JPH0545305A - Method for measuring alloying degree of alloyzinc-plated layer - Google Patents

Method for measuring alloying degree of alloyzinc-plated layer

Info

Publication number
JPH0545305A
JPH0545305A JP3104451A JP10445191A JPH0545305A JP H0545305 A JPH0545305 A JP H0545305A JP 3104451 A JP3104451 A JP 3104451A JP 10445191 A JP10445191 A JP 10445191A JP H0545305 A JPH0545305 A JP H0545305A
Authority
JP
Japan
Prior art keywords
alloying
degree
diffraction line
plated layer
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3104451A
Other languages
Japanese (ja)
Other versions
JP2707865B2 (en
Inventor
Shigeyuki Mori
茂之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3104451A priority Critical patent/JP2707865B2/en
Publication of JPH0545305A publication Critical patent/JPH0545305A/en
Application granted granted Critical
Publication of JP2707865B2 publication Critical patent/JP2707865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the alloying degree of an alloyzinc- plated layer at excellent accuracy in a practical alloying region. CONSTITUTION:The strength of the diffraction line of the specified phase in a plated layer, whose crystal-face intervals correspond to 1.222+ or - 0-005Angstrom , 1.259+ or -0.005Angstrom A, 1.301+ or -0.005Angstrom 1.311+ or -0.005Angstrom and 1.598+ or - 0.005Angstrom , is measured. Thus, the relation curve (calibrating curve) having the excellent correlation with the alloying degree is obtained. The alloying degree of the alloy-zinc-plated layer is obtained based on the relation curve and the actually measured value of any of the following ratios: the ratio of the strength of the diffraction line of the specified alloy phase wherein the crystal-face intervals correspond to 1.222+ or -0.005Angstrom and 1.259+ or -0.005 Angstrom , the ratio of the strength of the diffraction line of the specified alloy layer wherein the intervals correspond to 1.301+ or -0.05Angstrom and 1.259+ or -0.05Angstrom and the ratio of the strength of the diffraction line of the specified alloy phase wherein the intervals correspond to 1.598+ or -0.005Angstrom or 1.311+ or -0.005Angstrom and the strength of the background.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合金化亜鉛めっき層の合
金化度測定方法に関し、より詳細には合金化亜鉛めっき
鋼板の製造時に必要なオンライン分析に用いられる合金
化亜鉛めっき層の合金化度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the degree of alloying of an alloyed galvanized layer, and more particularly to the alloying of an alloyed galvanized layer used for on-line analysis required in the production of galvannealed steel sheet. Degree measuring method.

【0002】[0002]

【従来の技術】合金化亜鉛めっき層中の各合金相の体積
分率は、図6(川崎製鉄技報、18(1986)2、
p.31)に示したように合金化度と相関が良いことが
知られている。一方、結晶に平行性の良いX線を照射し
た場合におこる回折現象を利用して試料中の結晶相の同
定を行なう、いわゆるX線回折法と呼ばれる分析法があ
る。このX線回折法は本来構造解析の手段であるが、合
金化亜鉛めっき層中の個々の合金相により回折されたX
線の強度は合金相の体積分率と相関があるため、特定の
合金相の回折線強度を測定することにより合金化度を知
ることができる。ただし回折線強度は、合金化度ばかり
かめっき付着量の関数でもあるため、めっき付着量の影
響を補正するか、又はめっき付着量毎に合金化度と回折
線強度との関係曲線、つまり検量線を使い分けねばなら
ない(川崎製鉄技報、18(1986)2、p.3
1)。ここで合金化度及びめっき付着量は、めっき層の
みを酸溶解し、この溶液中のZn、Fe等のめっき層に
含有される金属成分を原子吸光、ICP発光分光等の化
学分析法で定量することにより求められる。
2. Description of the Related Art The volume fraction of each alloy phase in an alloyed galvanized layer is shown in FIG. 6 (Kawasaki Steel Technical Report, 18 (1986) 2,
p. It is known that the degree of alloying has a good correlation as shown in 31). On the other hand, there is an analysis method called a so-called X-ray diffraction method in which a crystal phase in a sample is identified by utilizing a diffraction phenomenon that occurs when a crystal is irradiated with X-rays having good parallelism. This X-ray diffraction method is originally a means for structural analysis, but X-rays diffracted by the individual alloy phases in the alloyed galvanized layer are used.
Since the intensity of the line has a correlation with the volume fraction of the alloy phase, the degree of alloying can be known by measuring the diffraction line intensity of the specific alloy phase. However, since the diffraction line intensity is a function of not only the degree of alloying but also the coating weight, the effect of the coating weight should be corrected, or the relationship curve between the alloying power and the diffraction line intensity for each coating weight, that is, the calibration You have to use different lines (Kawasaki Steel Technical Report, 18 (1986) 2, p. 3)
1). Here, the degree of alloying and the amount of plating adhered are determined by a chemical analysis method such as atomic absorption and ICP emission spectroscopy in which the metal components contained in the plating layer such as Zn and Fe in this solution are dissolved by acid. Is obtained by doing.

【0003】ところが各合金相の回折線には重なり合う
ものが多いため、この方法で合金化度をオンライン分析
するには合金化度と回折線強度との相関が良く、しかも
測定精度を向上させるために強度の大きい回折線を実用
的な回折角範囲から選択する必要がある。なおここでの
実用的な回折角(2θ)範囲とは、圧延時の鋼板のばた
つき及び鋼板からの熱的影響が小さい範囲を示してお
り、2θ>80°(X線管球としてCr管球を用いた場
合、結晶面間隔:d<1.78Å)である(特開昭52
−21887号公報)。
However, since the diffraction lines of each alloy phase often overlap with each other, in order to analyze the alloying degree online by this method, the correlation between the alloying degree and the diffraction line intensity is good, and moreover, the measurement accuracy is improved. It is necessary to select a diffraction line with extremely high intensity from a practical diffraction angle range. The practical diffraction angle (2θ) range here means a range in which flapping of a steel sheet during rolling and thermal influence from the steel sheet are small, and 2θ> 80 ° (Cr tube as X-ray tube). When the crystal is used, the crystal plane spacing is d <1.78Å) (JP-A-52)
-21887).

【0004】従来、上記条件を満たす着目すべき回折線
としてΓ相の(633) 面、δ1 相の(103) 面、ζ相のd=
1.26Åなる面の回折線が報告されている(川崎製鉄
技報、18(1986)2、p.31;日新製鋼技報、
36(1977)、p.40;特公昭56−12314
号公報)。そして、これらΓ相の(633) 面、δ1 相の(1
03)面、ζ相のd=1.26Åなる面の回折線を用いて
のめっき層の合金化度分析には、鋼板のばたつき及び入
射X線強度変動の影響を避けるため、これらの影響を受
けにくくかつ合金化度との相関性の良い数1、数2又は
数3式に示した値、すなわち回折線強度IP と回折線位
置でのバックグランド(以下BGと記す)推定強度、若
しくは回折線位置近傍でのBG測定強度IB との比が用
いられている(川崎製鉄技報、18(1986)2、
p.31;CAMP−ISIJ、3(1990)p.1
570)。
Heretofore, as diffraction lines to be noted that satisfy the above conditions, the (633) plane of the Γ phase, the (103) plane of the δ 1 phase, and d = of the ζ phase
Diffraction lines with a surface of 1.26Å have been reported (Kawasaki Steel Technical Report, 18 (1986) 2, p.31; Nisshin Steel Technical Report,
36 (1977), p. 40; Japanese Patent Publication No. 56-12314
Publication). Then, these Γ-phase (633) planes and δ 1- phase (1
In order to avoid the influences of flapping of the steel sheet and fluctuations of incident X-ray intensity, the alloying degree analysis of the plating layer using the diffraction line of the d = 1.26Å plane of the 03) plane and the ζ phase should be performed with these influences. The values shown in Formula 1, Formula 2 or Formula 3 that are hard to receive and have good correlation with the alloying degree, that is, the estimated intensity of the diffraction line intensity I P and the background (hereinafter referred to as BG) at the diffraction line position, or The ratio with the BG measurement intensity I B in the vicinity of the diffraction line position is used (Kawasaki Steel Technical Report, 18 (1986) 2,
p. 31; CAMP-ISIJ, 3 (1990) p. 1
570).

【0005】[0005]

【数1】 {IP(Γ) −IB(Γ)}/IB(Γ)[Number 1] {I P (Γ) -I B (Γ)} / I B (Γ)

【0006】[0006]

【数2】 Γ値≡1−IB(Γ)/IP(Γ)[Number 2] gamma value ≡1-I B (Γ) / I P (Γ)

【0007】[0007]

【数3】 ζ値≡1−IB(ζ)/IP(ζ) また上記各比の他に、さらに合金化度との相関を向上さ
せるのために数4式に示したような二種の回折線の強度
比、すなわちZ値が合金化度分析に用いられている(日
新製鋼技報、36(1977)、p.40;特公昭56
−12314号公報)。
Equation 3] zeta value ≡1-I B (ζ) / I P (ζ) alternative to such respective ratios, as further shown in expression 4 for improving the correlation between the alloying degree two The intensity ratio of the diffraction lines of the seeds, that is, the Z value is used for the alloying degree analysis (Nisshin Steel Technical Report, 36 (1977), p. 40;
-12314).

【0008】[0008]

【数4】 Z値≡{IP(ζ) −IB(ζ)}/{IP1)
−IB1)}
Equation 4] Z value ≡ {I P (ζ) -I B (ζ)} / {I P (δ 1)
−I B1 )}

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記し
た従来の合金化度測定方法のうち数2、数3及び数4式
に示したΓ値、ζ値及びZ値を用いる方法においては、
下記の数5式のように示される湿式化学分析値(基準
値)とX線分析値との差を意味する分析の正確度σd
ついての報告がなく、その適用合金化度域もそれぞれ
8.5〜17%、8.5〜11%、7〜14%と推定さ
れ、Z値を除き実用的な合金化度域(7〜14%)に単
独で適用できるものではなかった。
However, among the conventional alloying degree measuring methods described above, in the method using the Γ value, the ζ value and the Z value shown in the equations (2), (3) and (4),
There is no report on the accuracy of analysis σ d , which means the difference between the wet chemical analysis value (reference value) and the X-ray analysis value shown in the following formula 5, and the applicable alloying degree range is 8 It is estimated to be 0.5 to 17%, 8.5 to 11%, and 7 to 14%, and cannot be applied alone to the practical alloying degree range (7 to 14%) except the Z value.

【0010】また数1式に示した強度比{IP(Γ) −I
B(Γ)}/IB(Γ)による測定方法は、適用合金化度域
が4〜15%と推定され広いものの正確度σd が0.6
%と十分に小さい値ではないため、オンラインでの合金
化度制御に用いる測定方法としては満足できるものでは
なかった。この正確度σd が良好でない主な理由とし
て、合金化度に対するΓ相の体積分率の変化の割合(図
6中の曲線の傾き)が小さいために、合金化度の指標と
してΓ相の体積分率と相関を有するΓ相の回折線強度を
用いると感度が不足することが挙げられる。
Further, the intensity ratio {I P (Γ) −I shown in the equation 1 is used.
B (Γ)} / I B (Γ) measuring method according to the accuracy sigma d While applying alloying gamut is wide are estimated to 4-15% 0.6
Since it is not a sufficiently small value such as%, it was not a satisfactory measurement method used for online alloying degree control. The reason why this accuracy σ d is not good is that the rate of change in the volume fraction of the Γ phase with respect to the alloying degree (the slope of the curve in FIG. 6) is small, so that the Γ phase The sensitivity may be insufficient if the diffraction intensity of the Γ phase having a correlation with the volume fraction is used.

【0011】[0011]

【数5】 [Equation 5]

【0012】本発明はこのような課題に鑑みなされたも
のであり、合金化亜鉛めっき鋼板の実用的な合金化度域
に適用することができ、かつ良好な正確度σd を有する
合金化亜鉛めっき層の合金化度測定方法を提供すること
を目的としている。
The present invention has been made in view of the above problems, and can be applied to a practical alloying degree range of an alloyed galvanized steel sheet and has a good accuracy σ d. It is intended to provide a method for measuring the degree of alloying of a plating layer.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る合金化亜鉛めっき層の合金化度測定方法
は、鋼板に亜鉛めっきした後合金化処理しためっき層
に、X線を照射して前記めっき層の合金化度を測定する
方法において、前記めっき層中の合金相のうち結晶面間
隔が1.222±0.005Å及び1.259±0.0
05Åに相当する特定の合金相の回折線強度の比、又は
1.301±0.005Å及び1.259±0.005
Åに相当する特定の合金相の回折線強度の比を用いて合
金化度を算出することを特徴とし、また本発明に係る合
金化亜鉛めっき層の合金化度測定方法は、鋼板に亜鉛め
っきした後合金化処理しためっき層に、X線を照射して
前記めっき層の合金化度を測定する方法において、前記
めっき層中の合金相のうち結晶面間隔が1.598±
0.005Å又は1.311±0.005Åに相当する
合金相の回折線強度と、BG強度との比を用いて合金化
度を算出することを特徴としている。
In order to achieve the above object, the method for measuring the degree of alloying of an alloyed zinc-plated layer according to the present invention is a method of applying X-rays to a galvanized steel sheet and then alloying the plated layer. In the method of irradiating to measure the alloying degree of the plating layer, crystal plane intervals of the alloy phases in the plating layer are 1.222 ± 0.005Å and 1.259 ± 0.0.
The ratio of the diffraction line intensities of the specific alloy phase corresponding to 05Å, or 1.301 ± 0.005Å and 1.259 ± 0.005
Å is characterized by calculating the degree of alloying using the ratio of the diffraction line intensity of a specific alloy phase, and the method for measuring the degree of alloying of an alloyed zinc-plated layer according to the present invention is a galvanized steel sheet. In the method of irradiating the plated layer which has been subjected to the alloying treatment with X-rays to measure the degree of alloying of the plated layer, the crystal plane spacing of the alloy phases in the plated layer is 1.598 ±
The alloying degree is calculated by using the ratio of the diffraction line intensity of the alloy phase corresponding to 0.005Å or 1.311 ± 0.005Å and the BG intensity.

【0014】[0014]

【作用】図1は本発明に係る合金化亜鉛めっき層の合金
化度測定方法を実施するために用いられる平行ビーム光
学系X線回折装置を概略的に示したものであり、図中S
はCr管球、S1 及びS2 は開き角1.2°のソーラー
スリット、Fは厚さ20μmのVフィルタ、及び12は
計数管をそれぞれ示している。図1に示したように、試
料である合金化亜鉛めっき鋼板11に平行性の良いX線
を照射すると、合金化亜鉛めっき鋼板11のめっき層を
構成するΓ、δ1 、ζ 等の合金相中の結晶面で弾性散
乱されたX線は、入射X線に対して合金相及び結晶面に
固有の方向2θでのみ観測される。この2θは結晶面間
隔d及び管球ターゲットの種類により次の数6式で与え
られる。
1 is a schematic view of a parallel beam optical system X-ray diffractometer used for carrying out the method for measuring the degree of alloying of an alloyed zinc plating layer according to the present invention.
Is a Cr tube, S 1 and S 2 are solar slits with an opening angle of 1.2 °, F is a V filter having a thickness of 20 μm, and 12 is a counter tube. As shown in FIG. 1, when the alloyed zinc-plated steel sheet 11 as a sample is irradiated with X-rays having good parallelism, alloy phases such as Γ, δ 1 and ζ that form the plating layer of the alloyed zinc-plated steel sheet 11 are formed. The X-rays elastically scattered on the crystal plane inside are observed only in the direction 2θ peculiar to the alloy phase and the crystal plane with respect to the incident X-ray. This 2θ is given by the following equation 6 depending on the crystal plane spacing d and the type of tube target.

【0015】[0015]

【数6】 2dsinθ=λ ここでλは、例えば図1においてはCr管球Sより発生
する特性X線の波長である。
2 dsin θ = λ where λ is the wavelength of the characteristic X-ray generated from the Cr tube S in FIG. 1, for example.

【0016】前述した如く観測されるX線の回折線強度
は、合金化亜鉛めっき層中の各合金相の体積分率と正の
相関があり、また各合金相の体積分率と合金化度には図
6に示したような相関があることから、回折線強度を測
定することにより合金化亜鉛めっき層の合金化度が推定
される。ただし回折線強度は、めっき付着量の関数でも
あるため、めっき付着量毎に合金化度と回折線強度との
関係曲線(検量線)を使い分けることにより合金化度が
求められる。
The X-ray diffraction line intensity observed as described above has a positive correlation with the volume fraction of each alloy phase in the galvannealed layer, and the volume fraction and alloying degree of each alloy phase. Has a correlation as shown in FIG. 6, the degree of alloying of the galvannealed layer can be estimated by measuring the diffraction line intensity. However, since the diffraction line intensity is also a function of the coating amount, the alloying degree can be obtained by properly using the relationship curve (calibration curve) between the alloying degree and the diffraction line intensity for each coating amount.

【0017】ところがΓ(633) 回折線強度による合金化
度の算出の測定には前述の如く誤差が伴いやすく、同様
の理由でζ相の回折線強度から算出されるζ値を用いた
合金化度算出にも誤差が伴いやすい。一方、実用的な合
金化度領域(7〜14%)ではδ1(103)ピークとその高
回折角側近傍に見られるd=1.268±0.005Å
のピークとの重なりが大きいため、δ1(103)回折線強度
から算出されるZ値を用いた合金化度算出にも誤差が伴
いやすいと想定される。このため数1〜数4式で示され
る回折線強度比と合金化度との間に良好な相関性が得ら
れず、これが測定の正確度を低下させる一因となってい
る。
However, the measurement of the calculation of the alloying degree based on the Γ (633) diffraction line intensity is likely to involve an error as described above, and for the same reason, the alloying using the ζ value calculated from the diffraction line intensity of the ζ phase is performed. The degree calculation is also subject to errors. On the other hand, in the practical alloying degree region (7 to 14%), δ 1 (103) peak and d = 1.268 ± 0.005Å seen near the high diffraction angle side
Since there is a large overlap with the peak of, the alloying degree calculation using the Z value calculated from the δ 1 (103) diffraction line intensity is likely to involve an error. For this reason, a good correlation cannot be obtained between the diffraction line intensity ratio and the alloying degree expressed by the equations (1) to (4), which is one of the causes of lowering the measurement accuracy.

【0018】本発明者は合金化度に対する回折線強度比
Γ/ζの変化の割合が大きいこと、従って強度比Γ/ζ
を用いると合金化度測定の正確度が向上することを図6
から予想し、Γ相、ζ相の回折線を見出すべく1.15
Å<d<1.78Åの範囲(前述の実用的なd範囲)に
見られる14本の回折線の強度と合金化度との関係を調
査した。その結果、合金化度と回折線強度との関係から
d=1.301±0.005Åに相当する回折線はΓ(4
44) であると推定されること、及び強度比Γ(633) /ζ
(d=1.259±0.005Å)、Γ(444) /ζ(d
=1.259±0.005Å)が従来例に比べ合金化度
とより良好な相関を持つことを知見した。 さらにd=
1.598±0.005Å、1.311±0.005Å
に相当する回折線については、重なりが大きくなく、し
かも強度が大きいために、これら二者の回折線強度が従
来例に比べ合金化度とより良好な相関を持つことを知見
した。
The present inventor has found that the rate of change of the diffraction line intensity ratio Γ / ζ with respect to the degree of alloying is large, and therefore the intensity ratio Γ / ζ is large.
Fig. 6 shows that the accuracy of alloying degree measurement is improved by using
1.15 to find the diffraction lines of the Γ phase and ζ phase.
The relationship between the intensities of 14 diffraction lines and the degree of alloying observed in the range of Å <d <1.78Å (the aforementioned practical d range) was investigated. As a result, the diffraction line corresponding to d = 1.301 ± 0.005Å was determined to be Γ (4
44) and the intensity ratio Γ (633) / ζ
(D = 1.259 ± 0.005Å), Γ (444) / ζ (d
It was found that = 1.259 ± 0.005Å) has a better correlation with the alloying degree than the conventional example. Furthermore, d =
1.598 ± 0.005Å, 1.311 ± 0.005Å
It has been found that the diffraction lines corresponding to (1) have a good correlation with the degree of alloying, as compared with the conventional example, because the diffraction lines of these two have a large overlap and a large intensity.

【0019】上記した本発明に係る合金化亜鉛めっき層
の合金化度測定方法によれば、Γ(633) 又はΓ(444) に
相当する回折線強度IP とd=1.259±0.005
Åなる結晶面を有するζ相の回折線強度との比として次
の数7式、数8式で定義される値R3 、R4 が求めら
れ、R3 又はR4 と合金化度との相関の良い関係曲線
(検量線)が得られる。さらに結晶面間隔dが1.59
8±0.005Å、又は1.311±0.005Åに相
当する合金相の回折線強度IP とBG強度IB との比と
して次の数9式、数10式で定義される値R1 、R2
求められ、同様に合金化度と相関の良い検量線が得られ
る。従って、R3 、R4 、R1 及びR2 の実測値から合
金化亜鉛めっき層の合金化度が良い正確度で得られるこ
ととなる。なお上記BG強度IB は、回折線を挟む2θ
位置でのBG強度を回折線位置に内挿して算出した値、
あるいは回折線位置近傍でのBG測定強度のいずれを用
いても良い。
According to the method for measuring the degree of alloying of the alloyed galvanized layer according to the present invention, the diffraction line intensity I P corresponding to Γ (633) or Γ (444) and d = 1.259 ± 0. 005
The values R 3 and R 4 defined by the following equations 7 and 8 are obtained as a ratio with the diffraction line intensity of the ζ phase having a crystal plane of Å, and R 3 or R 4 and the degree of alloying are calculated. A well-correlated relationship curve (calibration curve) can be obtained. Furthermore, the crystal plane spacing d is 1.59.
8 ± 0.005Å or 1.311 ± 0.005Å as the ratio of the diffraction line intensity I P and the BG intensity I B of the alloy phase, the value R 1 defined by the following formulas 9 and 10 , R 2 are obtained, and similarly, a calibration curve having a good correlation with the alloying degree is obtained. Therefore, the degree of alloying of the galvannealed layer can be obtained with good accuracy from the measured values of R 3 , R 4 , R 1 and R 2 . The BG intensity I B is 2θ between the diffraction lines.
A value calculated by interpolating the BG intensity at the position into the diffraction line position,
Alternatively, any of the BG measurement intensities near the position of the diffraction line may be used.

【0020】[0020]

【数7】 R3 ≡IP(Γ(633))/IP(ζ( d=1.25
9±0.005Å))
## EQU7 ## R 3 ≡I P (Γ (633)) / I P (ζ (d = 1.25
9 ± 0.005Å))

【0021】[0021]

【数8】 R4 ≡{IP(Γ(444))−IB(Γ(444))}/
{IP(ζ( d=1.259±0.005Å)−IB(ζ(
d=1.259±0.005Å)}
Equation 8] R 4 ≡ {I P (Γ (444)) - I B (Γ (444))} /
{I P (ζ (d = 1.259 ± 0.005Å) -I B (ζ (
d = 1.259 ± 0.005Å)}

【0022】[0022]

【数9】 R1 ≡1−IB ( d=1.598±0.00
5Å)/IP ( d=1.598±0.005Å)
Equation 9] R 1 ≡1-I B (d = 1.598 ± 0.00
5Å) / I P (d = 1.598 ± 0.005Å)

【0023】[0023]

【数10】R2 ≡1−IB ( d=1.311±0.00
5Å)/IP ( d=1.311±0.005Å)
Equation 10] R 2 ≡1-I B (d = 1.311 ± 0.00
5Å) / I P (d = 1.331 ± 0.005Å)

【0024】[0024]

【実施例及び比較例】以下、本発明に係る合金化亜鉛め
っき層の合金化度測定方法の実施例及び比較例を図面に
基づいて説明する。合金化亜鉛めっき層の合金化度を求
めるのに先立ち、まず検量線作成用試料を用いて検量線
を作成した。検量線作成用試料としては、合金化度7〜
14%、めっき付着量30〜80g/m2 (片面)の検
量線作成用試料としては、溶融亜鉛めっき鋼板を400
〜500℃の塩浴中で種々の時間熱処理したもの130
点を用いた。またX線回折装置として図1に示した平行
ビーム光学系のX線回折装置を用い、表1に示した条件
で結晶面間隔dがそれぞれ1.222±0.005Å、
1.259±0.005Å、1.301±0.005
Å、1.311±0.005Å、及び1.598±0.
005Åに相当する合金相の回折線強度IP 、及びBG
強度IB を測定した。そして測定された回折線強度IP
とBG強度IB とにより、数7式〜数10式で示した回
折線強度IP どうしの比R3 、R4 値、及びIP とBG
強度IB との比R1 、R2 値をそれぞれ求めた。さらに
合金化度分析の正確度σd 算出に必要となる合金化度及
びめっき付着量の化学分析値を表3に示した条件で求め
た。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of the method for measuring the degree of alloying of an alloyed zinc plated layer according to the present invention will be described below with reference to the drawings. Prior to determining the degree of alloying of the galvannealed layer, a calibration curve was first created using a sample for creating a calibration curve. As a sample for making a calibration curve, alloying degree 7-
A hot-dip galvanized steel sheet was used as a sample for preparing a calibration curve having 14% and a coating weight of 30 to 80 g / m 2 (one side).
Heat treated in salt bath at ~ 500 ° C for various times 130
Points were used. As the X-ray diffractometer, the X-ray diffractometer of the parallel beam optical system shown in FIG. 1 was used, and the crystal plane spacing d was 1.222 ± 0.005Å under the conditions shown in Table 1.
1.259 ± 0.005Å, 1.301 ± 0.005
Å, 1.311 ± 0.005 Å, and 1.598 ± 0.
Diffraction line intensity I P of alloy phase corresponding to 005Å and BG
The intensity I B was measured. And the measured diffraction line intensity I P
And BG intensity I B , the ratios R 3 and R 4 of the diffraction line intensities I P shown in Eqs. 7 to 10 and I P and BG.
The ratios R 1 and R 2 with respect to the intensity I B were obtained. Further, the chemical analysis values of the degree of alloying and the amount of plating deposited, which are necessary for calculating the accuracy σ d of the degree of alloying analysis, were obtained under the conditions shown in Table 3.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表3】 [Table 3]

【0027】図2及び図3はそれぞれ、上記化学分析に
より求めた合金化度と上記操作により得られたR3 値及
びR4 値との関係を示したグラフであり、めっき付着量
が片面で30〜50g/m2 、50〜80g/m2 の場
合をそれぞれ…□…、―+―で示している。図2及び図
3から明らかなように、この測定方法によれば適用合金
化度域は7〜14%と広いことがわかる。また図2で示
しためっき付着量…□…、―+―における正確度σd
算出したところ、それぞれ0.39%、0.29%であ
り、図3で示しためっき付着量…□…、―+―における
正確度σd はそれぞれ0.49%、0.47%であった
ことから、R3 値、R4 値のいずれを用いた場合でも、
めっき付着量毎に検量線を使い分けることにより正確度
σd は0.3〜0.5%程度と従来に比べて良好な値と
なることがわかる。従って結晶面間隔dがそれぞれ1.
222±0.005Å、1.259±0.005Å、及
び1.301±0.005Åに相当する合金相の回折線
強度IP 及びBG強度IBを測定し、R3 値、R4 値を
算出することにより、適用合金化度域が広く、合金化度
との相関性が良好な検量線を得ることができる。
FIGS. 2 and 3 are graphs showing the relationship between the degree of alloying obtained by the chemical analysis and the R 3 and R 4 values obtained by the above operation. The cases of 30 to 50 g / m 2 and 50 to 80 g / m 2 are shown by □ ...,-+-, respectively. As is clear from FIGS. 2 and 3, according to this measuring method, the applicable alloying degree range is as wide as 7 to 14%. Further, when the accuracy σ d in the plating adhesion amount □ ...,-+-shown in FIG. 2 was calculated, it was 0.39% and 0.29%, respectively, and the plating adhesion amount □ ... shown in FIG. ,-+-, The accuracy σ d was 0.49% and 0.47%, respectively. Therefore, no matter whether the R 3 value or the R 4 value is used,
It can be seen that the accuracy σ d is about 0.3 to 0.5%, which is a better value than the conventional value, by properly using the calibration curve for each plating adhesion amount. Therefore, the crystal plane spacing d is 1.
222 ± 0.005Å, 1.259 ± 0.005Å, and 1.301 ± 0.005Å corresponding to the diffraction line intensities I P and BG intensities I B of the alloy phase were measured, and the R 3 and R 4 values were calculated. By the calculation, it is possible to obtain a calibration curve having a wide applicable alloying degree range and a good correlation with the alloying degree.

【0028】図4及び図5はそれぞれ、上記化学分析に
より求めた合金化度と上記操作により得られたR1 値及
びR2 値との関係を示したグラフであり、めっき付着量
が片面で30〜50g/m2 、50〜80g/m2 の場
合をそれぞれ…□…、―+―で示している。図4及び図
5から明らかなように、この測定方法によれば適用合金
化度域は7〜14%と広いことがわかる。また図4で示
しためっき付着量…□…、―+―における正確度σd
算出したところ、それぞれ0.50%、0.53%であ
り、図5で示しためっき付着量…□…、―+―における
正確度σd はそれぞれ0.54%、0.51%であった
ことから、R1 値、R2 値のいずれを用いた場合でも、
めっき付着量毎に検量線を使い分けることにより正確度
σd は0.5%程度と従来に比べて良好な値となること
がわかる。従って結晶面間隔dがそれぞれ1.598±
0.005Å、1.311±0.005Åに相当する合
金相の回折線強度IP 及びBG強度IB を測定し、R1
値、R2 値を算出することにより、適用合金化度域が広
く、合金化度との相関性が良好な検量線を得ることがで
きる。
FIGS. 4 and 5 are graphs showing the relationship between the alloying degree obtained by the above chemical analysis and the R 1 and R 2 values obtained by the above operation. The cases of 30 to 50 g / m 2 and 50 to 80 g / m 2 are shown by □ ...,-+-, respectively. As is clear from FIGS. 4 and 5, according to this measuring method, the applicable alloying degree range is as wide as 7 to 14%. Further, when the accuracy σ d in the plating adhesion amount □ ...,-+-shown in FIG. 4 was calculated, they were 0.50% and 0.53%, respectively, and the plating adhesion amount □ ... shown in FIG. ,-+-, The accuracy σ d was 0.54% and 0.51%, respectively. Therefore, no matter whether the R 1 value or the R 2 value is used,
It can be seen that the accuracy σ d is about 0.5%, which is a better value than the conventional value, by properly using the calibration curve for each coating amount. Therefore, the crystal plane spacing d is 1.598 ±
The diffraction line intensity I P and the BG intensity I B of the alloy phase corresponding to 0.005Å and 1.311 ± 0.005Å were measured, and R 1
By calculating the values and R 2 values, it is possible to obtain a calibration curve having a wide applicable alloying degree range and good correlation with the alloying degree.

【0029】次に、従来方法を用いた場合の合金化度適
用範囲及び正確度σd を調べた結果について説明する。
なお、このときの各合金相の回折線強度IP 及びBG強
度I B は、上記と同様の検量線作成用試料及びX線回折
装置を用いて表2に示した条件に従って測定し、合金化
度及びめっき付着量の化学分析値は同様に表3に示した
条件で求めた。
Next, the degree of alloying when the conventional method is used is suitable.
Range and accuracy σd The result of the investigation will be described.
The diffraction line intensity I of each alloy phase at this timeP And BG strength
Degree I B Is a sample for preparing a calibration curve and X-ray diffraction similar to the above
Measured according to the conditions shown in Table 2 using a device and alloyed
Similarly, the chemical analysis values of the degree and the coating amount are shown in Table 3.
Calculated under the conditions.

【0030】[0030]

【表2】 [Table 2]

【0031】図7は化学分析により求めた合金化度と強
度比{IP(Γ) −IB(Γ)}/IB(Γ)との関係を示し
たものであり、上記と同様にめっき付着量が片面で30
〜50g/m2 、50〜80g/m2 の場合をそれぞれ
…□…、―+―で示している。図7から明らかなよう
に、この測定方法によれば適用合金化度域は7〜14%
と広いが、めっき付着量…□…、―+―における正確度
σd はそれぞれ0.64%、0.59%であり、正確度
σd 向上のためにめっき付着量毎に検量線を使い分けて
も正確度σd は0.6%程度と思わしくなかった。図8
は化学分析により求めた合金化度とΓ値との関係を示し
たものであり、適用範囲は7〜14%と広いことがわか
ったが、めっき付着量…□…、―+―における正確度σ
d はそれぞれ0.64%、0.58%であり、上記と同
様に正確度σd 向上のためにめっき付着量毎に検量線を
使い分けても、正確度σd はやはり0.6%程度と思わ
しくなかった。
[0031] Figure 7 shows a relationship between the alloying degree determined by chemical analysis and the intensity ratio {I P (Γ) -I B (Γ)} / I B (Γ), as above Plating coverage is 30 on one side
To 50 g / m 2, when the respective ... □ ... 50~80g / m 2, - + - shows in. As is clear from FIG. 7, according to this measuring method, the applicable alloying degree range is 7-14%.
However, the accuracy σ d in the coating amount of coating □□,-+-is 0.64% and 0.59% respectively, and a calibration curve is used for each coating amount to improve the accuracy σ d. However, the accuracy σ d did not seem to be about 0.6%. Figure 8
Shows the relationship between the alloying degree and the Γ value obtained by chemical analysis, and it was found that the applicable range is as wide as 7 to 14%. However, the accuracy of plating adhesion ... □ ...,-+- σ
d respectively 0.64% and 0.58% and by selectively using calibration curve coating weight for the sake of the same manner as described above accuracy sigma d improvement, accuracy sigma d is also approximately 0.6% I didn't feel like it.

【0032】図9は化学分析により求めた合金化度とζ
値との関係を示したものであり、合金化度11%以上で
はζ値による合金化度分析が困難であることを示してい
る。合金化度7〜14%でのめっき付着量…□…、―+
―における正確度σd はそれぞれ0.88%、0.78
%であり、めっき付着量毎に検量線を使い分けても、正
確度σd は0.8〜0.9%であった。
FIG. 9 shows the alloying degree and ζ obtained by chemical analysis.
This shows the relationship with the value, and shows that it is difficult to analyze the alloying degree by the ζ value when the alloying degree is 11% or more. Deposition amount of plating when alloying degree is 7 to 14% ... □,-+
The accuracy σ d at- is 0.88% and 0.78, respectively.
%, And the accuracy σ d was 0.8 to 0.9% even if the calibration curve was properly used for each coating adhesion amount.

【0033】図10は化学分析により求めた合金化度と
Z値との関係を示したものである。合金化度7〜14%
でのめっき付着量…□…、―+―における正確度σd
は、それぞれ0.93%、0.76%であり、めっき付
着量毎に検量線を使い分けても正確度σd は0.8〜
0.9%であった。
FIG. 10 shows the relationship between the alloying degree and Z value obtained by chemical analysis. Alloying degree 7-14%
Accumulation of plating on □□…, ++ - Accuracy σ d
Are 0.93% and 0.76%, respectively, and the accuracy σ d is 0.8-
It was 0.9%.

【0034】以上の結果からもR3 、R4 、R1 及びR
2 値を用いることは、適用合金化度域が広く、合金化度
との相関が良好な検量線を得る上で有効であることがわ
かる。次に、実試料の合金化度測定における正確度σd
を調べた結果について説明する。実試料として合金化度
4〜15%、めっき付着量が片面で30〜50g/m
2 、50〜80g/m2 の試料を、めっき付着量毎に6
5点、計130点用い、従来方法及び上記実施例方法に
よるめっき付着量毎の正確度σd を調べた。その結果を
表4に示す。表4から明らかなように、R3 値、R4
値、R1 値及びR2値を用いた本実施例の方法における
正確度σd は、0.3〜0.5%程度であり、従来より
良好な値が得られた。なお、正確度σd を求める際のX
線分析値として、図2〜図5及び図7〜図10から得ら
れた検量線(4次関数)より読み取った値を用いた。
From the above results, R 3 , R 4 , R 1 and R
It can be seen that the use of two values is effective in obtaining a calibration curve having a wide applicable alloying degree range and a good correlation with the alloying degree. Next, the accuracy σ d in the alloying degree measurement of the actual sample
The result of the investigation will be described. As an actual sample, the alloying degree is 4 to 15%, and the coating weight is 30 to 50 g / m on one side.
2. Samples of 50 to 80 g / m 2 were added for each coating amount
Five points, a total of 130 points, were used to examine the accuracy σ d for each coating adhesion amount according to the conventional method and the method of the above embodiment. The results are shown in Table 4. As is clear from Table 4, R 3 value, R 4
The accuracy σ d in the method of the present embodiment using the values, R 1 value and R 2 value was about 0.3 to 0.5%, which was a better value than before. In addition, X when obtaining the accuracy σ d
As the line analysis value, the value read from the calibration curve (quartic function) obtained from FIGS. 2 to 5 and FIGS. 7 to 10 was used.

【0035】[0035]

【表4】 [Table 4]

【0036】以上のことから明らかなように、上記実施
例によれば結晶面間隔dが1.222±0.005Å、
1.259±0.005Å、1.301±0.005
Å、1.311±0.005Å、及び1.598±0.
005Åに相当する合金相の回折線強度から合金化度と
相関の良い検量線を作成することができるので、合金化
亜鉛めっき層の合金化度を実用的な合金化度域で正確に
測定することができる。本発明に係る測定方法は、合金
化亜鉛めっき鋼板の製造時に必要なオンライン分析への
適用が可能である。
As is clear from the above, according to the above embodiment, the crystal plane spacing d is 1.222 ± 0.005Å,
1.259 ± 0.005Å, 1.301 ± 0.005
Å, 1.311 ± 0.005 Å, and 1.598 ± 0.
Since a calibration curve with a good correlation with the alloying degree can be created from the diffraction line intensity of the alloy phase corresponding to 005Å, the alloying degree of the galvannealed layer can be accurately measured in the practical alloying degree range. be able to. INDUSTRIAL APPLICABILITY The measuring method according to the present invention can be applied to on-line analysis required when manufacturing an alloyed galvanized steel sheet.

【0037】[0037]

【発明の効果】以上詳述したように本発明に係る合金化
亜鉛めっき層の合金化度測定方法は、鋼板に亜鉛めっき
した後合金化処理しためっき層に、X線を照射して前記
めっき層の合金化度を測定する場合において、前記めっ
き層中の合金相のうち結晶面間隔が1.222±0.0
05Å及び1.259±0.005Åに相当する特定の
合金相の回折線強度の比、又は1.301±0.005
Å及び1.259±0.005Åに相当する特定の合金
相の回折線強度の比を用いて合金化度を算出することに
より、実用的な合金化度域において、非常に良好な正確
度σd でめっき層の合金化度を測定することができる。
As described in detail above, the method for measuring the degree of alloying of the galvannealed layer according to the present invention is performed by irradiating the steel sheet with a galvanized steel sheet and then alloying it with X-rays to perform the plating. When measuring the alloying degree of the layer, the crystal plane spacing of the alloy phases in the plating layer is 1.222 ± 0.0.
Ratio of diffraction line intensities of specific alloy phases corresponding to 05Å and 1.259 ± 0.005Å, or 1.301 ± 0.005
By calculating the alloying degree using the ratio of the diffraction line intensities of the specific alloy phases corresponding to Å and 1.259 ± 0.005Å, it is possible to obtain a very good accuracy σ in the practical alloying degree range. The alloying degree of the plating layer can be measured by d .

【0038】また本発明に係る合金化亜鉛めっき層の合
金化度測定方法は、前記めっき層中の合金相のうち結晶
面間隔が1.598±0.005Å又は1.311±
0.005Åに相当する合金相の回折線強度と、BG強
度との比を用いて合金化度を算出することにより、実用
的な合金化度域において、良好な正確度σd でめっき層
の合金化度を測定することができる。
In the method for measuring the degree of alloying of an alloyed zinc plating layer according to the present invention, the crystal plane spacing of the alloy phases in the plating layer is 1.598 ± 0.005Å or 1.311 ±.
By calculating the alloying degree using the ratio of the diffraction line intensity of the alloy phase corresponding to 0.005Å and the BG intensity, the plating layer with good accuracy σ d can be obtained in a practical alloying degree range. The degree of alloying can be measured.

【0039】従って、本発明に係る合金化亜鉛めっき層
の合金化度測定方法は、合金化亜鉛めっき鋼板の製造時
に必要なオンライン分析への適用が可能である。
Therefore, the method for measuring the degree of alloying of the galvannealed layer according to the present invention can be applied to the on-line analysis required when manufacturing the galvannealed steel sheet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る合金化亜鉛めっき層の合金化度測
定方法を実施するために用いられる平行ビーム光学系X
線回折装置を概略的に示した構成図である。
FIG. 1 is a parallel beam optical system X used for carrying out a method for measuring the degree of alloying of an alloyed zinc plating layer according to the present invention.
It is the block diagram which showed the line diffraction device roughly.

【図2】化学分析により求めた合金化度とR3 値との関
係を示したグラフである。
FIG. 2 is a graph showing the relationship between the degree of alloying obtained by chemical analysis and the R 3 value.

【図3】化学分析により求めた合金化度とR4 値との関
係を示したグラフである。
FIG. 3 is a graph showing the relationship between the alloying degree obtained by chemical analysis and the R 4 value.

【図4】化学分析により求めた合金化度とR1 値との関
係を示したグラフである。
FIG. 4 is a graph showing the relationship between the degree of alloying obtained by chemical analysis and the R 1 value.

【図5】化学分析により求めた合金化度とR2 値との関
係を示したグラフである。
FIG. 5 is a graph showing the relationship between the degree of alloying obtained by chemical analysis and the R 2 value.

【図6】めっき層中の各合金層の体積分率と合金化度と
の関係を示したグラフである。
FIG. 6 is a graph showing the relationship between the volume fraction and the degree of alloying of each alloy layer in the plating layer.

【図7】化学分析により求めた合金化度と強度比{I
P(Γ) −IB(Γ)}/IB(Γ)との関係を示したグラフ
である。
FIG. 7 shows the alloying degree and strength ratio {I obtained by chemical analysis.
Is a graph showing the relationship between P (Γ) -I B (Γ )} / I B (Γ).

【図8】化学分析により求めた合金化度とΓ値との関係
を示したグラフである。
FIG. 8 is a graph showing the relationship between alloying degree and Γ value obtained by chemical analysis.

【図9】化学分析により求めた合金化度とζ値との関係
を示したグラフである。
FIG. 9 is a graph showing the relationship between the alloying degree and the ζ value obtained by chemical analysis.

【図10】化学分析により求めた合金化度とZ値との関
係を示したグラフである。
FIG. 10 is a graph showing the relationship between the alloying degree and Z value obtained by chemical analysis.

【符号の説明】[Explanation of symbols]

11 合金化亜鉛めっき鋼板 11 Galvanized steel sheet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼板に亜鉛めっきした後合金化処理した
めっき層に、X線を照射して前記めっき層の合金化度を
測定する方法において、前記めっき層中の合金相のうち
結晶面間隔が1.222±0.005Å及び1.259
±0.005Åに相当する特定の合金相の回折線強度の
比、又は1.301±0.005Å及び1.259±
0.005Åに相当する特定の合金相の回折線強度の比
を用いて合金化度を算出することを特徴とする合金化亜
鉛めっき層の合金化度測定方法。
1. A method for measuring the degree of alloying of a plated layer, which is obtained by galvanizing a steel sheet and then alloying the same, to measure the degree of alloying of the plated layer. Is 1.222 ± 0.005Å and 1.259
Ratio of diffraction line intensities of specific alloy phase corresponding to ± 0.005Å, or 1.301 ± 0.005Å and 1.259 ±
A method for measuring the degree of alloying of an alloyed galvanized layer, which comprises calculating the degree of alloying by using a ratio of diffraction line intensities of a specific alloy phase corresponding to 0.005Å.
【請求項2】 鋼板に亜鉛めっきした後合金化処理した
めっき層に、X線を照射して前記めっき層の合金化度を
測定する方法において、前記めっき層中の合金相のうち
結晶面間隔が1.598±0.005Å又は1.311
±0.005Åに相当する合金相の回折線強度と、バッ
クグランド強度との比を用いて合金化度を算出すること
を特徴とする合金化亜鉛めっき層の合金化度測定方法。
2. A method of measuring the degree of alloying of a plated layer by irradiating the plated layer, which has been galvanized on a steel sheet and then subjected to alloying treatment, with X-rays. Is 1.598 ± 0.005Å or 1.311
A method for measuring the degree of alloying of an alloyed zinc-plated layer, wherein the degree of alloying is calculated using the ratio of the diffraction line intensity of the alloy phase corresponding to ± 0.005Å and the background intensity.
JP3104451A 1991-02-08 1991-05-09 Method of measuring alloying degree of alloyed galvanized layer Expired - Lifetime JP2707865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104451A JP2707865B2 (en) 1991-02-08 1991-05-09 Method of measuring alloying degree of alloyed galvanized layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-18062 1991-02-08
JP1806291 1991-02-08
JP3104451A JP2707865B2 (en) 1991-02-08 1991-05-09 Method of measuring alloying degree of alloyed galvanized layer

Publications (2)

Publication Number Publication Date
JPH0545305A true JPH0545305A (en) 1993-02-23
JP2707865B2 JP2707865B2 (en) 1998-02-04

Family

ID=26354684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104451A Expired - Lifetime JP2707865B2 (en) 1991-02-08 1991-05-09 Method of measuring alloying degree of alloyed galvanized layer

Country Status (1)

Country Link
JP (1) JP2707865B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137583A (en) * 1997-12-26 2000-10-24 Pohang Iron & Steel Co., Ltd. Method of measuring the degree of alloying of a galvanized steel sheet using laser beams
WO2013161922A1 (en) 2012-04-25 2013-10-31 新日鐵住金株式会社 METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
WO2015059835A1 (en) 2013-10-25 2015-04-30 新日鐵住金株式会社 On-line plating adhesion determination device for galvannealed steel sheet and galvannealed steel sheet production line

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137583A (en) * 1997-12-26 2000-10-24 Pohang Iron & Steel Co., Ltd. Method of measuring the degree of alloying of a galvanized steel sheet using laser beams
WO2013161922A1 (en) 2012-04-25 2013-10-31 新日鐵住金株式会社 METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
CN103649679A (en) * 2012-04-25 2014-03-19 新日铁住金株式会社 Method and device for determining Fe-Zn alloy phase thickness of hot-dip galvanized steel sheet
US9417197B2 (en) 2012-04-25 2016-08-16 Nippon Steel & Sumitomo Metal Corporation Method of measuring thickness of Fe—Zn alloy phase of galvannealed steel sheet and apparatus for measuring the same
WO2015059835A1 (en) 2013-10-25 2015-04-30 新日鐵住金株式会社 On-line plating adhesion determination device for galvannealed steel sheet and galvannealed steel sheet production line
CN105659073A (en) * 2013-10-25 2016-06-08 新日铁住金株式会社 On-line plating adhesion determination device for galvannealed steel sheet and galvannealed steel sheet production line
JPWO2015059835A1 (en) * 2013-10-25 2017-03-09 新日鐵住金株式会社 On-line plating adhesion judgment device for alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production line
EP3062094A4 (en) * 2013-10-25 2017-05-24 Nippon Steel & Sumitomo Metal Corporation On-line plating adhesion determination device for galvannealed steel sheet and galvannealed steel sheet production line
US9927378B2 (en) 2013-10-25 2018-03-27 Nippon Steel & Sumitomo Metal Corporation On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line

Also Published As

Publication number Publication date
JP2707865B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
KR101572765B1 (en) METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
JP2904891B2 (en) Online alloying degree measuring device for galvanized steel sheet
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
JPS5847659B2 (en) What is the best way to go about it?
JPH0933455A (en) Method for measuring alloyed degree of alloying plated layer
JP2707865B2 (en) Method of measuring alloying degree of alloyed galvanized layer
JP5962615B2 (en) Method for measuring the degree of alloying of galvannealed steel sheets
CN109563606B (en) Method for measuring alloying degree and/or plating adhesion amount of galvanized steel sheet
JPH06347247A (en) Measuring method of thickness of alloy phase of plated layer
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
JP3221547B2 (en) Measuring method of zinc adhesion on galvannealed steel sheet
JP2003014669A (en) On-line measurement by method for x-ray fluorescence analyzing surface treating film adhering amount on zinc- plated steel sheet
JPH0440655B2 (en)
JPH01301155A (en) Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet
JPH0435028B2 (en)
JPS61100643A (en) Method of x-ray analysis of alloy plating film
JP3114108B2 (en) Measuring method of alloying degree of alloyed zinc coated steel sheet
JPS646269B2 (en)
JPH09159428A (en) Method for measuring deposition quantities of mg, and surface layer zn of zn-mg based plated steel plate
JPH0643889B2 (en) How to measure the amount of plating of metal materials
JPH10103942A (en) Measuring method for degree of plating adhesion to surface layer and lower layer of double-layer plated steel plate
JPS5946543A (en) Method for measuring degree of alloy formation of galvannealed steel plate
JP2002228430A (en) Method for measuring mass of deposit per unit area of plating or of surface-treating coating