JPS6199688A - Method for measuring iron concentration in plated layer of alloyed zinc plated steel sheet and manufacture of said steel sheet - Google Patents

Method for measuring iron concentration in plated layer of alloyed zinc plated steel sheet and manufacture of said steel sheet

Info

Publication number
JPS6199688A
JPS6199688A JP59219700A JP21970084A JPS6199688A JP S6199688 A JPS6199688 A JP S6199688A JP 59219700 A JP59219700 A JP 59219700A JP 21970084 A JP21970084 A JP 21970084A JP S6199688 A JPS6199688 A JP S6199688A
Authority
JP
Japan
Prior art keywords
concentration
steel sheet
plating
phase
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59219700A
Other languages
Japanese (ja)
Other versions
JPH0695081B2 (en
Inventor
Junji Kawabe
川辺 順次
Minoshige Goto
後藤 実成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59219700A priority Critical patent/JPH0695081B2/en
Publication of JPS6199688A publication Critical patent/JPS6199688A/en
Publication of JPH0695081B2 publication Critical patent/JPH0695081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To measure Fe concn. in plated layer of alloyed Zn plated steel sheet nondestructively, continuously and accurately by measuring X-ray diffraction intensity and counted value relating unit area of plated layer of said steel sheet and substituting the measured value into regression formula. CONSTITUTION:Characteristic X-ray is irradiated to alloyed Zn plated steel sheet to measure X-ray diffraction intensity relating to >= one phase among Fe-Zn alloy phase and eta phase. On the other hand, counted value relating to unit area is measured by fluorescent X-ray method, etc. Next, these measured values are substituted into regression formula using said measured values as variable and Fe concn. in plated layer as function, to obtain said Fe concn. In manufacturing said steel sheet by heating after Zn plating it, said Fe concn. is measured continuously by said method, heat treating condition is controlled automatically based on the measured value, to form plated layer of the aimed Fe concn.

Description

【発明の詳細な説明】 〈産業−Eの利用分野〉 本発明は、合金化亜鉛めっきm扱のめっき中Fe濃度を
非破壊連続的に測定する方法、および、この方法により
得られた測定値に基づいて合金化熱処理条件を制御する
ことにより、Fe濃度を適正範囲に制御する合金化亜鉛
めっき鋼板の製造方法に関するものである。
[Detailed Description of the Invention] <Field of Application in Industry-E> The present invention provides a method for non-destructively and continuously measuring the Fe concentration in alloyed galvanized plating, and the measured values obtained by this method. The present invention relates to a method for producing an alloyed galvanized steel sheet in which the Fe concentration is controlled within an appropriate range by controlling the alloying heat treatment conditions based on the following.

〈従来技術とその問題点〉 溶融亜鉛めっき鋼板および電気亜鉛めっき鋼板の溶接性
、塗装後の耐食性および塗膜密着性等の品質特性を向上
させる目的で、これらの亜鉛めっき鋼板に加熱処理を施
し、めっき層中にFe−Zn合金相をI&、長させた、
いわゆる合金化亜鉛めっき鋼板が製造される。そのめっ
き層中Fe濃度は、通常10−13重量パーセント(以
下%と略称する)であるが、加熱処理の過不足があった
場合にはFe濃度が変動する。めっき中Fe濃度の変動
は、めっき層の品質特性に著しい影響を与える。
<Prior art and its problems> In order to improve the quality characteristics of hot-dip galvanized steel sheets and electrogalvanized steel sheets, such as weldability, corrosion resistance after painting, and coating adhesion, these galvanized steel sheets are subjected to heat treatment. , the Fe-Zn alloy phase was made longer in the plating layer,
A so-called alloyed galvanized steel sheet is produced. The Fe concentration in the plating layer is normally 10-13 weight percent (hereinafter abbreviated as %), but the Fe concentration changes if there is excess or deficiency in the heat treatment. Variations in Fe concentration during plating have a significant impact on the quality characteristics of the plating layer.

:JJ1図には、発明者らの実験によるめっき中Fe濃
度とめっき層の諸品質特性との関係を示す。
:JJ1 diagram shows the relationship between the Fe concentration in plating and various quality characteristics of the plating layer based on experiments conducted by the inventors.

例えば、めっき層加工性はめっき中Fe濃度が上昇する
に連れて劣化し、また、@膜密着性、塗装後耐食性およ
びスポット溶接性は、逆にFe濃度が)−昇するに連れ
て改善される。
For example, the workability of the plating layer deteriorates as the Fe concentration in the plating increases, and the film adhesion, post-painting corrosion resistance, and spot weldability, conversely, improve as the Fe concentration increases. Ru.

従って、優れためっき層の品質特性を得るにはめっき中
Fe濃度を適正範囲に制御することが不可欠であり、F
e濃度を制御するには加熱処理条件を適正制御すること
が肝要である。
Therefore, in order to obtain excellent quality characteristics of the plating layer, it is essential to control the Fe concentration in the plating within an appropriate range.
In order to control the e-concentration, it is important to properly control the heat treatment conditions.

しかし、現今の合金化溶融亜鉛めっき鋼板の製造ライン
においては、生産性重視のため連続的でかつ高速化され
ているにもかかわらず、これまでめっき中Fe濃度を非
破壊連続的に測定する技術は13M 発されていない、
このため、同製造ラインにおいてはもっばら目視によっ
て、経験的に大約のF e 76度を推定する方法がと
られ1、この推定に基づいて加熱条件を制御せざるを得
す、その結果、F e 73度の過不足による多量の不
良品を発生させることが多かった。
However, although current production lines for alloyed hot-dip galvanized steel sheets are continuous and high-speed in order to prioritize productivity, there is currently no technology to non-destructively and continuously measure the Fe concentration in the coating. is 13M not emitted,
For this reason, on the same production line, a method of estimating the approximate F e of 76 degrees empirically is mainly carried out by visual inspection1, and heating conditions have to be controlled based on this estimation. e A large number of defective products were often produced due to excess or deficiency of 73 degrees.

L述の実状に鑑み、発明者らは、めっき中Fe濃度を正
確に測定し得る方法の必要性を痛感し、種々検討した。
In view of the actual situation mentioned above, the inventors were acutely aware of the need for a method that could accurately measure the Fe concentration in plating, and conducted various studies.

ところで、発明者らの研究によれば、第2図に概念的に
示すように、めっき中Fe濃度と、めっき層を構成する
Fe−Zn合金相およびη相各相のめっき層中に占める
厚み割合、すなわちめっき相の相組成とは密接な関係が
あり、相組成が判れば大豹のFe濃度が判る。
By the way, according to the research conducted by the inventors, as conceptually shown in Figure 2, the Fe concentration in the plating and the thickness occupied by the Fe-Zn alloy phase and the η phase in the plating layer that constitute the plating layer are There is a close relationship with the ratio, that is, the phase composition of the plating phase, and if the phase composition is known, the Fe concentration of the leopard can be determined.

また、第3図は、発明者らの研究によるめっき層をXM
A回折して各相毎に求めたX線回折強度とめっき中Fe
濃度との関係を示すが、η相、ζ相、δ1相およびr相
などの各相のX線回折強度とめっき中Fe濃度とは密接
な関係があり、各相のX線回折強度を測定することによ
って、めっき中Fe濃度を求め得ることが判った。
In addition, Figure 3 shows the plating layer based on the research conducted by the inventors.
X-ray diffraction intensity determined for each phase by A-diffraction and Fe in plating
There is a close relationship between the X-ray diffraction intensity of each phase such as η phase, ζ phase, δ1 phase, and r phase and the Fe concentration in plating, and the X-ray diffraction intensity of each phase is measured. It was found that the Fe concentration in plating can be determined by doing this.

しかし、発明者らの研究から、目付量が異なる合金化亜
鉛めっき鋼板にあっては、各相それぞれの回折強度とF
e濃度とのIA係は著しく相凡することが判った。すな
わち、目付量が異なる場合にあってFe濃度に測定誤差
が生じるのである。
However, the inventors' research revealed that in alloyed galvanized steel sheets with different basis weights, the diffraction intensity of each phase and F
It was found that the IA relationship with e concentration was significantly similar. That is, when the basis weight differs, a measurement error occurs in the Fe concentration.

このため、合金化亜鉛めっき鋼板を連続的高速ノド産す
る現今の実ラインにおいては、注文に応じて1コイル毎
に目付量が変ったり、あるいは目付量jA整用の2つの
エアーダイス間を通る板の幅方t6+ソリ、または、片
方のダイス方向への板の片寄りなどによって生じる目付
量の変動がしばしば起こるので、真のめつき中Fe濃度
を測定することが困難である。
For this reason, in current production lines that continuously produce alloyed galvanized steel sheets at high speed, the basis weight changes for each coil depending on the order, or the fabric weight changes between two air dies for adjusting the basis weight jA. It is difficult to measure the true Fe concentration during plating because variations in the basis weight often occur due to t6+ warpage in the width direction of the plate or deviation of the plate in one die direction.

〈発明の目的〉 本発明は、上述の実状に鑑みなされたもので、真のめっ
き中Fe濃度を非破壊連続的に測定する方法、およびそ
の測定値をもとに合金化亜鉛めっき鋼板を連続的に製造
する際に行なうめつき後の加熱処理を自動制御すること
によって、めっき中Fe濃度が適正な合金化亜鉛めっき
鋼板を製造することが可能な合金化亜鉛めっき鋼板の製
造方法を提供することを目的とする。
<Object of the Invention> The present invention has been made in view of the above-mentioned circumstances, and provides a method for non-destructively and continuously measuring the true Fe concentration in coating, and a method for continuously measuring alloyed galvanized steel sheets based on the measured values. To provide a method for producing an alloyed galvanized steel sheet, which can produce an alloyed galvanized steel sheet with an appropriate Fe concentration in the plating by automatically controlling heat treatment after plating performed during production. The purpose is to

〈発明の構成〉 本発明者等は、合金化亜鉛めっき鋼板に特性Xiを照射
して、めっき中Fe−Zn合金相およびη相すなわち金
属亜鉛のうちから選ばれた1つ以との相についてのxv
i回折強度を測定し、また同時に一方で目付量に係る計
数値を測定して、それらの測定値を予め求めておいため
つき中Fe濃度を関数とし、1つ以上の相についてのx
!!回折強度のlll1l定値と目付量に係る計数値の
測定値とをそれぞれ変数とする回帰式に代入することに
よって、めっき中Fe濃度を正確に測定できることを見
い出した。
<Structure of the Invention> The present inventors irradiated an alloyed galvanized steel sheet with a characteristic Xi, and determined the Fe-Zn alloy phase and the η phase, that is, the phase with one or more selected from metal zinc during plating. xv
x of one or more phases by measuring the i diffraction intensity and simultaneously measuring the count value related to the basis weight on the other hand, and using these measured values as a function of the pre-obtained Fe concentration in the premixing.
! ! It has been found that the Fe concentration in plating can be accurately measured by substituting the constant value of the diffraction intensity and the measured value of the count value related to the basis weight into a regression equation in which variables are used.

前述のように、本発明の第1の特徴は、合金化亜鉛めっ
き鋼板に特性X線を照射して1合金化亜鉛めっき鋼板に
生成したFe−Zn合金相、およびη相(金属亜鉛)の
うちから選ばれた1つ以上の相についてX線回折強度を
測定し、また同時になんらかの方法により目付量に係る
計数値をも測定して、それぞれの測定値を、予め求めて
おいたFe−Zn合金相、およびη相のうちから選ばれ
た1つ以上についてのX線回折強度(x、、x2・・・
Xn)と目付量に係る測定値(Xt)とをそれぞれ変数
とし、めっき中Fe濃度を関数(Y)とする回帰式に代
入して1合金化亜鉛めっき鋼板のめっき中Fe濃度を測
定する方法にある。
As mentioned above, the first feature of the present invention is that the Fe-Zn alloy phase and the The X-ray diffraction intensity of one or more phases selected from among them is measured, and at the same time, the count value related to the basis weight is also measured by some method, and each measured value is calculated in advance. X-ray diffraction intensity (x, , x2...) of one or more selected from the alloy phase and the η phase
A method of measuring the Fe concentration in the plating of a 1-alloyed galvanized steel sheet by substituting the measured value (Xt) related to the area weight (Xn) and the measured value (Xt) as variables and the Fe concentration in the plating as a function (Y). It is in.

以下、第1の発明について詳細に説明する。Hereinafter, the first invention will be explained in detail.

前述のように1合金化亜鉛めっき鋼板のめっき層の相構
成は、めっき中Fe濃陰に応じて変化しく第2図)、ま
た、めっき層を構成、する各相のX線回折強度は、めっ
き中Fe8度に追随して変化する(第3図)、従って、
各相のX線回折強度を測定することによって、めっき中
Fe濃度を測定でき、発明者らの研究から一定目付量範
囲においては、めっき中Fe濃度と各相のX線回折強度
との関係は、下記に例示するような関係式で精度よく表
わすことができることが判った。
As mentioned above, the phase composition of the plating layer of a single-alloyed galvanized steel sheet changes depending on the concentration of Fe in the plating (Fig. 2), and the X-ray diffraction intensity of each phase constituting the plating layer is During plating, Fe changes according to 8 degrees (Fig. 3), therefore,
The Fe concentration in the plating can be measured by measuring the X-ray diffraction intensity of each phase, and the inventors' research has shown that the relationship between the Fe concentration in the plating and the X-ray diffraction intensity of each phase is , it has been found that it can be expressed accurately by the relational expression illustrated below.

Y、=f (Xη)       ・・弓、Y2 = 
f (Xr)        −・−2r。
Y, = f (Xη) ... Bow, Y2 =
f (Xr) −・−2r.

Y3 = f (Xη、 X61 )    ・”*r
Y3 = f (Xη, X61) ・”*r
.

Y4 = f (Xy+ 、XJ 、Xr)+++IJ
ただし、)、述の関係式において。
Y4 = f (Xy+, XJ, Xr)+++IJ
However, ), in the above relational expression.

Y   : めっき中Fe濃度、 Xη : η相の回折強度、 Xδ1 : δl相の回折強度、 xr  :  r相の回折強度 である。Y: Fe concentration in plating, Xη: Diffraction intensity of η phase, Xδ1: Diffraction intensity of δl phase, xr: Diffraction intensity of r phase It is.

しかし、例えば第4図に示すように、上述の関係は目付
量によって著しく異なる。すなわち。
However, as shown in FIG. 4, for example, the above-mentioned relationship differs significantly depending on the basis weight. Namely.

目付量−の変動によりめっき中Feg度の測定値に著し
い誤差が生じることが判った。
It has been found that a significant error occurs in the measured value of FEG degree during plating due to variations in the basis weight.

これに対して本発明は、 Y+ ′= f (Xn 、 I t)      ・
−1;・’ 。
On the other hand, in the present invention, Y+ ′= f (Xn, It) ・
-1;・'.

Y2 ’ = f (XI: 、 I t )    
  −−−企)’ 、Y3’  =f (xη、xδ、
  、 r B  −=>’ 、Y4 ’  = f 
(X’? 、Xδ+  、Xr 、 I t)・・・4
)′ などの関係式、すなわち、η相、δ1相、r相な゛どの
X線回折強度と目付量(It)に係る測定値とを変数と
して、めっき中Fe濃度を関数とする回帰式を予め求め
ておき、これlこ、η相、δ1相、r相などのX線回折
強度の実測値と目付量に係るなんらかの実測値とを代入
することによって、合金化亜鉛めっき鋼板のめっき中F
e濃度を測定するものである。
Y2' = f (XI: , It)
---Ki)', Y3' = f (xη, xδ,
, r B −=>' , Y4' = f
(X'?, Xδ+, Xr, It)...4
)', i.e., a regression equation using the X-ray diffraction intensity of η phase, δ1 phase, r phase, etc. and the measured value of the basis weight (It) as a function of the Fe concentration in plating as variables. By calculating this in advance and substituting the measured values of the X-ray diffraction intensity of the η phase, δ1 phase, r phase, etc. and some measured value related to the area weight, the F during plating of the alloyed galvanized steel sheet can be calculated.
e concentration is measured.

すなわち、発明者らは、L述の■、力 +j)、渇各式
について、目付へシ毎のFe濃度の偏差を求め、目付4
)とFe濃度偏差との関係を9理したところ、各式とも
Fe濃度偏差は目付量を変数とするΔY=f (t)な
る関係式で表わし得ることを見出したのである。
That is, the inventors calculated the deviation of the Fe concentration for each fabric weight for each equation of ■, force +j), and
) and the Fe concentration deviation, it was found that in each equation, the Fe concentration deviation can be expressed by the relational expression ΔY=f (t) using the basis weight as a variable.

ところで、目付量は周知の蛍光X線法、X線回折法およ
びRI)レーザ法などによって求められるが、これらは
いずれも、目付)は、例えば1秒間当りのX線I (C
PS)または放射線部(CPS)などの測定値との関係
1例えばt=f(1)(ただし、L=目付量、I−測定
値)なる関係式の検量線によって求まる。従って、Fe
濃度偏差はrtすなわち目付量に係る測定値で表わし得
るのである。
By the way, the basis weight can be determined by the well-known fluorescent X-ray method, X-ray diffraction method, and RI) laser method.
The relationship 1 with measured values such as PS) or radiation part (CPS) is determined by a calibration curve of the relational expression t=f(1) (where L=fabric weight, I-measured value). Therefore, Fe
The density deviation can be expressed as a measured value related to rt, that is, the basis weight.

本発明の第2の特徴は、亜鉛めっきした後に加熱処理し
て合金化亜鉛めっき鋼板を製造する連続式合金化亜鉛め
っき鋼板製造装置において、1−述の本発明のめっき中
Fe濃度測定力法により、めっき中F e f濃度をi
!I!統的に測定し、測定しためっき中Fe濃度と予め
設定してある基準Fe濃度とを比較し、その偏差値に応
じて加熱処理条件を自動制御して、合金化亜鉛めっき鋼
板を製造することを特徴とする合金化亜鉛めっき鋼板の
製造方法にある。
The second feature of the present invention is that in a continuous galvannealed steel sheet production apparatus that produces galvannealed steel sheets by heat-treating after galvanizing, the force method for measuring Fe concentration in plating of the present invention described in 1. By setting the F e f concentration during plating to i
! I! To manufacture alloyed galvanized steel sheets by systematically measuring and comparing the measured Fe concentration in the plating with a preset standard Fe concentration, and automatically controlling the heat treatment conditions according to the deviation value. A method of manufacturing an alloyed galvanized steel sheet is provided.

すなわち、合金化亜鉛めっき鋼板のめつ!!層諸特性は
、前述のようにめっき中Fe濃度によって変化するので
、目標とする特性水準に合せてめっき中Fe濃度を選択
する必要がある。
Namely, alloyed galvanized steel sheet! ! As described above, the layer properties change depending on the Fe concentration in the plating, so it is necessary to select the Fe concentration in the plating in accordance with the target level of properties.

今、目標めっき中Fe濃度をY&とし、本発明の測定方
法によるめっき中Fe濃度測定値がYであるとすると、
その偏差値はΔY−(Ya−Y)である、(Ya−Y)
>Oであるならば、目標にえ]してFe濃度は低いから
、めっき中Fe濃度を高める処置を必要とする0例えば
、加熱処理における中位時間当りの加熱エネルギー(K
cal)を高める、あるいは加熱時間を長くすることに
よって、めっき中Fe濃度を高めることができる。逆に
(Ya−Y)<0ならば、加熱エネルギーを低くし、あ
るいは加熱時間を短くすることによって、目標Fe濃度
にまで低下することができる。
Now, if the target Fe concentration in plating is Y&, and the measured value of Fe concentration in plating by the measuring method of the present invention is Y,
The deviation value is ΔY-(Ya-Y), (Ya-Y)
> O, the target is met] and the Fe concentration is low, so it is necessary to take measures to increase the Fe concentration during plating.
The Fe concentration in plating can be increased by increasing the cal) or by lengthening the heating time. Conversely, if (Ya-Y)<0, the Fe concentration can be reduced to the target Fe concentration by lowering the heating energy or shortening the heating time.

すなわち2本発明の方法によるめっき中Fe濃度測定部
とプロセスコンピュータとを連動させて、1−述の操作
を行うならば、瞬時の対応が可能で、常に目標とするめ
つき中Fe5度とすることが可能である。
In other words, if the Fe concentration measurement unit during plating according to the method of the present invention is linked with the process computer and the operations described in 1-1 are performed, instantaneous response is possible and the target Fe concentration during plating can always be set at 5 degrees. is possible.

また1例えば、本発明の方法により1合金化亜鉛めっき
鋼板板巾方向にめっき中FI!濃度を測定し、板巾方向
各部のFag度偏差値ΔYを求め、偏差値に応じた加熱
処理を板巾方向に行うならば、全幅均一なFe濃度の合
金化亜鉛めっき鋼板を製造することも可能である。
For example, by the method of the present invention, FI during plating can be applied to an alloyed galvanized steel sheet in the width direction! If the concentration is measured, the Fag degree deviation value ΔY is determined at each part in the width direction of the sheet, and heat treatment is performed in the width direction according to the deviation value, it is possible to manufacture an alloyed galvanized steel sheet with a uniform Fe concentration across the entire width. It is possible.

く実 施 例〉 以下、本発明を実施例につき具体的に説明する。Example of implementation Hereinafter, the present invention will be specifically explained with reference to examples.

(実施例1) ゼンジマ一方式の連続溶融めっきラインにおいて、目付
130g/rn”(片面)、60g/rn’(片面)、
  90g/m’ (片面)の合金化亜鉛めっき鋼板を
めっき中Fetk度3〜15重畢%(ただし、原子吸光
分析法により分析した濃度)の範囲に変化させて製造し
た。これらについて、本発明の方法によりめっき中Fe
濃度を測定した。なお、目付量は蛍光X線法により測定
し、X線回折は下記の条件で行なった。測定結果を第1
表に示す。
(Example 1) In the continuous hot-dip plating line of Zenzima one-way, the basis weight was 130 g/rn'' (one side), 60 g/rn' (one side),
An alloyed galvanized steel sheet of 90 g/m' (one side) was manufactured by varying the FETK degree during plating from 3 to 15% (concentration analyzed by atomic absorption spectrometry). Regarding these, Fe during plating by the method of the present invention.
The concentration was measured. The basis weight was measured by fluorescent X-ray method, and X-ray diffraction was performed under the following conditions. Measurement results first
Shown in the table.

X線回折 装置;平行ビーム光学系X線回折装置特性X
線+Cr  に−α線 回折角(2θ):η相 135.5@ δ 電 相 12B、8 。
X-ray diffraction device; Parallel beam optical system X-ray diffraction device characteristics
-α ray diffraction angle (2θ) to +Cr line: η phase 135.5 @ δ electric phase 12B, 8.

rJ  139.0” 下記の第1表から判るように、本発明の方法によるなら
ば、めっき中Fe濃度を精度よく測定することかでさ、
また、目付量によってその測定値は殆ど変わらないこと
が判る。
rJ 139.0" As can be seen from Table 1 below, the method of the present invention allows accurate measurement of Fe concentration in plating.
Furthermore, it can be seen that the measured value hardly changes depending on the basis weight.

なお、回帰式は前述の・4)′、すなわち、η相、δ1
相、r相3層の回折強度と、蛍光X線による目伺品測定
値とを変数とし、めっき中Fe濃度を関数とする回帰式
を用いた。
The regression equation is based on the above-mentioned ・4)′, that is, η phase, δ1
A regression equation was used in which the diffraction intensities of the phase and r-phase three layers and the measured value of the grain by fluorescent X-ray were used as variables, and the Fe concentration in the plating was used as a function.

(実施例2) 七ンジマ一方式のI!li続溶融めっきラインにおいて
、実施例1と同様の平行ビーム光学系のX線回折法によ
るη相、δ!相の回折強度と、目付量に係る測定値とし
て同X線回折法によるα−Feの回折強度を測定して、
回帰式(参′を用いて、めっき中Fe7濃度を連続的に
測定し、かかる測定値と目標めっき中Felfa度との
偏差値に応じて、加熱処理炉内の炉温かヒI!続的に変
化する自動制御系を用いて、合金化亜鉛めっき鋼板を連
続的に製造した。
(Example 2) I! In the Li hot-dip plating line, η phase, δ! by X-ray diffraction method using parallel beam optical system similar to Example 1. Measure the diffraction intensity of the phase and the diffraction intensity of α-Fe using the same X-ray diffraction method as a measurement value related to the basis weight,
The Fe7 concentration in plating is continuously measured using the regression equation (see), and the furnace temperature in the heat treatment furnace is continuously adjusted according to the deviation value between the measured value and the target Felfa degree in plating. Alloyed galvanized steel sheets were manufactured continuously using a variable automatic control system.

その結果を第5図に示す、また、第6図には従来の目視
法により合金化亜鉛めっき鋼板を製造した場合の1例を
示す。
The results are shown in FIG. 5, and FIG. 6 shows an example of an alloyed galvanized steel sheet produced by the conventional visual inspection method.

第5図および第6図から、従来の製造法では、めっき中
Fe濃度が目標に対して最大20%も変動しているが、
本発明の製造法では4%以内の変動であることが判る。
From Figures 5 and 6, in the conventional manufacturing method, the Fe concentration in the plating fluctuates by up to 20% with respect to the target.
It can be seen that the variation is within 4% in the production method of the present invention.

このことから、本発明の製造方法はめっき中Feek度
を管理する上で著しい効果のあることが明らかである。
From this, it is clear that the manufacturing method of the present invention is significantly effective in controlling the degree of peak during plating.

なお、a−Feの回折角(20)は105.8度とした
Note that the diffraction angle (20) of a-Fe was 105.8 degrees.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はめっき中Fe濃度と2加工性との関係を示すグ
ラフである。 第2図はめっき中Fe濃度と各合金相との関係を示すグ
ラフである。 第3図はめっき中Fe濃度と各合金相のX線回折強度と
の関係を示すグラフである。 第4図はめっき中のFe6度測定値とめっき中の実際の
Fe濃度とが目付量に応じて変動することを示すグラフ
である。 第5図および第6図はそれぞれ6本発明の方法および従
来法により合金化亜鉛めっき鋼板を製造した時の(実際
のめっき中Fe濃度)/([’l標めっき中Fe濃度)
の経時変化を示すグラフである。 同   ブf理士   石  井  陽  −・。 FIG、 I Fe潰皮(’/、) FIG、 2 Fe  濃 度 (’/、) FIG、 3 Fe  濃 度(’/、) F I G、 4
FIG. 1 is a graph showing the relationship between Fe concentration in plating and processability. FIG. 2 is a graph showing the relationship between Fe concentration in plating and each alloy phase. FIG. 3 is a graph showing the relationship between the Fe concentration in plating and the X-ray diffraction intensity of each alloy phase. FIG. 4 is a graph showing that the measured Fe6 degree value during plating and the actual Fe concentration during plating vary depending on the basis weight. Figures 5 and 6 show (actual Fe concentration in plating)/(Fe concentration in labeled plating) when alloyed galvanized steel sheets were manufactured by the method of the present invention and the conventional method, respectively.
It is a graph showing the change over time. Yo Ishii, the same professional scientist. FIG, I Fe ulcer ('/,) FIG, 2 Fe concentration ('/,) FIG, 3 Fe concentration ('/,) FIG, 4

Claims (2)

【特許請求の範囲】[Claims] (1)合金化亜鉛めっき鋼板に特性X線を照射して合金
化亜鉛めっき鋼板に生成したFe−Zn合金相と金属亜
鉛すなわちη相のうちから選ばれた1つ以上の相につい
てX線回折強度を測定し、また同時に目付量に係る計数
値とを測定して、それぞれの測定値を予め求めておいた
Fe−Zn合金相およびη相のうちから選ばれた1つ以
上の相についてのX線回折強度と目付量に係る計数の測
定値とを変数とし、めっき中Fe濃度を関数とする回帰
式に代入してめっき中Fe濃度を求めることを特徴とす
る合金化亜鉛めっき鋼板のめっき中鉄濃度を測定する方
法。
(1) X-ray diffraction of one or more phases selected from the Fe-Zn alloy phase and metallic zinc, i.e., the η phase, generated in the galvannealed steel sheet by irradiating the galvannealed steel sheet with characteristic X-rays. For one or more phases selected from the Fe-Zn alloy phase and the η phase, each measured value was determined in advance by measuring the strength and simultaneously measuring the count value related to the basis weight. Plating of an alloyed galvanized steel sheet, characterized in that the Fe concentration in the plating is determined by substituting the X-ray diffraction intensity and the measured value of the count related to the area weight as variables into a regression equation in which the Fe concentration in the plating is a function. How to measure medium iron concentration.
(2)亜鉛めっきした後に加熱処理して合金化亜鉛めっ
き鋼板を製造するに際し、合金化亜鉛めっき鋼板に特性
X線を照射して合金化亜鉛めっき鋼板に生成したFe−
Zn合金相と金属亜鉛すなわちη相の、うちから選ばれ
た1つ以上の相についてX線回折強度を測定し、また同
時に目付量に係る計数値とを測定して、それぞれの測定
値を予め求めておいたFe−Zn合金相およびη相のう
ちから選ばれた1つ以上の相についてのX線回折強度と
目付量に係る計数の測定値とを変数とし、めっき中Fe
濃度を関数とする回帰式に代入してめっき中Fe濃度を
求めることによりめっき中Fe濃度を連続的に測定し、
測定しためっき中Fe濃度と予め設定してある目標Fe
濃度とを比較し、その偏差値に応じて加熱処理条件を自
動制御して合金化亜鉛めっき鋼板を製造することを特徴
とする合金化亜鉛めっき鋼板の製造方法。
(2) When manufacturing a galvannealed steel sheet by heat treatment after galvanizing, the galvannealed steel sheet is irradiated with characteristic X-rays to produce Fe-
The X-ray diffraction intensity of one or more phases selected from the Zn alloy phase and metallic zinc, that is, the η phase, is measured, and at the same time, the count value related to the basis weight is measured, and each measured value is calculated in advance. The X-ray diffraction intensity of one or more phases selected from the determined Fe-Zn alloy phase and η phase and the measured value of the count related to the basis weight are used as variables to
Continuously measure the Fe concentration in the plating by substituting the concentration into a regression equation as a function to determine the Fe concentration in the plating,
Measured Fe concentration in plating and preset target Fe
1. A method for manufacturing an alloyed galvanized steel sheet, characterized in that the alloyed galvanized steel sheet is manufactured by comparing the concentration and automatically controlling heat treatment conditions according to the deviation value.
JP59219700A 1984-10-19 1984-10-19 Method for measuring iron concentration in galvannealed steel sheet during plating Expired - Lifetime JPH0695081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219700A JPH0695081B2 (en) 1984-10-19 1984-10-19 Method for measuring iron concentration in galvannealed steel sheet during plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219700A JPH0695081B2 (en) 1984-10-19 1984-10-19 Method for measuring iron concentration in galvannealed steel sheet during plating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6147969A Division JP2534834B2 (en) 1994-06-29 1994-06-29 Manufacturing method of alloyed galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPS6199688A true JPS6199688A (en) 1986-05-17
JPH0695081B2 JPH0695081B2 (en) 1994-11-24

Family

ID=16739592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219700A Expired - Lifetime JPH0695081B2 (en) 1984-10-19 1984-10-19 Method for measuring iron concentration in galvannealed steel sheet during plating

Country Status (1)

Country Link
JP (1) JPH0695081B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123935A (en) * 1976-04-13 1977-10-18 Nisshin Steel Co Ltd Method of fabricating alloyed zinc iron plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123935A (en) * 1976-04-13 1977-10-18 Nisshin Steel Co Ltd Method of fabricating alloyed zinc iron plate

Also Published As

Publication number Publication date
JPH0695081B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JP2904891B2 (en) Online alloying degree measuring device for galvanized steel sheet
JPS5847659B2 (en) What is the best way to go about it?
JPH0933455A (en) Method for measuring alloyed degree of alloying plated layer
JP2534834B2 (en) Manufacturing method of alloyed galvanized steel sheet
JPS6199688A (en) Method for measuring iron concentration in plated layer of alloyed zinc plated steel sheet and manufacture of said steel sheet
KR100916121B1 (en) Method for Measuring Alloy Phases Ratio of Galvannealed Steel Sheets by X-ray Diffraction and Controlling Alloy Phases Ratio using Galvanneal Prediction ModelGA Calc
JP2745428B2 (en) X-ray diffraction method for evaluating the processing performance of alloyed zinc plated steel sheets for high processing
JPH02254146A (en) Induction heating device, induction heating-type alloying furnace, and alloying method
JPH0442044A (en) Measuring method for characteristic of metal layer
JPH06347247A (en) Measuring method of thickness of alloy phase of plated layer
JP2708257B2 (en) Method for measuring phase thickness of galvannealed steel sheet
JPH068791B2 (en) Measuring method of alloying degree of galvannealed steel sheet
JP2745427B2 (en) Method for evaluating drawability of alloyed zinc-coated steel sheet by X-ray diffraction method
JP3221547B2 (en) Measuring method of zinc adhesion on galvannealed steel sheet
KR20000025344A (en) Method for measuring coating amount and alloy degree using fluorescent x-rays
JP2644513B2 (en) Method for controlling the degree of alloying of galvannealed steel sheet
JP2708192B2 (en) Method for measuring alloying degree of galvanized steel sheet
JP4923591B2 (en) Method for producing surface treated product
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
JP2792345B2 (en) Alloyed hot-dip galvanized steel sheet excellent in powdering resistance and outer surface suitability and method for producing the same
JPH0435028B2 (en)
JP3141722B2 (en) Method for controlling the degree of alloying of hot-dip galvanized steel sheet
JP2006255687A (en) Production method of surface treated object
JP2789946B2 (en) Manufacturing method of galvannealed steel sheet
JPS5848692A (en) Steel plate plated with alloyed zinc and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term