特定温度でのX線回折強度を正確に推定
できることが判った。
Furthermore, the relationship between plate temperature and X-ray diffraction intensity can be expressed by a certain type of function, and by measuring plate temperature and X-ray diffraction intensity, for example, the X-ray diffraction intensity at a certain temperature can be accurately estimated. It turns out it can be done.

本発明において、合金化溶融亜鉛めっき鋼板の合金化度
をX線回折法により連続的に測定するに際し、測定時の
鋼板温度を、室温〜50℃以下、または50℃をこえて
400℃以下にあっては、±15℃の範囲内に制御する
のは、以下の理由による。
In the present invention, when continuously measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet by X-ray diffraction method, the temperature of the steel sheet at the time of measurement is kept from room temperature to 50°C or less, or from over 50°C to 400°C or less. The reason why the temperature is controlled within the range of ±15°C is as follows.

すなわち、発明者らの研究によれば、第1図に示すよう
に、鋼板温度と、例えばη、δ1.r。
That is, according to the inventors' research, as shown in FIG. 1, the steel plate temperature and, for example, η, δ1. r.

α−Fe各相のX線回折ピーク強度および回折角との関
係は、鋼板温度が25(室温)〜400℃の間において
は、温度上昇に連れてX線回折ピーク強度がほぼ逆比例
的に弱くなる。その結果、めっき中鉄濃度を求めるため
の検量線を作成したときの鋼板温度が異なることによっ
て、同じ合金化亜鉛めっき鋼板を測定してもFe濃度測
定値は異なる。しかし、第1図から、X線回折ピーク強
度は、25〜50℃の範囲にあっては、その弱くなる程
度は微小で殆ど無視し得ること、および50℃以上、4
00℃以下の鋼板温度にあっても、±15℃の範囲、す
なわち30℃の範囲内におけるX線回折ピーク強度の変
化は微小で、殆ど無視し得ることが判る。
The relationship between the X-ray diffraction peak intensity and diffraction angle of each phase of α-Fe is that when the steel sheet temperature is between 25 (room temperature) and 400°C, the X-ray diffraction peak intensity is almost inversely proportional to the temperature rise. become weak. As a result, even if the same alloyed galvanized steel sheet is measured, the measured values of the Fe concentration will be different due to the difference in the temperature of the steel sheet when the calibration curve for determining the iron concentration in the plating is created. However, from FIG. 1, it can be seen that in the range of 25 to 50°C, the degree of weakening of the X-ray diffraction peak intensity is so small that it can be almost ignored;
It can be seen that even at a steel plate temperature of 00°C or lower, the change in the X-ray diffraction peak intensity within the range of ±15°C, that is, within the range of 30°C, is minute and can be almost ignored.

発明者らの試算によると、50℃以下、および50℃以
上400℃以下各鋼板温度±15℃の範囲内における、
X線回折ピーク強度の微小変化がFe濃度測定値に及ぼ
す影響は、Fe濃度12%の合金化亜鉛めっき鋼板で僅
か0.3%以内である。すなわち、11.7〜12.3
%の範囲であることが判った。鋼板温度が±15℃の制
御範囲を越えると、越える程度に応じてFe濃度測定値
の誤差は大きくなるが、制御範囲が大きい程、制御が容
易になる。
According to the inventors' calculations, within the range of 50°C or less, and 50°C or more and 400°C or less, each steel plate temperature is within ±15°C.
The effect of a minute change in the X-ray diffraction peak intensity on the measured Fe concentration is within 0.3% for an alloyed galvanized steel sheet with an Fe concentration of 12%. That is, 11.7 to 12.3
% range. When the steel plate temperature exceeds the control range of ±15° C., the error in the Fe concentration measurement value increases depending on the extent to which it exceeds the control range, but the larger the control range, the easier the control becomes.

しかし、本発明の目的が、可能な限り測定誤差を小さく
することにあるので、本発明においては、室温〜50℃
以下の範囲、または50”0〜400℃以下の範囲の±
15℃の範囲内に制御する。また、50℃〜400℃以
下の範囲で±15℃に規制するのは、450℃以上にあ
っては数秒の間に合金化が進行し、測定時の合金化度と
製品の合金化度との間で差が生じ、冷却され製品になる
間の合金化度進行の予測システムを新たに開発する必要
があること、および1発明者らの経験から判ったことで
あるが、約400℃以上の測定では、X線回折装置の構
造物を熱影響から保護することが困難で、熱影響による
光学系の歪が測定誤差を与えるようになることなど、好
ましくない間・題が生ずるのを回避するためである。
However, since the purpose of the present invention is to reduce the measurement error as much as possible, in the present invention,
Within the following range, or ± within the range of 50”0 to 400℃
Control within the range of 15°C. In addition, the reason why the temperature range of 50°C to 400°C is limited to ±15°C is because alloying progresses within a few seconds at temperatures above 450°C, and the degree of alloying at the time of measurement is different from the degree of alloying in the product. It is necessary to develop a new prediction system for the progression of alloying degree during cooling to form a product, and the inventors' experience has shown that In the measurement of This is to do so.

また、本発明において1合金化度測定装置の設置場所を
、合金化熱処理炉の下流であって、調質圧延工程および
レベリング工程の上流位置とするのは、本発明者らの研
究から、調質圧延やレベリングによる僅か0.1%程度
の圧下率の加工によっても、合金化度が大きく変化する
ことが判ったことに基づく。
Furthermore, in the present invention, the installation location of the alloying degree measuring device is downstream of the alloying heat treatment furnace and upstream of the temper rolling process and the leveling process, based on the research conducted by the present inventors. This is based on the fact that it has been found that the degree of alloying changes significantly even when the reduction rate is only about 0.1% by rough rolling or leveling.

すなわち、実製造設備では、製造される製品の鋼種、板
厚、熱履歴等は種々異なる。これに応じて、調質圧延の
圧下率やレベラーによる圧下率も0.1〜2.0%の範
囲で種々異なる。このため、これらの工程の下流で合金
化度を測定すれば、同一合金化亜鉛めっき鋼板であって
も合金化度が著しく異なるのである。従って1本発明に
おいては。
That is, in actual manufacturing equipment, the steel type, plate thickness, thermal history, etc. of the manufactured products vary. Accordingly, the rolling reduction ratio of skin pass rolling and the rolling reduction ratio by a leveler also vary within the range of 0.1 to 2.0%. Therefore, if the degree of alloying is measured downstream of these processes, the degree of alloying will be significantly different even for the same alloyed galvanized steel sheet. Therefore, in the present invention.

測定装置の設置位置を、合金化処理工程の下流で調質圧
延工程およびレベリング工程の上流位置とする。
The measuring device is installed downstream of the alloying process and upstream of the temper rolling process and the leveling process.

なお、鋼板の温度を50℃〜400℃において±15℃
の範囲内に制御する方法としては、加熱炉を出た直後の
板温を放射温度計などの非接触タイプの温度計で測定し
、その温度測定値と目標温度との偏差に応じて、冷却用
空気量を制御できる空冷帯を設けることによって、20
0〜400℃の範囲内の任意温度を中心とする±15℃
の範囲に制御することができる。
In addition, the temperature of the steel plate is ±15℃ between 50℃ and 400℃.
The method of controlling the temperature within this range is to measure the temperature of the plate immediately after leaving the heating furnace with a non-contact type thermometer such as a radiation thermometer, and then adjust the cooling temperature according to the deviation between the measured temperature value and the target temperature. By providing an air cooling zone that can control the amount of air used,
±15℃ centered on any temperature within the range of 0 to 400℃
can be controlled within a range of

また、300℃以下では、ミスト冷却方式で水と空気と
を混合比を変えることによって、冷却速度を制御するこ
とによって、任意の温度を中心とする±15℃の範囲内
とすることができる。なお、発明者らの経験では、鋼板
温度が300℃以上の鋼板をミスト冷却などで急冷する
と、鋼板の形状が悪くなり、そのことが合金化度の測定
誤差要因となることなども判っている。
Further, at temperatures below 300°C, by controlling the cooling rate by changing the mixing ratio of water and air using a mist cooling method, it is possible to maintain an arbitrary temperature within a range of ±15°C. In addition, in the experience of the inventors, it has been found that when a steel plate with a temperature of 300°C or higher is rapidly cooled by mist cooling, the shape of the steel plate deteriorates, which causes an error in measuring the degree of alloying. .

さらに、発明の第2の特徴は、X線回折強度と鋼板温度
とを同時に測定し、予め求め置いた鋼板温塵とX線回折
強度との関係式より設定した基準鋼板温度におけるX線
回折強度に補正し、補正したX線回折強度を、予め求め
置いた基準鋼板温度で作製したX線回折強度と合金化度
との関係式に挿入し、合金化度を測定することにある。
Furthermore, the second feature of the invention is that the X-ray diffraction intensity and the steel plate temperature are measured simultaneously, and the X-ray diffraction intensity at a reference steel plate temperature is determined from the relational expression between the steel plate hot dust and the X-ray diffraction intensity determined in advance. The purpose is to measure the degree of alloying by correcting the X-ray diffraction intensity and inserting the corrected X-ray diffraction intensity into a relational expression between the X-ray diffraction intensity and the degree of alloying prepared at a predetermined reference steel plate temperature.

このように、鋼板温度とX線回折強度とを同時に測定す
るのは、前述のように鋼板温度が板厚や合金化加熱条件
などによって変動するが、これに伴って、第1図から判
るようにX線回折強度も変動するからで、X線回折装置
と温度計とを同一場所に設置し、同時に測定する必要が
ある。
Measuring the steel plate temperature and X-ray diffraction intensity simultaneously in this way is important because, as mentioned above, the steel plate temperature varies depending on the plate thickness, alloying heating conditions, etc., and as can be seen from Figure 1. This is because the X-ray diffraction intensity also fluctuates, so it is necessary to install the X-ray diffraction device and the thermometer at the same location and take measurements at the same time.

なお1発明者らの経験では、鋼板幅方向の鋼板温度分布
は、概して幅方向中央よりも両端のほうが低い、このた
め、幅方向の合金化度を測定する場合にあっては、X線
回折装置と板温計とを同一トラバース台車上に乗せて合
金化度を測定したところ1幅方向の合金化度測定値は化
学分析による測定値とよく一致した。
In addition, in the experience of the inventors, the temperature distribution of the steel sheet in the width direction of the steel sheet is generally lower at both ends than at the center of the width direction. Therefore, when measuring the degree of alloying in the width direction, X-ray diffraction When the degree of alloying was measured by placing the device and the plate thermometer on the same traverse cart, the measured value of the degree of alloying in one width direction agreed well with the value measured by chemical analysis.

また、X線回折強度と合金化度との関係式、すなわち合
金化度の検量線を基準鋼板温度で求めるのは、例えば基
準温度を25℃とすれば、25℃で1回だけ合金化度の
検量線を作製すればよく、検量線作製に要する膨大な労
力を少なくすることができる。
In addition, the relational expression between X-ray diffraction intensity and degree of alloying, that is, the calibration curve of degree of alloying, is determined at the reference steel plate temperature only once at 25°C, for example, if the reference temperature is 25°C. It is sufficient to prepare a calibration curve of

く実 施 例〉 以下、本発明を実施例につき具体的に説明する。Practical example Hereinafter, the present invention will be specifically explained with reference to examples.

(実施例1) 合金化溶融亜鉛めっき鋼板の連続製造設備において、板
厚0.7mm、板幅1,200 mmの低炭AiLキル
ド鋼板(未焼鈍材)を、ラインスピードフジ層ノ分で、
めっき浴中A4Q、濃度0.15fI量%のめつき浴を
通過させ、ガスジェット目付量調整装置により目付16
0g/ゴ(片面)となるように調整した直後、ガス燃焼
タイプの加熱炉で最高到達雰囲気温度800−1100
℃の加熱処理を行なって、合金化度水準が種々異なる合
金化溶融亜鉛めっき鋼板を連続的に製造して、これを加
熱炉から下流の8ケ所に設置した合金化度測定装置によ
り合金化度を測定した。また、同時に、各合金化度測定
装置設置位置における鋼板の温度を放射温度計により測
定した。
(Example 1) In a continuous production facility for alloyed hot-dip galvanized steel sheets, a low carbon AiL killed steel sheet (unannealed material) with a thickness of 0.7 mm and a sheet width of 1,200 mm was processed at line speed Fuji Layer Min.
A4Q in the plating bath was passed through a plating bath with a concentration of 0.15 fI amount %, and the basis weight was adjusted to 16 by the gas jet basis weight adjustment device.
Immediately after adjusting to 0 g/go (one side), heat the maximum atmospheric temperature to 800-1100 in a gas combustion type heating furnace.
℃ heat treatment to continuously produce alloyed hot-dip galvanized steel sheets with various degrees of alloying, and measure the degrees of alloying using degree-of-alloying measuring devices installed at eight locations downstream from the heating furnace. was measured. At the same time, the temperature of the steel plate at each alloying degree measuring device installation position was measured using a radiation thermometer.

各測定位置における鋼板の温度は、空気−水の混合体ま
たは空気単体を吹きつけ、冷却する方法により、加熱炉
に近い側から、425±15℃、375±15℃、32
5±15℃、275±15℃、225士15℃、150
±15℃、70土15℃、30±15℃の8水準に制御
した。また、製造後の各種合金化溶融亜鉛めっき鋼板の
合金化度(すなわち、めっき中鉄濃度)は、原子吸光光
度法により測定した。
The temperature of the steel plate at each measurement position was determined from 425 ± 15 °C, 375 ± 15 °C, 32
5±15℃, 275±15℃, 225℃, 15℃, 150
It was controlled at eight levels: ±15°C, 70°C 15°C, and 30±15°C. Further, the degree of alloying (ie, the iron concentration in the plating) of the various alloyed hot-dip galvanized steel sheets after manufacture was measured by atomic absorption spectrometry.

なお、8ケ所に設置した各合金化度測定装置は平行ビー
ム光学系のX線回折装置で、CrターゲットのX線管か
らのCr−にα線により、めっき中のr相(2θ=13
9”)およびa−Fe(2θ=105J°)のX線回折
ピーク強度を測定し、その測定値は、425℃、325
℃、275℃、225℃、150℃、70℃および30
℃の各水準毎に作成したFe濃度検量線を内蔵するコン
ピューターによって演算処理され、最終的にFe濃度が
求まる機能を有する。
The alloying degree measuring devices installed at eight locations are X-ray diffraction devices with parallel beam optics, and the r-phase (2θ=13
9") and a-Fe (2θ=105J°), and the measured values were
℃, 275℃, 225℃, 150℃, 70℃ and 30℃
It has the function of calculating the final Fe concentration by a computer with built-in Fe concentration calibration curves created for each level of °C.

なお、a−Fe(2θ= 105.8°)のピーク強度
を求めるのは、特願昭59−24095号に述べられる
ように、同強度を測定することによって目付量を測定す
るもので、そのことによって、目付量が変わることによ
って生ずる測定誤差を微小にするものである。
Note that the peak intensity of a-Fe (2θ = 105.8°) is determined by measuring the area weight by measuring the same intensity, as stated in Japanese Patent Application No. 59-24095. This minimizes measurement errors caused by changes in the basis weight.

また、一方で、鋼板温度を全く制御しない場合(ケース
l)、鋼板の温度制御を行い、7番目と8番目の合金化
度測定位置の間で0.8%、1.2%の圧下率の調質圧
延を行なった場合(ケース?)、および温度制御を行い
、7番目と8番目の測定位置の間で0.2%の圧下率の
レベリングを行なった場合(ケース3)についても合金
化度を測定した。ケースlの場合については2番目、5
番目、7番目の測定装置で測定し、ケース2およびケー
ス3の場合は8番目の測定装置で測定した。
On the other hand, when the steel plate temperature is not controlled at all (case 1), the temperature of the steel plate is controlled, and the reduction rate is 0.8% and 1.2% between the 7th and 8th alloying degree measurement positions. (Case?) and when temperature control is performed and leveling is performed with a rolling reduction of 0.2% between the 7th and 8th measurement positions (Case 3). The degree of oxidation was measured. For case l, the second, 5
In Case 2 and Case 3, the measurement was performed with the 8th measuring device.

また、鋼板温度の制御は、空気冷却チャンバーと水−空
気ミストスプレーノズルとを併用し、放射温度計により
測定した鋼板温度測定値をフィードバックし、測定値に
応じて空気量および水−空気混合比を自動的に変化させ
る方法により行なった。
In addition, to control the steel plate temperature, an air cooling chamber and a water-air mist spray nozzle are used together, and the steel plate temperature measured by a radiation thermometer is fed back, and the air amount and water-air mixing ratio are adjusted according to the measured value. This was done using a method that automatically changes the

上記の各測定値と化学分析値とを第2表にまとめて示し
た。
The above measurement values and chemical analysis values are summarized in Table 2.

第2表から、本発明の方法による測定値は、8−0 %
、 11.0%、 110%の各鉄濃度kJjいて、化
学分析値との差は±0.1%の範囲にあり、従来の方法
による測定値が、調質圧延やレベリングにょる圧下およ
び温度を制御しない場合、測定値がそれぞれ化学分析値
と比較的大きくかけはなれているのに比べ、その測定精
度が著しく向上しているのが判る。また、合金化度測定
誤差を最小にするためには、鋼板温度を制御するばかり
でなく、レベリング工程や調質圧延工程のライン流れ方
向の上流位置に合金化度測定装置を設置する必要のある
ことが判る。
From Table 2, the values measured by the method of the present invention are 8-0%
, 11.0%, and 110% iron concentration kJj, the difference from the chemical analysis value is in the range of ±0.1%. It can be seen that the measurement accuracy is significantly improved compared to the case where the measured values are relatively far apart from the chemical analysis values when the chemical analysis values are not controlled. In addition, in order to minimize errors in measuring the degree of alloying, it is necessary not only to control the steel plate temperature, but also to install a degree of alloying measuring device upstream in the flow direction of the line during the leveling process and the temper rolling process. I understand that.

(実施例2) 目付量60g/m″(片面)の電気亜鉛めっき鋼板(板
厚0.8■、板幅1,112腸腸)を用いて、ガス燃焼
タイプの加熱炉で最高到達雰囲気温度800〜1100
℃の加熱処理を行なって1合金化水準が種々異なる合金
化亜鉛めっき鋼板を連続的に製造して、これを、加熱炉
から約15m離れた位置(調質圧延工程、レベリング工
程の上流位置)に設けた空気チャンバー冷却方式の冷却
ゾーン内にX線回折装置と放射温度計とを設置して、X
線回折強度と鋼板温度とを測定した。また、製造された
合金化亜鉛めっき鋼板については、原子吸光光度法によ
り、めっき中鉄濃度を分析した。X線回折強度測定位置
における鋼板温度は250〜400℃の範囲であった。
(Example 2) Using an electrogalvanized steel plate (plate thickness 0.8 mm, plate width 1,112 cm) with a basis weight of 60 g/m'' (one side), the maximum atmospheric temperature reached in a gas combustion type heating furnace was 800-1100
℃ heat treatment to continuously produce alloyed galvanized steel sheets with various alloying levels, and place them approximately 15 m away from the heating furnace (upstream of the temper rolling process and leveling process). An X-ray diffraction device and a radiation thermometer were installed in the cooling zone of the air chamber cooling method installed in the
Linear diffraction intensity and steel plate temperature were measured. In addition, regarding the manufactured alloyed galvanized steel sheets, the iron concentration in the plating was analyzed by atomic absorption spectrophotometry. The steel plate temperature at the X-ray diffraction intensity measurement position was in the range of 250 to 400°C.

なお、xm回折装置では、 Orメタ−ットX線管から
Cr−にα線を取り出し、めっき中のr相(2θ=13
9°)およびa−Fe(2θ=105.6°)のX線回
折強度を測定し、その測定値と放射温度計によって測定
した鋼板温度とをコンピューターに自動的に入力して、
予め入力されている鋼板温度−X線回折強度検量線に照
合して。
In addition, in the xm diffractometer, alpha rays are taken out from the Or metal X-ray tube to Cr-, and
9°) and a-Fe (2θ = 105.6°), and automatically input the measured values and the steel plate temperature measured by a radiation thermometer into a computer.
Compare with the steel plate temperature-X-ray diffraction intensity calibration curve input in advance.

基準鋼板温度(25℃)でのX線回折強度に変換し、こ
れをさらに鋼板温度25℃で作製したFe濃度検量線に
照合することによって、合金化度を測定した。また、鋼
板温度を入力しない従来の方法によっても合金化度を測
定した。
The degree of alloying was measured by converting it into an X-ray diffraction intensity at a standard steel plate temperature (25°C) and comparing this with an Fe concentration calibration curve prepared at a steel plate temperature of 25°C. The degree of alloying was also measured using a conventional method that does not involve inputting the steel plate temperature.

上記の方法による各鉄濃度測定値と化学分析による分析
値とを第3表にまとめて示す。
Table 3 summarizes each iron concentration measurement value by the above method and the analytical value by chemical analysis.

第3表から、従来の方法による測定値は、いずれも化学
分析値よりも小さく、かつ、その誤差も大きいが、本発
明の方法による測定値は、いずれも化学分析値と殆ど差
のないことが判る。すなわち、調質圧延工程やレベリン
グ工程の上流位置に測定装置を設置し、かつ、X線回折
強度と鋼板温度とを同時に測定して、予め求め置いた鋼
板温度とX線回折強度との関係式より、測定したX線回
折強度を設定した基準鋼板温度におけるX線回折強度に
補正し、補正したX線回折強度を、予め求め置いた基準
鋼板温度で作成したX線回折強度と合金化度との関係式
に挿入して、合金化度を測定することによって、合金化
度の測定精度が著しく向上することが判る。
From Table 3, it can be seen that the values measured by the conventional method are all smaller than the chemical analysis values, and their errors are large, but the values measured by the method of the present invention have almost no difference from the chemical analysis values. I understand. In other words, a measuring device is installed upstream of the temper rolling process or the leveling process, and the X-ray diffraction intensity and the steel plate temperature are measured simultaneously, and a predetermined relational expression between the steel plate temperature and the X-ray diffraction intensity is determined. Then, the measured X-ray diffraction intensity is corrected to the X-ray diffraction intensity at the set standard steel plate temperature, and the corrected It can be seen that the accuracy of measuring the degree of alloying is significantly improved by inserting it into the relational expression and measuring the degree of alloying.

〈発明の効果〉 (1)本発明の方法によれば、合金化亜鉛めっき鋼板の
合金化度を精度よく測定できる。また、この測定値を用
いた合金化度の自動制御精度も向上する。
<Effects of the Invention> (1) According to the method of the present invention, the degree of alloying of an alloyed galvanized steel sheet can be measured with high accuracy. Furthermore, the accuracy of automatic control of the degree of alloying using this measured value is improved.

(2)鋼板温度が400℃以下のいずれの温度であって
も、合金化度を精度よく測定できるので、測定装置を合
金化炉の近辺に設置し、測定することが可能であるため
、時間遅れによる合金化不良材の発生を少なくすること
ができる。
(2) The degree of alloying can be measured accurately no matter where the steel plate temperature is below 400°C, so the measuring device can be installed near the alloying furnace and the measurement can be carried out in a short time. The occurrence of poorly alloyed materials due to delays can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1合金化亜鉛めっき鋼板の鋼板温度がめつき中
、η、δ1、rの各相およびα−Fe相の各X線回折強
度に及ぼす影響を示すグラフである。
FIG. 1 is a graph showing the influence of the steel plate temperature of a 1-alloyed galvanized steel sheet on the X-ray diffraction intensities of the η, δ1, r phases and the α-Fe phase during plating.

Claims (1)

【特許請求の範囲】[Claims] 1、合金化溶融亜鉛めっき鋼板の製造ライン中、合金化
熱処理炉以後であって、調質圧延工程およびレベリング
工程以前の所定の地点において、合金化溶融亜鉛めっき
鋼板の温度を室温〜50℃の温度範囲にあるいは50℃
超〜400℃の範囲では±15℃の温度範囲になるよう
制御した状態で鋼板温度を測定し、かつ、前記温度測定
地点と同じ地点において鋼板表面上にX線を入射して該
鋼板表面の合金相の回折X線強度を測定し、それらの測
定結果と予め求めておいた鋼板温度とX線回折強度、お
よび回折X線強度と合金化度の対応関係とから合金相中
の合金化度を算出することを特徴とする合金化溶融亜鉛
めっき鋼板の合金化度測定方法。
1. In the production line for alloyed hot-dip galvanized steel sheets, at a predetermined point after the alloying heat treatment furnace and before the temper rolling process and the leveling process, the temperature of the alloyed hot-dip galvanized steel sheets is adjusted from room temperature to 50°C. Temperature range or 50℃
The temperature of the steel plate is measured in a controlled state within a temperature range of ±15°C in the range of ultra-400°C, and X-rays are incident on the steel plate surface at the same point as the temperature measurement point, Measure the diffraction X-ray intensity of the alloy phase, and determine the degree of alloying in the alloy phase from the measurement results, the steel plate temperature and X-ray diffraction intensity determined in advance, and the correspondence between the diffraction X-ray intensity and the alloying degree. A method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet, characterized by calculating the following.
JP26768984A 1984-12-19 1984-12-19 Method for measuring alloying degree of alloyed molten zinc plated steel plate Granted JPS61145439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26768984A JPS61145439A (en) 1984-12-19 1984-12-19 Method for measuring alloying degree of alloyed molten zinc plated steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26768984A JPS61145439A (en) 1984-12-19 1984-12-19 Method for measuring alloying degree of alloyed molten zinc plated steel plate

Publications (2)

Publication Number Publication Date
JPS61145439A true JPS61145439A (en) 1986-07-03
JPH0426424B2 JPH0426424B2 (en) 1992-05-07

Family

ID=17448162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26768984A Granted JPS61145439A (en) 1984-12-19 1984-12-19 Method for measuring alloying degree of alloyed molten zinc plated steel plate

Country Status (1)

Country Link
JP (1) JPS61145439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301155A (en) * 1988-05-30 1989-12-05 Nisshin Steel Co Ltd Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612314A (en) * 1979-07-09 1981-02-06 Shaw Seth Thomas Jr Drug for iud appliance
JPS59219700A (en) * 1983-05-27 1984-12-11 三菱電機株式会社 Auto-pilot for missile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612314A (en) * 1979-07-09 1981-02-06 Shaw Seth Thomas Jr Drug for iud appliance
JPS59219700A (en) * 1983-05-27 1984-12-11 三菱電機株式会社 Auto-pilot for missile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301155A (en) * 1988-05-30 1989-12-05 Nisshin Steel Co Ltd Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet

Also Published As

Publication number Publication date
JPH0426424B2 (en) 1992-05-07

Similar Documents

Publication Publication Date Title
KR0159783B1 (en) System for making an on-line determination of degree of alloying in galvannealed steel sheets
RU2731116C1 (en) Method for dynamic control of thermally treated steel sheet production process
US4171392A (en) Process of producing one-side alloyed galvanized steel strip
JPS61145439A (en) Method for measuring alloying degree of alloyed molten zinc plated steel plate
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
KR100916121B1 (en) Method for Measuring Alloy Phases Ratio of Galvannealed Steel Sheets by X-ray Diffraction and Controlling Alloy Phases Ratio using Galvanneal Prediction ModelGA Calc
JPH02254146A (en) Induction heating device, induction heating-type alloying furnace, and alloying method
JP3817812B2 (en) Calibration method for annealing furnace radiation thermometer
KR102283929B1 (en) Dynamic adjustment method for the production of thermally treated steel sheet
JPH05156419A (en) Alloying control method for galvannealed steel sheet
JPH0144782B2 (en)
CN106661709A (en) Method for predicting amount of capital gamma phase to be formed in galvannealed steel sheet and process for producing galvannealed steel sheet
KR100511513B1 (en) A method for equalizing iron content of GA steel plate
JPH11269627A (en) Alloying furnace for galvanized steel sheet, and method for controlling alloying degree of galvanized steel sheet
JP3175802B2 (en) Method for controlling alloying of hot-dip galvanized steel sheet
JPH03146649A (en) Production of alloying galvanized steel strip
JPH06207296A (en) Method and equipment for plating strip material with zinc
JP3141722B2 (en) Method for controlling the degree of alloying of hot-dip galvanized steel sheet
US20230313355A1 (en) Method of predicting hydrogen content in steel of steel strip, method of controlling hydrogen content in steel, manufacturing method, method of forming prediction model of hydrogen content in steel, and device that predicts hydrogen content in steel
JP2981290B2 (en) Manufacturing method of galvannealed steel sheet
JP2789946B2 (en) Manufacturing method of galvannealed steel sheet
JP4146162B2 (en) Method for predicting alloying temperature of hot-dip galvanized steel sheet
JPH06330276A (en) Method for controlling degree of alloying of hot dip metal coated steel sheet in induction heating type alloying furnace
JPS6199688A (en) Method for measuring iron concentration in plated layer of alloyed zinc plated steel sheet and manufacture of said steel sheet
JP2745427B2 (en) Method for evaluating drawability of alloyed zinc-coated steel sheet by X-ray diffraction method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term