JPH0610306B2 - Manufacturing method of thin grain oriented silicon steel sheet - Google Patents

Manufacturing method of thin grain oriented silicon steel sheet

Info

Publication number
JPH0610306B2
JPH0610306B2 JP60078535A JP7853585A JPH0610306B2 JP H0610306 B2 JPH0610306 B2 JP H0610306B2 JP 60078535 A JP60078535 A JP 60078535A JP 7853585 A JP7853585 A JP 7853585A JP H0610306 B2 JPH0610306 B2 JP H0610306B2
Authority
JP
Japan
Prior art keywords
rolling
silicon steel
steel sheet
annealing
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60078535A
Other languages
Japanese (ja)
Other versions
JPS61238916A (en
Inventor
雅之 坂口
征夫 井口
氏裕 西池
庸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60078535A priority Critical patent/JPH0610306B2/en
Publication of JPS61238916A publication Critical patent/JPS61238916A/en
Publication of JPH0610306B2 publication Critical patent/JPH0610306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 変圧器、モーターなどの電気機器の鉄芯材料として使用
する方向性けい素鋼板、とくに鉄損に優れた薄手方向性
けい素鋼板の製造方法に関してこの明細書では、とくに
冷間圧延段階の手順と圧延挙動に着目した開発研究の成
果を述べる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) A method for manufacturing a grain-oriented silicon steel sheet used as an iron core material of an electric device such as a transformer or a motor, particularly a thin grain-oriented silicon steel sheet excellent in iron loss. With regard to this specification, the results of development research focusing on the procedure and rolling behavior of the cold rolling stage will be described in this specification.

鉄芯材料として使用される方向性けい素鋼板は、交流で
磁化された場合、鉄損と呼ばれるエネルギー消費が起こ
り、これは熱となって無駄に放散される。したがって省
エネルギーの観点から、低鉄損の鉄芯材料への要求は年
々高まりつつあり、最近欧米では鉄損の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「鉄損評価制度」が普及している。この鉄損
評価額は年々上昇しているため、変圧器メーカーの鉄損
のより低い鋼板を求める動きが強くなって来ている。
When a grain-oriented silicon steel sheet used as an iron core material is magnetized by an alternating current, energy consumption called iron loss occurs, which is dissipated wastefully as heat. Therefore, from the viewpoint of energy saving, the demand for iron core materials with low iron loss is increasing year by year.Recently, in Europe and the United States, when making transformers with low iron loss, the reduction in iron loss is converted into monetary value and the transformer price is calculated. The "iron loss evaluation system" to be accumulated is widespread. Since the iron loss evaluation value is increasing year by year, transformer manufacturers are increasingly demanding steel plates with lower iron loss.

ところで一方向性けい素鋼板の鉄損は、主に渦電流損と
履歴損とからなる。最近の高級一方向性けい素鋼板では
渦電流による損失が全体の約7割を占め、鉄損の低減に
は、渦電流を減少させることが最も効果的である。
By the way, the iron loss of the unidirectional silicon steel sheet mainly consists of eddy current loss and hysteresis loss. In recent high-grade unidirectional silicon steel sheets, the loss due to eddy current accounts for about 70% of the total, and reducing eddy current is most effective for reducing iron loss.

(従来の技術) 渦電流を減少させる1つの方法としてけい素鋼板中の電
気抵抗を大きくすることが有効であり、現在の製造工程
においてはけい素鋼板を加工可能な範囲にまでSi含有
量を増加して電気抵抗を高めたり、製品板厚を極めて薄
い製品に加工して(このような処理をした鋼板を薄手一
方向性けい素鋼板と呼ぶ)、電気抵抗を高めるなどの方
法が工程的に採用されている。
(Prior Art) It is effective to increase the electric resistance in a silicon steel sheet as one method of reducing the eddy current, and in the present manufacturing process, the Si content is increased to a range in which the silicon steel sheet can be processed. It is possible to increase the electrical resistance by increasing the electrical resistance or process the product sheet thickness to an extremely thin product (a steel plate treated in this way is called thin unidirectional silicon steel sheet) to increase the electrical resistance. Has been adopted by.

最近特公昭57−2252号、特公昭57−53419
号各公報に開示されているように、一方向性けい素鋼板
の仕上焼鈍後の鋼板表面にレーザー照射により局部微小
歪を導入して180゜軸幅を細分化を行なって製品の低鉄
損を図る方法が提案されている。
Recently Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419
As disclosed in each publication, the local micro-strain is introduced by laser irradiation on the surface of the steel sheet after finish annealing of the grain-oriented silicon steel sheet to subdivide the 180 ° axial width to reduce the low iron loss of the product. A method for achieving this has been proposed.

上述した鉄損改善方法のうちけい素鋼中のSi量を増量
した場合において、製品の表面形状の劣化、あるいは冷
間圧延途中の板割れの問題から実際の製造工程において
けい素鋼中に3.5%以上のSi量を添加することが不可
能である。
When the amount of Si in the silicon steel is increased among the iron loss improving methods described above, the problem of surface shape deterioration of the product or plate cracking during cold rolling causes a problem of 3.5% in the silicon steel in the actual manufacturing process. It is impossible to add a Si amount of not less than%.

次に磁区構造改善によって鉄損を低下させる、レーザー
ビーム照射法は、例えば巻き鉄芯に用いる場合には、ひ
ずみ取り焼鈍が必要なため、この焼鈍処理を行なうとレ
ーザー照射によって導入された塑性歪みが解放されて磁
区幅が広がるため、レーザー照射効果がなくなるという
欠点がある。
Next, the laser beam irradiation method, which reduces iron loss by improving the magnetic domain structure, requires strain relief annealing when used, for example, in wound iron cores. Therefore, when this annealing treatment is performed, the plastic strain introduced by laser irradiation is applied. Is released and the magnetic domain width is widened, so that there is a drawback that the laser irradiation effect is lost.

製品の板厚を薄くする方法は、鉄損低減の面でも最も簡
単で有利であると考えられる。従来0.35mmおよび0.30mm
厚の製品が数多く使用されていたが、今日省エネの見地
から板厚の薄い0.23mm,0.20mm厚の製品がさかんに使用
されるようになって来ている。しかし、一般に製品板厚
を薄くすると2次再結晶が不安定となって、Goss方位に
強く集積した2次再結晶粒を発達させることは非常に困
難になることは知られている通りで、この問題の解決を
図ることが重要である。加えて最終冷延の圧下率には磁
性が最も良好になる最適圧下率が存在するため、最適圧
下率を確保しかつ最終板厚を薄くするためには、冷延一
回法では熱延板厚、2回法以上では中間板厚を薄くしな
ければならない。
The method of reducing the plate thickness of the product is considered to be the simplest and advantageous in terms of reducing iron loss. Conventional 0.35mm and 0.30mm
Many thick products were used, but from the viewpoint of energy saving, products with thin thicknesses of 0.23 mm and 0.20 mm are now being widely used. However, it is generally known that when the product plate thickness is reduced, secondary recrystallization becomes unstable, and it becomes very difficult to develop secondary recrystallized grains that are strongly integrated in the Goss orientation. It is important to solve this problem. In addition, the final cold rolling reduction ratio has an optimal reduction ratio that gives the best magnetism. Therefore, in order to secure the optimum reduction ratio and reduce the final strip thickness, the cold rolling single-rolling method is used. If the thickness is two or more, the intermediate plate thickness must be reduced.

しかしながら熱延板の板厚には薄くできる限度があり、
また途中工程板の薄手化は、以降の工程、特に連続焼鈍
により長い時間を要するためコスト増加が著しい。
However, there is a limit to the thickness of the hot rolled sheet,
Further, thinning of the intermediate process plate requires a long time in the subsequent processes, especially in continuous annealing, so that the cost increases remarkably.

さらに上述したように、最終板厚が薄くなると、最終仕
上げ焼鈍時に2次再結晶が不安定になり、特にインヒビ
ターにAlNを用いた冷延一回法では良好な磁気特性を
有する製品の歩留りが著しく悪くなる。
Further, as described above, when the final plate thickness becomes thin, the secondary recrystallization becomes unstable at the time of final finish annealing, and particularly in the cold rolling once method using AlN as the inhibitor, the yield of products having good magnetic properties is increased. Noticeably worse.

以上の理由から現在製造工程において安定製造されてい
る製品板厚は0.20mm程度であり、板厚0.18mm以下の薄手
一方向性けい素鋼板の製造は上記の理由から非常に困難
であるとされている。
For the above reasons, the product plate thickness that is currently stably manufactured in the manufacturing process is about 0.20 mm, and it is said that it is extremely difficult to manufacture thin unidirectional silicon steel plates with a plate thickness of 0.18 mm or less. ing.

(発明が解決しようとする問題点) 上述の欠点を除去し、冷延1回法はもちろん冷延2回法
以上によっても従来なお製造に著しい困難が伴われた板
厚0.18mm以下でしかも磁気特性のとくに優れた薄手一方
向性けい素鋼板の製造を、極めて安定に実現する工程上
の工夫を与えることがこの発明の目的である。
(Problems to be solved by the invention) By eliminating the above-mentioned drawbacks, the sheet thickness of 0.18 mm or less and the magnetic property which has been remarkably difficult to manufacture by the cold rolling once method as well as the cold rolling twice or more method. It is an object of the present invention to provide an ingenuity in the process for realizing extremely stable production of a thin unidirectional silicon steel sheet having particularly excellent characteristics.

(問題点を解決するための手段) この発明は含けい素鋼スラブを熱間圧延して得られた熱
延板に、1回または中間焼鈍を挾む2回以上の冷間圧延
を施して最終板厚としたのち、脱炭1次再結晶焼鈍を施
しついで鋼板表面に焼鈍分離剤を塗布してから2次再結
晶焼鈍および鈍化焼鈍を施す、一連の工程よりなる方向
性けい素鋼板の製造方法において、 最終の冷間圧延時に少なくとも1パスにつきCBS圧延
を施し板厚を0.18mm以下にすることを特徴とする薄手方
向性けい素鋼板の製造方法である。
(Means for Solving the Problems) The present invention applies a hot-rolled sheet obtained by hot-rolling a silicon steel slab to one time or two or more times of cold rolling with intermediate annealing. After the final plate thickness, decarburization primary recrystallization annealing is performed, and then an annealing separator is applied to the surface of the steel sheet, followed by secondary recrystallization annealing and anneal annealing. In the manufacturing method, a thin grain-oriented silicon steel sheet is manufactured by performing CBS rolling for at least one pass during the final cold rolling to reduce the plate thickness to 0.18 mm or less.

発明者らは、冷間圧延時にCBS圧延(Contact-Bend-s
tretch圧延)を方向性けい素鋼板の冷間圧延過程に適用
したところ、従来公知の集合組織とは異なって、圧延集
合組織が著しく改善され、冷延圧下率を大きくし、従っ
て製品板厚を0.18mm以下にまで薄くしても、良好な2次
再結晶粒を安定して発達させることができ、しかもGoss
方位に強く集積した2次再結晶粒でかつ結晶粒径を微細
化させることができることを見出した。
The inventors have conducted CBS rolling (Contact-Bend-s
(Tretch rolling) was applied to the cold rolling process of grain-oriented silicon steel sheet.Unlike the conventionally known texture, the rolling texture was remarkably improved, the cold rolling reduction was increased, and therefore the product sheet thickness was reduced. Even if the thickness is reduced to 0.18 mm or less, good secondary recrystallized grains can be stably developed, and Goss
It has been found that the secondary recrystallized grains that are strongly integrated in the azimuth direction and the crystal grain size can be made fine.

この発明の出発素材には、従来公知の一方向性けい素鋼
素材成分を用いて、従来公知の製鋼方法、例えば転炉、
電気炉などによって製鋼し、さらに造塊−分塊法また
は、連続鋳造法などによってスラブとし、これを1270〜
1450℃に高温加熱してインヒビターを解離・固溶させた
後、熱間圧延によって1.0mm〜3.5mm厚とした熱延板を用
いる。
For the starting material of the present invention, a conventionally known steelmaking method, for example, a converter, using a conventionally known unidirectional silicon steel material component,
Steel is made in an electric furnace, etc., and then made into a slab by the ingot-segmentation method, continuous casting method, etc.
After heating at a high temperature of 1450 ° C to dissociate the inhibitor and form a solid solution, a hot-rolled sheet having a thickness of 1.0 mm to 3.5 mm by hot rolling is used.

この熱延板は、Siを2.0〜4.0%程度含有する組成であ
るのが好ましく、というのはSiが2%未満では鉄損の
劣化が大きく、また4.0%を超えると、冷間加工性が劣
化するからである。
This hot-rolled sheet preferably has a composition containing Si of about 2.0 to 4.0%, because if the Si content is less than 2%, the iron loss is large, and if it exceeds 4.0%, the cold workability is poor. Because it deteriorates.

その他の成分については、方向性けい素鋼素材成分であ
ればいずれも適用可能であるが、Goss方位に強く集積し
た2次再結晶を発達させるためのインヒビターとしてM
nS,MnSe,AlN,Sb,BNなどから選ばれる
1種ないし2種以上を公知の範囲で鋼中に含ませること
が最適である。
As for the other components, any of the grain-oriented silicon steel material components can be applied, but M is used as an inhibitor to develop the secondary recrystallization strongly integrated in the Goss orientation.
Optimally, one or more selected from nS, MnSe, AlN, Sb, BN, etc. are contained in the steel within a known range.

次にこの熱延板に1回または2回以上の冷間圧延を施
し、0.18mm以下の最終板厚とする。ここに板厚を0.18mm
以下としたのは、0.18mmをこえる製品は従来工程でも製
造可能であり、かつこの発明によりとくに鉄損特性の優
れた薄手方向性けい素鋼板の製造を目的とするからであ
る。
Next, this hot rolled sheet is cold-rolled once or twice or more to give a final sheet thickness of 0.18 mm or less. The plate thickness here is 0.18 mm
The reason for the following is that a product having a diameter of more than 0.18 mm can be manufactured by a conventional process, and the present invention aims to manufacture a thin grain-oriented silicon steel sheet having excellent iron loss characteristics.

この際1次より好ましく2次冷間圧延時に、少なくとも
1パスのCBS圧延を施すことが必要である。
In this case, it is necessary to perform at least one pass of CBS rolling during the primary cold rolling, preferably during the secondary cold rolling.

このCBS圧延による圧延は第1図に示すように、同径
のワークロール1,3間に、これらより小径のワークロ
ールとなる浮動ロール2を配置し、圧延する鋼板4をワ
ークロール1に巻き付けてワークロール1と浮動ロール
2との間を通した後、浮動ロール2に沿って逆方向に曲
げ、浮動ロール2とワークロール3との間を通してワー
クロール3に巻き付け、ワークロール1と浮動ロール2
との間、および浮動ロール2とワークロール3との間で
引張り曲げ圧延を行う。
As shown in FIG. 1, the rolling by the CBS rolling is performed by disposing a floating roll 2 which is a work roll having a smaller diameter than the work rolls 1 and 3 having the same diameter, and winding a steel plate 4 to be rolled around the work roll 1. After passing between the work roll 1 and the floating roll 2 and then bending in the opposite direction along the floating roll 2 and passing between the floating roll 2 and the work roll 3 to wind around the work roll 3. Two
And between the floating roll 2 and the work roll 3 are subjected to tensile bending rolling.

なお浮動ロール2は、ワークロール1,3の中心軸を結
ぶ線から、鋼板4へ与えられている張力によって浮動ロ
ール2に作用する力の方向Fと逆の方向にずらして配置
してある。また鋼板へは、浮動ロール2をワークロール
1,3側へ引き寄せるのに十分な張力が与えられてい
る。
The floating roll 2 is arranged so as to be displaced from the line connecting the central axes of the work rolls 1 and 3 in the direction opposite to the direction F of the force acting on the floating roll 2 by the tension applied to the steel plate 4. Further, the steel plate is provided with sufficient tension to pull the floating roll 2 toward the work rolls 1 and 3.

またワークロール1,3の直径は浮動ロール2に比し大
径であれば任意であるが、浮動ロール2の直径は10〜40
mmが好適である。これは径が小さすぎると鋼板の曲げ径
が小さくなって破断を招きやすく、径が大きすぎると曲
げによる効果が少なくなるためである。
The diameter of the work rolls 1 and 3 is arbitrary as long as it is larger than that of the floating roll 2, but the diameter of the floating roll 2 is 10 to 40.
mm is preferred. This is because if the diameter is too small, the bending diameter of the steel sheet becomes small, which is likely to cause breakage, and if the diameter is too large, the effect due to bending decreases.

CBS圧延において1パスでの圧下率を極端に大きくす
ることは、圧延圧力が増大するため集合組織改善に好ま
しくない。ここに1パス当りの圧下率は50%以下が好ま
しい。
An extremely large rolling reduction in one pass in CBS rolling is not preferable for improving the texture because the rolling pressure increases. Here, the rolling reduction per pass is preferably 50% or less.

また全パスCBS圧延せずにCBS圧延と等速圧延を組
み合わせても良い。
Further, CBS rolling and constant velocity rolling may be combined without performing all-pass CBS rolling.

全パスCBS圧延した場合は最も高圧下が可能であり、
AlNを主にインヒビターとして用いた冷延1回法で
は、冷間圧延の全圧下率を90%以上にすることも可能で
あって、仕上げ厚を0.15mm程度までの薄手製品を製造す
ることができ、またMnSeを主にインヒビターとして
用いる冷延2回法でも、最終冷延での全圧下率を80%以
上にとることが可能で、とくに中間板厚を薄引きにする
ことによって、仕上げ厚を0.10mm程度の薄手製品にまで
することができる。
The highest pressure is possible when all-pass CBS rolling is performed,
With the single cold rolling method, which mainly uses AlN as an inhibitor, it is possible to achieve a total reduction of cold rolling of 90% or more, and it is possible to manufacture thin products with a finish thickness of up to about 0.15 mm. It is also possible to achieve a total reduction of 80% or more in the final cold rolling even with the double cold rolling method using MnSe as an inhibitor mainly. Can be made as thin as 0.10 mm.

AlNをインヒビターとする現行の強冷延1回法を、中
間焼鈍処理により、冷延2回法又はMnSeをインヒビ
ターとする現行の中間焼鈍を含む2回法についてさらに
途中の中間焼鈍処理により冷延3回法として新たに適用
すれば、0.10mm板厚以下の薄手方向性けい素鋼板の製品
を作ることも可能である。
The current one-time strong cold rolling method using AlN as an inhibitor is cold rolled by an intermediate annealing treatment by a cold rolling two-time method or a two-time method including a current intermediate annealing method using MnSe as an inhibitor. If it is newly applied as the three-time method, it is possible to make a thin grain oriented silicon steel sheet having a thickness of 0.10 mm or less.

以上の様なCBS圧延を含む冷間圧延によって、最終板
厚にした冷延板に、750℃以上の脱炭可能な湿水素雰囲
気による1次再結晶焼鈍を行なう。次いで鋼板表面に主
にMgOからなる焼鈍分離剤を塗布し、800℃以上50時
間の2次再結晶焼鈍と1200℃、5時間以上の純化焼鈍を
施して、製品とする。
By the cold rolling including the CBS rolling as described above, the cold-rolled sheet having the final thickness is subjected to primary recrystallization annealing in a dehydrocarburizing wet hydrogen atmosphere at 750 ° C. or higher. Next, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and secondary recrystallization annealing is performed at 800 ° C for 50 hours and purification annealing is performed at 1200 ° C for 5 hours to obtain a product.

(作用) 上記の如くCBS圧延された薄手けい素鋼板は、圧縮応
力をあまり受けずに、剪断変形することが大きな特徴で
ある。この結果を第2図(a)に、また同図(b)には
従来例の集合組織を比較して示す。これらの(200)極
点図を比較して明らかなように、冷間圧延板の集合組織
では、圧縮変形における安定方位である{100}〈okl〉
方位の組織が弱くなるのが特徴的である。なお第2図
(a)は、ワークロール径200mmφ浮動ロール径15mm
φ、周速比1:1.4である第1図に示した圧延要領にて
0.6mm厚の鋼板を、4パスで0.15mmに仕上げ、表面から2
0μm研磨した面における(200)極点図であり、同図
(b)はワークロール径100mmφの4段圧延機を用い等
速圧延にて同様に0.6mm厚の鋼板を4パスで0.15mmに仕
上げた圧延板を、上記と同様に研磨した面の(200)極
点図である。
(Operation) The thin silicon steel sheet that has been CBS-rolled as described above is greatly characterized in that it undergoes shear deformation without receiving much compressive stress. The results are shown in FIG. 2 (a) and in FIG. 2 (b) comparing the textures of the conventional example. As is clear from the comparison of these (200) pole figures, the texture of cold-rolled sheet has a stable orientation in compression deformation {100} <okl>.
It is characteristic that the azimuth tissue becomes weak. Note that Fig. 2 (a) shows a work roll diameter of 200 mm and a floating roll diameter of 15 mm.
φ, the peripheral speed ratio is 1: 1.4
0.6mm thick steel plate finished to 0.15mm in 4 passes, 2 from the surface
It is a (200) pole figure on the ground surface of 0 μm, and the same figure (b) shows a 0.6 mm thick steel plate finished in 0.15 mm in 4 passes by constant velocity rolling using a 4-high rolling machine with a work roll diameter of 100 mmφ. FIG. 9 is a (200) pole figure of the surface of the rolled plate which was polished in the same manner as above.

この発明に従いCBS圧延を行なったものは、脱炭一次
再結晶焼鈍を施した後は、第3図(a)に示すとおり従
来圧延方法の結果を揚げた同図(b)と比較すると、
{100}〈001〉の減少が著しく、ゴス方位{110}〈00
1〉が強く集積していることがわかる。なお第3図
(a),(b)はそれぞれ第2図(a),(b)と同様
の冷間圧延を施した後、湿水素雰囲気中で800℃で5分
間の脱炭一次再結晶焼鈍を行ない、双方とも表面から板
厚方向に20μm研磨した面の(200)極点図である。
After the CBS rolling according to the present invention, after the decarburizing primary recrystallization annealing, comparing with the result of the conventional rolling method shown in FIG.
The decrease of {100} <001> is remarkable, and the Goth direction is {110} <00
It can be seen that 1> is strongly accumulated. It should be noted that FIGS. 3 (a) and 3 (b) are cold rolling similar to those in FIGS. FIG. 3 is a (200) pole figure of a surface that has been annealed and polished by 20 μm from the surface in the plate thickness direction.

以上からわかるとおり、CBS圧延した試料は圧延集合
組織および脱炭一次再結晶集合組織とも{100}〈001〉
のキューブ方位成分が弱くなっている。
As can be seen from the above, the CBS-rolled sample had {100} <001> for both the rolling texture and the decarburized primary recrystallization texture.
The cube orientation component of is weakened.

このキューブ方位成分は、通常粒成長を抑えるインヒビ
ターと同様の作用があると考えられ、この方位成分の低
減がすなわち、通常の圧延方法に比較して大きな圧下率
で圧延しても良好な2次再結晶を発達させることができ
る理由であると考えられる。
This cube orientation component is considered to have the same effect as an inhibitor that normally suppresses grain growth, and the reduction of this orientation component means that a secondary reduction that is good even when rolled at a large reduction rate as compared with the ordinary rolling method. This is considered to be the reason why recrystallization can be developed.

第4図(a),(b)に第3図(a)の場合と同様この
発明の方法により圧延したものと、やはり第3図(b)
の場合と同様の従来方法により圧延したものとを、2次
再結晶焼鈍後マクロエッチした、その2次再結晶粒の写
真を示す。この発明の方法による圧延を行なったもの
は、完全に2次再結晶しているが、比較例は2次再結晶
が不完全であることが明らかである。
In FIGS. 4 (a) and 4 (b), as in the case of FIG. 3 (a), the product rolled by the method of the present invention and also in FIG. 3 (b).
A photograph of a secondary recrystallized grain obtained by performing a macroetch after the secondary recrystallization annealing of the material rolled by the same conventional method as in the above case is shown. The material rolled by the method of the present invention is completely recrystallized in the secondary manner, but it is clear that the secondary recrystallization is incomplete in the comparative example.

(実施例) 実施例1 C:0.045wt%,Si:3.35wt%,Mn:0.068wt%,S
e:0.020wt%,及びSb:0.025wt%,を含有する2.2m
m厚の熱延板を、2等分して、一次冷間圧延で1法は0.6
0mmに、他方を1.00mmに仕上げて連続焼鈍炉で1000℃,
3分間の中間焼鈍を行なった。
(Example) Example 1 C: 0.045 wt%, Si: 3.35 wt%, Mn: 0.068 wt%, S
2.2m containing e: 0.020wt% and Sb: 0.025wt%
A hot rolled sheet with a thickness of m is divided into two equal parts, and the primary cold rolling method is 0.6
Finished to 0 mm and the other to 1.00 mm, and then 1000 ℃ in a continuous annealing furnace.
Intermediate annealing was performed for 3 minutes.

次いで1.00mmに仕上げた鋼板を2次冷間圧延で0.35mmに
まで仕上げ、再び連続焼鈍炉で950℃,3分間の中間焼
鈍を行なった。
Then, the steel plate finished to 1.00 mm was finished to 0.35 mm by secondary cold rolling, and again subjected to intermediate annealing at 950 ° C. for 3 minutes in a continuous annealing furnace.

ここで先の0.60mmの鋼板と0.35mmの鋼板をそれぞれ2等
分し順に試料(A),(B),(C)および(D)に区
分した。
Here, the aforementioned 0.60 mm steel plate and 0.35 mm steel plate were divided into two equal parts and divided into samples (A), (B), (C) and (D) in order.

次に試料(A)と(C)をワークロール径100mmのリバ
ースミルを用いて圧延する一方、(B),(D)をワー
クロール径100mm浮動ロール径20mmとしたCBS圧延法
により圧延し、ここに(A),(B)は0.15mm(C),
(D)は0.10mmに仕上げた。
Next, the samples (A) and (C) were rolled using a reverse mill having a work roll diameter of 100 mm, while the (B) and (D) were rolled by a CBS rolling method with a work roll diameter of 100 mm and a floating roll diameter of 20 mm. Where (A) and (B) are 0.15 mm (C),
(D) was finished to 0.10 mm.

その後840℃で5分間の脱炭焼鈍を湿水素雰囲気で行な
い、鋼板表面にMgOを塗布し850℃で50時間の焼鈍を
施した後、1200℃で5時間水素気流中で箱焼鈍を行なっ
た。このようにして得られた製品板の磁気特性を表1に
示す。
Then, decarburization annealing was performed at 840 ° C for 5 minutes in a wet hydrogen atmosphere, MgO was applied to the steel sheet surface, annealed at 850 ° C for 50 hours, and then box annealed at 1200 ° C for 5 hours in a hydrogen stream. . The magnetic properties of the product plate thus obtained are shown in Table 1.

実施例2 C:0.055wt%,Si:3.20wt%,Al:0.025wt%,
N:0.0065wt%およびS:0.025wt%を含有する1.8mm厚
の熱延板を1100℃,2分間の熱延板焼鈍した後、素材を
2等分して上記実施例1に述べた2通りの条件により圧
延を行なって、それぞれ0.15mm厚に仕上げMgO塗布後
850℃で50時間の焼鈍を施した后、1200℃,5時間水素
気流中で箱焼鈍を施した。こうして得られた製品板の磁
気特性を表2に示す。
Example 2 C: 0.055 wt%, Si: 3.20 wt%, Al: 0.025 wt%,
A 1.8 mm thick hot-rolled sheet containing N: 0.0065 wt% and S: 0.025 wt% was annealed at 1100 ° C. for 2 minutes, and then the material was divided into two equal parts, which were described in Example 1 above. Roll under the same conditions and finish to 0.15mm thickness after applying MgO
After annealing at 850 ° C for 50 hours, box annealing was performed at 1200 ° C for 5 hours in a hydrogen stream. Table 2 shows the magnetic properties of the product plate thus obtained.

実施例3 C:0.055wt%,Si:3.20wt%,Al:0.025wt%,
N:0.0065wt%,およびS:0.025wt%を含有する3.0mm
厚の熱延板を、1100℃,2分間の熱延板焼鈍した後、一
次冷間圧延で板厚0.700mmまで圧延し、次いで1050℃,
1分間の中間焼鈍を施し、素材を2等分して実施例1に
述べた2通りの条件により、圧延を行ってそれぞれ0.10
0mm厚に仕上げMgO塗布後850℃で50時間の焼鈍を施し
た後1200℃,5時間水素気流中で箱焼鈍を施した。こう
して得られた成品板の磁気特性を表3に示す。
Example 3 C: 0.055 wt%, Si: 3.20 wt%, Al: 0.025 wt%,
3.0 mm containing N: 0.0065 wt% and S: 0.025 wt%
After annealed a hot-rolled sheet at 1100 ° C for 2 minutes, it is first cold-rolled to a sheet thickness of 0.700 mm, then at 1050 ° C.
The material was subjected to intermediate annealing for 1 minute, and the material was divided into two equal parts and rolled under the two conditions described in Example 1 to obtain 0.10 each.
After finishing to a thickness of 0 mm, MgO was applied, followed by annealing at 850 ° C. for 50 hours and then box annealing at 1200 ° C. for 5 hours in a hydrogen stream. Table 3 shows the magnetic properties of the product plate thus obtained.

(発明の効果) この発明によれば、最終冷延の圧下率を大きく、最終板
厚を薄くしても、結晶方位を乱すことなくしたがって、
磁気特性、特に鉄損を大幅に向上させることができる。
(Effect of the Invention) According to the present invention, even if the reduction ratio of the final cold rolling is large and the final plate thickness is thin, the crystal orientation is not disturbed,
The magnetic properties, especially iron loss, can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明によるCBS圧延要領を示す説明図、 第2図はこの発明と従来との方法によって圧延された鋼
板の表面から20μm研磨した面における(200)正極点
図、 第3図は、この発明と従来との方法によって圧延された
鋼板を1次再結晶焼鈍し、表面から20μm研磨した面の
(200)正極点図であり、 第4図は最終焼鈍後の鋼板をマクロエッチングして示す
金属組織写真である。
FIG. 1 is an explanatory view showing a CBS rolling procedure according to the present invention, and FIG. 2 is a (200) positive electrode diagram on a surface polished by 20 μm from the surface of a steel sheet rolled by the present invention and a conventional method, and FIG. Fig. 4 is a (200) positive electrode dot diagram of the surface of the steel sheet rolled by the method of the present invention and the conventional method, which was subjected to primary recrystallization annealing and polished by 20 µm from the surface. Fig. 4 shows the steel sheet after final annealing is macro-etched. Is a photograph of the metal structure shown by.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 庸 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yo Ito 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】含けい素鋼スラブを熱間圧延して得られた
熱延板に、1回または中間焼鈍を挾む2回以上の冷間圧
延を施して最終板厚としたのち、脱炭1次再結晶焼鈍を
施しついで鋼板表面に焼鈍分離剤を塗布してから2次再
結晶焼鈍および純化焼鈍を施す、一連の工程よりなる方
向性けい素鋼板の製造方法において、 最終の冷間圧延時に少なくとも1パスにつきCBS圧延
を施し板厚を0.18mm以下にすることを特徴とする薄手方
向性けい素鋼板の製造方法。
1. A hot-rolled sheet obtained by hot-rolling a silicon steel slab is cold-rolled once or twice or more with intermediate annealing to obtain a final sheet thickness, and then removed. In the method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of performing primary recrystallization annealing of carbon, then applying an annealing separator on the surface of the steel sheet, and then performing secondary recrystallization annealing and purification annealing, the final cold A method of manufacturing a thin grain-oriented silicon steel sheet, characterized in that at least one pass is subjected to CBS rolling during rolling to reduce the sheet thickness to 0.18 mm or less.
JP60078535A 1985-04-15 1985-04-15 Manufacturing method of thin grain oriented silicon steel sheet Expired - Lifetime JPH0610306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60078535A JPH0610306B2 (en) 1985-04-15 1985-04-15 Manufacturing method of thin grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60078535A JPH0610306B2 (en) 1985-04-15 1985-04-15 Manufacturing method of thin grain oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS61238916A JPS61238916A (en) 1986-10-24
JPH0610306B2 true JPH0610306B2 (en) 1994-02-09

Family

ID=13664602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60078535A Expired - Lifetime JPH0610306B2 (en) 1985-04-15 1985-04-15 Manufacturing method of thin grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0610306B2 (en)

Also Published As

Publication number Publication date
JPS61238916A (en) 1986-10-24

Similar Documents

Publication Publication Date Title
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS60258414A (en) Production of non-oriented electrical iron sheet having high magnetic flux density
JPH0610306B2 (en) Manufacturing method of thin grain oriented silicon steel sheet
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP3331478B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JPH10273726A (en) Manufacture of grain oriented silicon steel sheet with stable magnetic property in longitudinal direction of coil
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2516441B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent ridging resistance
JP3580013B2 (en) Hot rolling method of slab for electrical steel sheet
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JPH06207220A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP3643200B2 (en) Method for producing grain-oriented silicon steel sheet with low side strain
JPH0257125B2 (en)
JPH07278665A (en) Manufacture of non-oriented silicon steel sheet with high magnetic flux density
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JP3360236B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties