JPH0593925A - Optical control device - Google Patents

Optical control device

Info

Publication number
JPH0593925A
JPH0593925A JP25327891A JP25327891A JPH0593925A JP H0593925 A JPH0593925 A JP H0593925A JP 25327891 A JP25327891 A JP 25327891A JP 25327891 A JP25327891 A JP 25327891A JP H0593925 A JPH0593925 A JP H0593925A
Authority
JP
Japan
Prior art keywords
optical
control device
crystal substrate
layer
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25327891A
Other languages
Japanese (ja)
Other versions
JP2720654B2 (en
Inventor
Naoki Kitamura
直樹 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3253278A priority Critical patent/JP2720654B2/en
Publication of JPH0593925A publication Critical patent/JPH0593925A/en
Application granted granted Critical
Publication of JP2720654B2 publication Critical patent/JP2720654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To always stably obtain the characteristics of the optical control device as designed at a good yield. CONSTITUTION:This optical control device has a 1st layer 10 provided on the rear surface of a dielectric crystal substrate 1. The strain generated between the dielectric crystal substrate 1 and a buffer layer 6 by L differences in the coefft. of thermal expansion and optical elastic constants is removed by providing this layer. Then, the optical waveguide characteristics maintain the characteristics when the optical waveguide is formed on the dielectric crystal substrate. The designed characteristics are thus obtd. at a good yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光派の変調、光切り替え
などを行う光制御デバイスに関し、特に基板中に設けた
光導波路を用いて制御を行う導波形の光制御デバイスに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical control device for performing optical modulation and switching, and more particularly to a waveguide type optical control device for performing control using an optical waveguide provided in a substrate.

【0002】[0002]

【従来の技術】光通信システムの実用化が進むにつれ、
さらに大容量や多機能を持つ高度のシステムが求められ
ており、より高度の光信号の発生や光伝送路を切り替
え、交換などの新たな機能の付加が必要とされている。
現在の実用システムでは光信号は直接半導体レーザや発
光ダイオードの注入電流を変調することによって得られ
ているが、直接変調では直接変調では緩和振動などの効
果のため、10GHz前後以上の高速変調が難しいこ
と、波長変動が発生するためコヒーレント光伝送方式に
は適用が難しいことなどの欠点がある。これを解決する
手段としては、外部変調器を使用する方法があり、特に
基板中に形成した光大電流により構成した導波形の光変
調器は、小型、高効率、高速という特徴がある。
2. Description of the Related Art As the practical use of optical communication systems progresses,
Further, there is a demand for sophisticated systems having large capacity and multiple functions, and it is necessary to add new functions such as generation of higher-level optical signals, switching of optical transmission lines, and exchange.
In the current practical system, the optical signal is obtained by directly modulating the injection current of the semiconductor laser or the light emitting diode. However, direct modulation is difficult to achieve high-speed modulation of about 10 GHz or more due to effects such as relaxation oscillation in direct modulation. However, there is a drawback that it is difficult to apply to the coherent optical transmission system because of the wavelength variation. As a means for solving this, there is a method of using an external modulator, and in particular, a waveguide type optical modulator formed by a large optical current formed in a substrate is characterized by small size, high efficiency and high speed.

【0003】一方、光伝送路の切り替えやネットワーク
の交換機能を得る手段としては光スイッチが使用され
る。現在実用されている光スイッチは、プリズム、ミラ
ー、ファイバーなどを機械的に移動させるものであり、
低速であること、信頼性が不十分であること、形状が大
きくマトリクス化に不適であること等の欠点がある。こ
れを解決する手段として開発が進められているものはや
はり光導波路を用いた導波形の光スイッチであり、高
速、多素子の集積化が可能、高信頼等の特長がある。特
にニオブ酸リチウム(LiNbO3 )結晶等の強誘電体
材料を用いたものは、光吸収が小さく低損失であるこ
と、大きな電気光学効果を有しているため高効率である
こと等の特長があり、従来からも方向性結合器型光変調
器・スイッチ、全反射型光スイッチ、マッハツエンダ型
光変調器等の種々の方式の光制御素子が報告されてい
る。このような導波形の光制御素子を実際の光通信シス
テムに適用する場合、低損失、高速性等の基本的性能と
同時に特に、動作特性の再現性、すなわちデバイスの高
歩留り化が実用上不可欠である。
On the other hand, an optical switch is used as a means for switching the optical transmission line and obtaining the network switching function. The optical switch currently in practical use mechanically moves prisms, mirrors, fibers, etc.
There are drawbacks such as low speed, insufficient reliability, large shape, and unsuitable for matrix formation. What is being developed as a means for solving this is still a waveguide type optical switch using an optical waveguide, which has features such as high speed, multi-element integration, and high reliability. In particular, the one using a ferroelectric material such as lithium niobate (LiNbO 3 ) crystal is characterized by low light absorption and low loss and high efficiency because it has a large electro-optical effect. There have been conventionally reported various types of optical control elements such as a directional coupler type optical modulator / switch, a total reflection type optical switch, and a Mach-Zehnder type optical modulator. When such a waveguide type optical control element is applied to an actual optical communication system, reproducibility of operating characteristics, that is, high yield of devices, is essential for practical use, in addition to basic performance such as low loss and high speed. Is.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の導波形
の光制御デバイスでは、動作特性の再現性に関しては十
分な特性は得られていない。図3に従来の光制御デバイ
スの一例として方向性結合型光スイッチの平面図(a)
及び断面図(b)を示す。図3(a)において、Z軸に
垂直に切り出したニオブ酸リチウム結晶基板1の上にチ
タンを拡散して屈折率を基板よりも大きくして形成した
帯状の光導波路2及び3が形成されており、光導波路2
及び3は基板の中央部で互いに数μm程度まで近接し、
方向性結合器4を形成している。また、方向性結合器4
を構成する光導波路上には制御電極による光吸収を防ぐ
ためのバッファ層6を介して制御電極5が形成されてい
る。図3(b)は方向性結合器4の部分の光導波路2,
3に垂直な断面図を示している。
However, in the conventional waveguide type optical control device, sufficient reproducibility of operating characteristics has not been obtained. FIG. 3 is a plan view of a directional coupling type optical switch as an example of a conventional optical control device (a).
And a sectional view (b) is shown. In FIG. 3A, band-shaped optical waveguides 2 and 3 formed by diffusing titanium to have a refractive index higher than that of the substrate are formed on a lithium niobate crystal substrate 1 cut out perpendicularly to the Z axis. Cage, optical waveguide 2
And 3 are close to each other by about several μm in the central part of the substrate,
The directional coupler 4 is formed. Also, the directional coupler 4
The control electrode 5 is formed on the optical waveguide forming the structure via a buffer layer 6 for preventing light absorption by the control electrode. FIG. 3B shows an optical waveguide 2, which is a part of the directional coupler 4.
3 shows a sectional view perpendicular to FIG.

【0005】図3において、光導波路2に入射した入射
光7は方向性結合器4の部分を伝搬するにしたがって近
接した光導波路3へ徐々に光りエネルギーが移り、方向
性結合器4を通過後は光導波路3にほぼ100%エネル
ギーが移って出射光8となる。一方、制御電極5に電圧
を印加した場合、電気光学効果により制御電極下の光導
波路の屈折率が変化し、光導波路2と3を伝搬する導波
モードの間に位相速度の不整合が生じ、両者の間の接合
状態は変化する。
In FIG. 3, the incident light 7 that has entered the optical waveguide 2 gradually propagates through the portion of the directional coupler 4 so that the light energy gradually shifts to the optical waveguide 3 that is close to it, and after passing through the directional coupler 4. Almost 100% of the energy is transferred to the optical waveguide 3 and becomes emitted light 8. On the other hand, when a voltage is applied to the control electrode 5, the refractive index of the optical waveguide under the control electrode changes due to the electro-optic effect, and a phase velocity mismatch occurs between the waveguide modes propagating in the optical waveguides 2 and 3. , The joining state between the two changes.

【0006】制御電極5は、制御電極用膜成膜後マスク
を用いたリソグラフィ法などにより制御電極以外の制御
電極用膜をエッチングして形成する。バッファ層膜及び
制御電極用膜成膜時には各堆積膜と下地の物質の熱膨張
係数の違い及びポアソン比等の弾性定数の違いなどによ
り基板に対して歪が発生することが知られている。この
状態では、一般に成膜時に有していた歪量は均一に誘電
体結晶基板全体に分布するため、光導波路及び誘電体結
晶基板の屈折率の絶対値は変化しても、光導波路の誘電
体結晶に対する屈折率差は成膜前後において変化しな
い。従って、光導波路特性は光導波路を誘電体結晶基板
に形成したときの特性を保持しており、方向性結合器の
結合状態になんら変化を与えない。しかし、その後制御
電極用膜をエッチングすることで形成された制御電極部
は弾性的に不連続であるため、制御電極形成時に変動す
る歪が制御電極近傍に不均一に集中し局在する。この歪
により強誘電体結晶基板ではピエゾ効果及び光弾性効果
などにより屈折率の変動をもたらす。従って、この屈折
率変動が制御電極近傍に形成されている光導波路近傍に
も影響を与え、光導波路特性を変化させていまう。その
結果、方向性結合器の結合状態は変化するため、設計通
りの光導波結合状態が再現性良く得られないという問題
を有している。なお、この結合状態の変化量はバッファ
層膜及び制御電極用膜成膜のバッチ毎に変化に差があ
る。
The control electrode 5 is formed by etching the control electrode film other than the control electrode by a lithographic method using a mask after forming the control electrode film. It is known that when the buffer layer film and the control electrode film are formed, strain is generated in the substrate due to the difference in thermal expansion coefficient between the deposited films and the underlying material and the difference in elastic constant such as Poisson's ratio. In this state, generally, the amount of strain that is present during film formation is uniformly distributed over the entire dielectric crystal substrate, so even if the absolute value of the refractive index of the optical waveguide and the dielectric crystal substrate changes, The refractive index difference with respect to the body crystal does not change before and after film formation. Therefore, the optical waveguide characteristic retains the characteristic when the optical waveguide is formed on the dielectric crystal substrate, and does not change the coupling state of the directional coupler. However, since the control electrode portion formed by subsequently etching the control electrode film is elastically discontinuous, the strain that fluctuates when the control electrode is formed is nonuniformly concentrated and localized in the vicinity of the control electrode. This distortion causes the refractive index of the ferroelectric crystal substrate to change due to the piezo effect and the photoelastic effect. Therefore, the change in the refractive index also affects the vicinity of the optical waveguide formed near the control electrode to change the optical waveguide characteristics. As a result, since the coupling state of the directional coupler changes, there is a problem that the optical waveguide coupling state as designed cannot be obtained with good reproducibility. The amount of change in the bonding state varies depending on the batch of buffer layer film and control electrode film formation.

【0007】本発明の目的は上述の従来の光制御デバイ
スの欠点を除き、設計通りの特性を高歩留りで、常に安
定して得られる光制御デバイスを提供することにある。
An object of the present invention is to provide an optical control device which can obtain the characteristics as designed with a high yield and always stable, except for the above-mentioned drawbacks of the conventional optical control device.

【0008】[0008]

【課題を解決するための手段】第1の発明は、電気光学
効果を有する誘電体結晶基板に形成された光導波路と前
記誘電体結晶基板表面に堆積されたバッファ層と該バッ
ファ層の上の前記光導波路の近傍に設けられた制御電極
とを含んで構成される光制御デバイスにおいて、前記誘
電体結晶基板に対する応力が前記バッファ層と等しくな
るような第1の層を前記誘電体結晶基板裏面に堆積させ
たことを特徴とする。
According to a first aspect of the invention, an optical waveguide formed on a dielectric crystal substrate having an electro-optical effect, a buffer layer deposited on the surface of the dielectric crystal substrate, and a buffer layer on the buffer layer are provided. In a light control device including a control electrode provided in the vicinity of the optical waveguide, a first layer having a stress on the dielectric crystal substrate equal to that of the buffer layer is formed on the back surface of the dielectric crystal substrate. It is characterized by being deposited on.

【0009】[0009]

【作用】第1の発明の光制御デバイスは、誘電体結晶基
板の裏面に第1の層が形成されている。この第1の層の
膜厚を適当に選ぶことにより、バッファ層と誘電体結晶
基板との熱膨張係数や光弾性定数の違いにより生じる界
面での応力を相殺することができる。
In the light control device of the first invention, the first layer is formed on the back surface of the dielectric crystal substrate. By properly selecting the film thickness of the first layer, it is possible to cancel the stress at the interface caused by the difference in thermal expansion coefficient and photoelastic constant between the buffer layer and the dielectric crystal substrate.

【0010】第2の発明の制御デバイスでは、第1の発
明の制御デバイスにおける第1の層の上に制御電極と同
一の形状を有する第2の層が形成されている。この第2
の層により、制御電極を形成した際に生じる電極近傍に
局在した不均一な応力を相殺することができる。
In the control device of the second invention, the second layer having the same shape as the control electrode is formed on the first layer of the control device of the first invention. This second
This layer can cancel out the non-uniform stress localized near the electrodes when the control electrodes are formed.

【0011】これらの結果、光導波路近傍の誘電体結晶
の歪による屈折率変化が抑圧される。従って、光導波路
特性は光導波路を誘電体結晶基板に形成したときの特性
を保持しており、方向性結合器の結合状態になんら変化
を与えない。
As a result, the change in the refractive index due to the distortion of the dielectric crystal near the optical waveguide is suppressed. Therefore, the optical waveguide characteristic retains the characteristic when the optical waveguide is formed on the dielectric crystal substrate, and does not change the coupling state of the directional coupler.

【0012】以上のことにより、本発明の光制御デバイ
スは、従来に比べて設計通りの特性を歩留り良く、常に
安定して得られる。
As described above, the light control device of the present invention can obtain the characteristics as designed as compared with the conventional one in good yield and can always be stably obtained.

【0013】[0013]

【実施例】図1は、第1の発明による光制御デバイスの
一実施例である方向性結合器型光スイッチの平面図
(a)及び断面図(b)を示す。図3の例と同様にZ板
ニオブ酸リチウム結晶基板1の上にチタンを900〜1
100℃程度で数時間熱拡散して形成された3〜10μ
m程度の光導波路2及び3が形成されており、基板の中
央部で両光導波路は互いに数μmまで近接して方向性結
合器4を構成している。その上にバッファ層6を介して
制御電極5が形成されている。但し、この時、図3と異
なる点は、Z板ニオブ酸リチウム結晶基板1の裏面に、
バッファ層6と同じ材質、膜厚を有する第1の層10が
形成されていることである。
1 is a plan view (a) and a sectional view (b) of a directional coupler type optical switch which is an embodiment of an optical control device according to the first invention. As in the example of FIG. 3, titanium was deposited on the Z-plate lithium niobate crystal substrate 1 in an amount of 900 to 1
3-10μ formed by thermal diffusion at 100 ° C for several hours
The optical waveguides 2 and 3 of about m are formed, and both optical waveguides are close to each other up to several μm in the central portion of the substrate to form the directional coupler 4. The control electrode 5 is formed on the buffer layer 6 via the buffer layer 6. However, at this time, the difference from FIG. 3 is that the back surface of the Z-plate lithium niobate crystal substrate 1 is
That is, the first layer 10 having the same material and film thickness as the buffer layer 6 is formed.

【0014】バッファ層6としてはニオブ酸リチウム結
晶基板1より屈折率が小さく、かつ、光の吸収が少ない
ことが望まれ、SiO2 ,SiON,MgF2 ,Si3
4 ,Al2 3 などを用いる。また、作製方法はスパ
ッタ法、CVD法、蒸着法、スピンコーティング法等が
ある。
It is desired that the buffer layer 6 has a smaller refractive index and less light absorption than the lithium niobate crystal substrate 1, and SiO 2 , SiON, MgF 2 , Si 3
N 4 , Al 2 O 3 or the like is used. The manufacturing method includes a sputtering method, a CVD method, an evaporation method, a spin coating method, and the like.

【0015】なお、バッファ層6と第1の層10は、層
厚等を調整して誘電体結晶基板1に対する応力が等しく
なるようにすれば同一の材質を用いる必要はない。
The buffer layer 6 and the first layer 10 need not be made of the same material as long as the layer thickness and the like are adjusted so that the stresses on the dielectric crystal substrate 1 become equal.

【0016】図2は第2の発明による光制御デバイスの
一実施例である方向性結合器光スイッチの断面図を示
す。図1の例と同様にZ板ニオブ酸リチウム結晶基板1
の上にチタンを900〜1100℃程度で数時間熱拡散
して形成された3〜10μm程度の光導波路2及び3が
形成されており、基板の中央部で両光導波路は互いに数
μmまで近接して方向性結合器4を構成している。表面
はバッファ層6を介して制御電極5が形成され、裏面は
1の層10が形成されている。ここで図1と異なる点
は、第1の層10の上に、制御電極5と同じ材質、膜厚
を有し、同一の形状をもった第2の層11が形成されて
いることである。
FIG. 2 is a sectional view of a directional coupler optical switch which is an embodiment of the optical control device according to the second invention. Similar to the example of FIG. 1, Z plate lithium niobate crystal substrate 1
Optical waveguides 2 and 3 of about 3 to 10 μm formed by thermally diffusing titanium at 900 to 1100 ° C. for several hours are formed on the top of the optical waveguide. To form the directional coupler 4. The control electrode 5 is formed on the front surface via the buffer layer 6, and the layer 10 of 1 is formed on the back surface. Here, the difference from FIG. 1 is that a second layer 11 having the same material and film thickness as the control electrode 5 and having the same shape is formed on the first layer 10. ..

【0017】制御電極5としてはAu,Al,Pt,T
i,Ag等の金属やITO,ZnO等の透明電極を用
い、限定されない。なお、電極を形成する方法として
は、リソグラフィー法を用いてマスクパターンを形成し
た後、イオンビームエッチング法、リアクティブイオン
エッチング法、リアクティブイオンビームエッチング法
等のドライエッチング法、またはエッチング液を用いた
ケミカルなウェットエッチング法を用いてエッチングす
る方法の他、収束イオンビームエッチング法等を用いて
直接形成する方法がある。
As the control electrode 5, Au, Al, Pt, T
A metal such as i or Ag or a transparent electrode such as ITO or ZnO is used, and is not limited. As a method for forming the electrodes, after a mask pattern is formed by using a lithography method, a dry etching method such as an ion beam etching method, a reactive ion etching method, or a reactive ion beam etching method, or an etching solution is used. In addition to the conventional method of etching using a chemical wet etching method, there is a method of forming directly using a focused ion beam etching method or the like.

【0018】[0018]

【発明の効果】本発明の光制御デバイスを適用すること
により、従来の光制御デバイスに比べ、設計通りの特性
を歩留り良く、常に安定して得ることができる。
By applying the light control device of the present invention, the characteristics as designed can be obtained with good yield and always stable, as compared with the conventional light control device.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)第1の発明による光制御デバイスの一例
を示す平面図。 (b)第1の発明による光制御デバイスの一例を示す断
面図。
FIG. 1A is a plan view showing an example of a light control device according to the first invention. (B) Sectional drawing which shows an example of the light control device by 1st invention.

【図2】(a)第2の発明による光制御デバイスの一例
を示す平面図。 (b)第2の発明による光制御デバイスの一例を示す断
面図。
FIG. 2A is a plan view showing an example of a light control device according to a second invention. (B) Sectional drawing which shows an example of the light control device by 2nd invention.

【図3】(a)従来の光制御デバイスの一例を示す平面
図。 (b)従来の光制御デバイスの一例を示す断面図。
FIG. 3A is a plan view showing an example of a conventional light control device. (B) Sectional drawing which shows an example of the conventional light control device.

【符号の説明】[Explanation of symbols]

1 ニオブ酸リチウム結晶基板 2,3 光導波路 4 方向性結合器 5 制御電極 6 バッファ層 7 入射光 8,9 出射光 10 第1の層 11 第2の層 1 Lithium Niobate Crystal Substrate 2,3 Optical Waveguide 4 Directional Coupler 5 Control Electrode 6 Buffer Layer 7 Incident Light 8,9 Emitted Light 10 First Layer 11 Second Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を有する誘電体結晶基板に
形成された光導波路と、前記誘電体結晶基板表面に堆積
されたバッファ層と、該バッファ層の上の前記光導波路
の近傍に設けられた制御電極とを含んで構成される光制
御デバイスにおいて、前記誘電体結晶基板に対する応力
が前記バッファ層と等しくなる第1の層を前記誘電体結
晶基板裏面に設けたことを特徴とする光制御デバイス。
1. An optical waveguide formed on a dielectric crystal substrate having an electro-optical effect, a buffer layer deposited on the surface of the dielectric crystal substrate, and provided on the buffer layer in the vicinity of the optical waveguide. In the light control device including a control electrode, a first layer having a stress on the dielectric crystal substrate equal to that of the buffer layer is provided on the back surface of the dielectric crystal substrate. device.
【請求項2】 請求項1記載の光制御デバイスの裏面に
形成された第1の層の上に、前記制御電極と同一の形状
を有する第2の層を形成させたことを特徴とする光制御
デバイス。
2. The light control device according to claim 1, wherein a second layer having the same shape as the control electrode is formed on the first layer formed on the back surface of the light control device. Control device.
JP3253278A 1991-10-01 1991-10-01 Light control device Expired - Fee Related JP2720654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253278A JP2720654B2 (en) 1991-10-01 1991-10-01 Light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253278A JP2720654B2 (en) 1991-10-01 1991-10-01 Light control device

Publications (2)

Publication Number Publication Date
JPH0593925A true JPH0593925A (en) 1993-04-16
JP2720654B2 JP2720654B2 (en) 1998-03-04

Family

ID=17249062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253278A Expired - Fee Related JP2720654B2 (en) 1991-10-01 1991-10-01 Light control device

Country Status (1)

Country Link
JP (1) JP2720654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057740A1 (en) * 2007-11-01 2009-05-07 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122915A (en) * 1990-09-14 1992-04-23 Nec Corp Optical waveguide device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122915A (en) * 1990-09-14 1992-04-23 Nec Corp Optical waveguide device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057740A1 (en) * 2007-11-01 2009-05-07 Sumitomo Osaka Cement Co., Ltd. Optical modulator
JP2009109929A (en) * 2007-11-01 2009-05-21 Sumitomo Osaka Cement Co Ltd Optical modulator
JP4544541B2 (en) * 2007-11-01 2010-09-15 住友大阪セメント株式会社 Light modulator
US8270777B2 (en) 2007-11-01 2012-09-18 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Also Published As

Publication number Publication date
JP2720654B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
JP2825056B2 (en) Light control device
JP2932742B2 (en) Waveguide type optical device
JP2940141B2 (en) Waveguide type optical control device
JP2720654B2 (en) Light control device
US5050947A (en) Optical waveguide control device employing directional coupler on substrate
JP2565002B2 (en) Signal electrode for optical waveguide device and method of forming the same
JP2613942B2 (en) Waveguide type optical device
JPH0795173B2 (en) Light control device
JP2900569B2 (en) Optical waveguide device
JP2580088Y2 (en) Directional coupler type light control device
JP2903700B2 (en) Waveguide type optical device
JPH05224245A (en) Hybrid optical circuit and matrix optical switch
JP2836174B2 (en) Light control device
JP2800297B2 (en) Light control device
JPH02114243A (en) Optical control device and its manufacture
JPH0720413A (en) Composite optical circuit
JP2606552B2 (en) Light control device
JPH0380228A (en) Light control device
JPH07168213A (en) Light control device
JP2643927B2 (en) Manufacturing method of optical branching / optical coupling circuit
JP2912039B2 (en) Light control device
JPS60182424A (en) Optical control circuit
JPH0743485B2 (en) Light control device
JPH0743487B2 (en) Light control device
JPH05333296A (en) Optical control element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees