JPH04122915A - Optical waveguide device - Google Patents

Optical waveguide device

Info

Publication number
JPH04122915A
JPH04122915A JP24243890A JP24243890A JPH04122915A JP H04122915 A JPH04122915 A JP H04122915A JP 24243890 A JP24243890 A JP 24243890A JP 24243890 A JP24243890 A JP 24243890A JP H04122915 A JPH04122915 A JP H04122915A
Authority
JP
Japan
Prior art keywords
buffer layer
optical waveguide
optical
crystal substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24243890A
Other languages
Japanese (ja)
Other versions
JP2900569B2 (en
Inventor
Kazuhide Okawara
大川原 一秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24243890A priority Critical patent/JP2900569B2/en
Publication of JPH04122915A publication Critical patent/JPH04122915A/en
Application granted granted Critical
Publication of JP2900569B2 publication Critical patent/JP2900569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent irregular strain from being applied to an optical waveguide which is formed on the surface of a ferroelectric crystal substrate by forming the same dielectric film with a buffer layer even on the reverse surface of the ferro-electric crystal substrate under the same conditions as the buffer layers. CONSTITUTION:On the surface of the lithium niobate crystal substrate 10, titanium (Ti) is diffused at 900 - 1,100 deg.C for several hours to form optical waveguides 11 and 12 which are about 3 - 10 mum deep, and both the optical waveguides 11 and 12 are put close to several mum at the center part of the substrate 10 to constitute a directional coupler 13. On the optical waveguides 11 and 12, electrodes 15 are formed across the buffer layer 13 so as to prevent light absorption by the electrodes. On the reverse surface of the substrate 10, on the other hand, the same dielectric film 16 with the buffer layer 14 is formed under the same conditions as the buffer layer 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発胡は、電気光学効果を有する強誘電体結晶基板に形
成された光導波路に係わり、特に光の変調、光路切換え
等に用いられる先導波路デバイスに関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to optical waveguides formed on ferroelectric crystal substrates having electro-optic effects, and in particular to optical waveguides used for optical modulation, optical path switching, etc. Regarding wave path devices.

〔従来の技術〕[Conventional technology]

光通信システムの実用化が進むにつれ、さらに大容量や
多機能をもつ高度のシステムが求められており、より高
速の光信号の発生や光伝送路の切換え、交換等の新たな
機能の付加が必要とされている。
As the practical use of optical communication systems progresses, advanced systems with higher capacity and multiple functions are required, and new functions such as generation of faster optical signals and switching and switching of optical transmission lines are required. is necessary.

このような要求を満足するために基板表面に形成した光
導波路により構成した導波型の光変調器や光スィッチの
開発が進められている。これらのデバイスは、小型、高
速、高効率、多素子の集積化が可能という利点がある。
In order to satisfy such requirements, development of waveguide type optical modulators and optical switches constructed by optical waveguides formed on the surface of a substrate is underway. These devices have the advantages of being small, fast, highly efficient, and capable of integrating multiple elements.

特にニオブ酸リチウム(LiNbO2)結晶等の強誘電
体材料を用いたものは、光吸収が小さく低損失であるこ
と、大きな電気光学効果を有しているため高効率である
等の特徴があり、従来からも方向性結合型光変調器や光
スィッチ、全反射型光スイッチ等の種々の方式の光導波
路デバイスが報告されている。
In particular, those using ferroelectric materials such as lithium niobate (LiNbO2) crystals have the characteristics of low light absorption, low loss, and high efficiency due to their large electro-optic effect. Various types of optical waveguide devices such as directional coupling type optical modulators, optical switches, and total internal reflection type optical switches have been reported.

このような光導波路デバイスを実際の光通信システムに
適用する場合、低損失、高速性等の基本的性能と同時に
動作の安定性や長期的信頼性、製造の容易性や安定性が
実用上不可欠である。
When applying such optical waveguide devices to actual optical communication systems, basic performance such as low loss and high speed, as well as operational stability, long-term reliability, ease of manufacture, and stability are practically essential. It is.

第2図(A)、(B)に従来の先導波路デバイスの一例
として方向性結合型光スィッチの平面図および断面図を
示す。第2図(A)においてZ軸に垂直に切り出したニ
オブ酸リチウム結晶基板1の表面にチタンを拡散して屈
折率を基板よりも大きくした帯状の光導波路2および3
が形成されており、この光導波路2および3は基板1の
中央部で互いに数μm程度まで接近し、方向性結合器4
を構成している。また、方向性結合器4を構成する光導
波路2.3上には、電極による光吸収を防ぐためのバッ
ファ層6を介して電極5が形成されている。第2図(B
)は方向性結合器4の部分の光導波路2.3に垂直な断
面図を示している。
FIGS. 2A and 2B show a plan view and a cross-sectional view of a directional coupling type optical switch as an example of a conventional guided waveguide device. In FIG. 2(A), strip-shaped optical waveguides 2 and 3 are made by diffusing titanium onto the surface of a lithium niobate crystal substrate 1 cut perpendicularly to the Z-axis so that the refractive index is larger than that of the substrate.
The optical waveguides 2 and 3 are close to each other by several μm in the center of the substrate 1, and the directional coupler 4
It consists of Further, on the optical waveguide 2.3 constituting the directional coupler 4, an electrode 5 is formed with a buffer layer 6 interposed therebetween for preventing light absorption by the electrode. Figure 2 (B
) shows a sectional view perpendicular to the optical waveguide 2.3 of the directional coupler 4 part.

第2図(A)において、光導波路2に入射した入射光7
は方向性結合器4の部分を伝搬するにしたがって近接し
た光導波路3へ徐々に光エネルギが移り、方向性結合器
4を通過した後は、先導波路3にほぼ100%エネルギ
が移って出射光8となる。一方、電極5に電圧を印加し
た場合、電気光学効果により電極5下の光導波路2.3
の屈折率が変化し、光導波路2.3を伝搬する導波モー
ドの間に位相速度の不整合が生じ、両者の間の結合状態
が変化し、出射光9が射出することになる。
In FIG. 2(A), incident light 7 that has entered the optical waveguide 2
As it propagates through the directional coupler 4, the optical energy gradually transfers to the adjacent optical waveguide 3, and after passing through the directional coupler 4, almost 100% of the energy is transferred to the leading waveguide 3 and the output light It becomes 8. On the other hand, when a voltage is applied to the electrode 5, the optical waveguide 2.3 under the electrode 5 is
The refractive index of the optical waveguide 2.3 changes, a phase velocity mismatch occurs between the waveguide modes propagating in the optical waveguide 2.3, the coupling state between them changes, and the output light 9 is emitted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の光導波路デバイスでは、強誘電体結晶(
例えばニオブ酸リチウム)基板1上に金属(例えばチタ
ン)を熱拡散して、光導波路型の方向性結合器4を形成
し、電極5による光の吸収を防ぐためバッファ層6を形
成する際、先導波路2.3での光の閉じ込めを強くする
ために、光導波路2.3よりも屈折率のはるかに小さい
誘電体として熱膨張係数の小さな二酸化ケイ素(αS]
02−4.3 X 10−6)が用いられている。その
ため、基板1としてニオブ酸リチウムを用いた場合は、
この基板1の熱膨張係数がαLiNb○315.4 X
 10−6のため、バッファ層6である二酸化ケイ素の
熱膨張係数(αSi○2−4.3X 10−6)との差
が大きい。このため、二酸化ケイ素の成膜時あるいは、
成膜後に熱が加わることにより、方向性結合器4の先導
波路部分に歪が加わり、2本の光導波路2.3を伝搬す
る導波モードの間に位相速度の不整合が生じたり、偏光
状態が異なったりするようになり、2本の先導波路2.
3間の結合状態が変化することになる。そのため、バッ
ファ層6形成後の光導波路デバイスの光学特性がバッフ
ァ層6形成前の特性と大きく異なってしまい、光学特性
の安定な光導波路デバイスが得られないという問題があ
った。
However, in conventional optical waveguide devices, ferroelectric crystals (
When forming an optical waveguide type directional coupler 4 by thermally diffusing metal (e.g., titanium) on a substrate 1 (e.g., lithium niobate), and forming a buffer layer 6 to prevent absorption of light by the electrodes 5, In order to strengthen the light confinement in the leading waveguide 2.3, silicon dioxide (αS), which has a small thermal expansion coefficient, is used as a dielectric material whose refractive index is much smaller than that of the optical waveguide 2.3.
02-4.3 x 10-6) is used. Therefore, when lithium niobate is used as the substrate 1,
The thermal expansion coefficient of this substrate 1 is αLiNb○315.4
10-6, there is a large difference from the coefficient of thermal expansion of silicon dioxide (αSi○2-4.3X 10-6) which is the buffer layer 6. For this reason, when forming a silicon dioxide film or
When heat is applied after film formation, distortion is added to the leading waveguide portion of the directional coupler 4, causing phase velocity mismatch between the waveguide modes propagating in the two optical waveguides 2.3, and polarization. The state becomes different, and the two leading waveguides 2.
The bonding state between the three will change. Therefore, the optical characteristics of the optical waveguide device after the formation of the buffer layer 6 are significantly different from the characteristics before the formation of the buffer layer 6, resulting in a problem that an optical waveguide device with stable optical characteristics cannot be obtained.

本発明の目的は上述した問題に鑑みなされたもので、安
定した光学特性を有する光導波路デバイスを提供するに
ある。
An object of the present invention was made in view of the above-mentioned problems, and is to provide an optical waveguide device having stable optical characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

前記した目的を達成するために、本発明は、電気光学効
果を有する強誘電体結晶基板の表面に形成された光導波
路と、この光導波路の近傍に誘電体から成るバッファ層
を介して設けられかつ電界を制御することによって前記
先導波路の屈折率を変化させる電極とを含んで構成され
る光導波路デバイスにおいて、強誘電体結晶基板の裏面
にもバッファ層と同一の誘電体膜をバッファ層と同一条
件で形成したことを特徴とする。
In order to achieve the above object, the present invention includes an optical waveguide formed on the surface of a ferroelectric crystal substrate having an electro-optic effect, and a buffer layer made of a dielectric material provided in the vicinity of the optical waveguide. and an electrode that changes the refractive index of the guiding waveguide by controlling an electric field, the same dielectric film as the buffer layer is also provided on the back surface of the ferroelectric crystal substrate as a buffer layer. It is characterized by being formed under the same conditions.

〔作用〕[Effect]

このように本発明によれば、強誘電体結晶基板の裏面に
もバッファ層と同一の誘電体膜をバッファ層と同一条件
で形成したので、バッファ層形成時に強誘電体結晶基板
の表面に生じる強誘電体結晶基板とバッファ層の熱膨張
係数差による応力と同じ大きさの応力が強誘電体結晶基
板の裏面にも生じる。このため、強誘電体結晶基板の表
裏に加わる応力が均衡し、基板を歪ませることがない。
As described above, according to the present invention, the same dielectric film as the buffer layer is formed on the back surface of the ferroelectric crystal substrate under the same conditions as the buffer layer. A stress of the same magnitude as the stress due to the difference in thermal expansion coefficient between the ferroelectric crystal substrate and the buffer layer is also generated on the back surface of the ferroelectric crystal substrate. Therefore, the stress applied to the front and back surfaces of the ferroelectric crystal substrate is balanced, and the substrate is not distorted.

したがって、強誘電体結晶基板の表面に形成された光導
波路に不均一な歪が加わることがないので、光学特性の
安定した光導波路デバイスが得られる。
Therefore, since non-uniform strain is not applied to the optical waveguide formed on the surface of the ferroelectric crystal substrate, an optical waveguide device with stable optical characteristics can be obtained.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(A)、(B)は本発明に係る先導波路デバイス
の一実施例である方向性結合器型光スイッチの平面図お
よび断面図である。ニオブ酸リチウム(LiNbO2)
結晶基板10の表面にチタン(T1)を900〜110
0°C程度で数時間熱拡散して、深さ3〜10μm程度
の光導波路11および12が形成されており、基板10
の中央部て両光導波路11.12は互いに数μmまで近
接して方向性結合器13を構成している。また、方向性
結合器13を構成する光導波路11.12上には、電極
による光吸収を防ぐためバッファ層14を介して電極1
5が形成されている。
FIGS. 1(A) and 1(B) are a plan view and a sectional view of a directional coupler type optical switch, which is an embodiment of the guiding waveguide device according to the present invention. Lithium niobate (LiNbO2)
Titanium (T1) is applied on the surface of the crystal substrate 10 from 900 to 110%.
Optical waveguides 11 and 12 with a depth of about 3 to 10 μm are formed by thermal diffusion at about 0°C for several hours, and the substrate 10
The optical waveguides 11 and 12 are located close to each other within several μm to form a directional coupler 13 at the center. Furthermore, an electrode 1 is placed on the optical waveguide 11.12 constituting the directional coupler 13 via a buffer layer 14 to prevent light absorption by the electrode.
5 is formed.

一方、ニオブ酸リチウム結晶基板10の裏面には、バッ
ファ層14と同一の誘電体膜16がバッファ層14と同
一条件で形成されており、材料としてはニオブ酸リチウ
ム結晶基板10よりも屈折率の低い二酸化ケイ素(S1
02)が用いられている。誘電体膜16の成膜は、バッ
ファ層14と同一成膜条件で行わなければならないので
、誘電体膜16とバッファ層14を同時に成膜する手段
を用いてもよい。
On the other hand, on the back surface of the lithium niobate crystal substrate 10, the same dielectric film 16 as the buffer layer 14 is formed under the same conditions as the buffer layer 14, and the material has a refractive index lower than that of the lithium niobate crystal substrate 10. Low silicon dioxide (S1
02) is used. Since the dielectric film 16 must be formed under the same film forming conditions as the buffer layer 14, a method of forming the dielectric film 16 and the buffer layer 14 at the same time may be used.

今、本方向性結合型光スィッチの動作を説明するに、光
導波路11に入射した入射光17は方向性結合器13の
部分を伝搬するにしたがって近接9した光導波路12へ
徐々に光エネルギが移り、方向性結合器13を通過した
後は、先導波路12にほぼ100%エネルギが移って出
射光18となる。一方、電極15に電圧を印加した場合
、電気光学効果により電極】5下の光導波路11.12
の屈折率が変化し、光導波路11.12を伝搬する導波
モードの間に位相速度の不整合が生じ、両者の間の結合
状態が変化し、出射光19が射出することになる。
Now, to explain the operation of the present directional coupling type optical switch, as the incident light 17 that has entered the optical waveguide 11 propagates through the directional coupler 13, the optical energy is gradually transferred to the optical waveguide 12 that is close to it. After passing through the directional coupler 13, almost 100% of the energy is transferred to the leading waveguide 12 and becomes the emitted light 18. On the other hand, when a voltage is applied to the electrode 15, the electro-optical effect causes the optical waveguides 11 and 12 below the electrode]
The refractive index of the optical waveguides 11 and 12 changes, phase velocity mismatch occurs between the waveguide modes propagating in the optical waveguides 11 and 12, the coupling state between them changes, and the output light 19 is emitted.

〔発明の効果〕〔Effect of the invention〕

以上説すしたように本発明によれば、電気光学効果を有
する強誘電体結晶基板表面に形成された光導波路と、こ
の光導波路の近傍に誘電体から成るバッファ層を介して
設けられた電極とを含んで構成された光導波路デバイス
において、強誘電体結晶基板の裏面にもバッファ層と同
一の誘電体膜をバッファ層と同一条件で形成したので、
バッファ層形成時に強誘電体結晶基板の表面に生じる強
誘電体結晶基板とバッファ層の熱膨張係数差による応力
と同じ大きさの応力が強誘電体結晶基板の裏面にも生じ
る。このため、強誘電体結晶基板の表裏に加わる応力が
均衡し、基板を歪ませることがない。したがって、強誘
電体結晶基板の表面に形成された光導波路に不均一な歪
が加わることがなし)ので、光学特性の安定した光導波
路デバイスが得られるという効果を奏する。特に、方向
性結合型の光導波路デバイスにおいてその効果は顕著で
あり、方向性結合型光スィッチにおいて、歪により生ず
る分岐比変動を50%から5%以下に低減できた。
As explained above, according to the present invention, there is provided an optical waveguide formed on the surface of a ferroelectric crystal substrate having an electro-optic effect, and an electrode provided in the vicinity of the optical waveguide via a buffer layer made of a dielectric material. In the optical waveguide device configured with
Stress of the same magnitude as the stress generated on the front surface of the ferroelectric crystal substrate due to the difference in coefficient of thermal expansion between the ferroelectric crystal substrate and the buffer layer during formation of the buffer layer is also generated on the back surface of the ferroelectric crystal substrate. Therefore, the stress applied to the front and back surfaces of the ferroelectric crystal substrate is balanced, and the substrate is not distorted. Therefore, since no non-uniform strain is applied to the optical waveguide formed on the surface of the ferroelectric crystal substrate, an optical waveguide device with stable optical characteristics can be obtained. In particular, the effect is remarkable in a directionally coupled optical waveguide device, and in a directionally coupled optical switch, the variation in branching ratio caused by strain can be reduced from 50% to 5% or less.

【図面の簡単な説明】 第1図(A)、(B)は本発明に係る光導波路デバイス
の一実施例を示す平面図および断面図、第2図(A)、
(B)は従来の光導波路デバイスの一例を示す平面図お
よび断面図である。 10・・・・・ニオブ酸リチウム結晶基板、11.12
・・・・・・光導波路、 13・・・・・・方向性結合器、14・・・・・・バッ
ファ層、15・・・・・・電極、16・・・・・・誘電
体膜。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(A) and 1(B) are a plan view and a sectional view showing an embodiment of an optical waveguide device according to the present invention, FIG. 2(A),
(B) is a plan view and a cross-sectional view showing an example of a conventional optical waveguide device. 10...Lithium niobate crystal substrate, 11.12
...... Optical waveguide, 13 ... Directional coupler, 14 ... Buffer layer, 15 ... Electrode, 16 ... Dielectric film .

Claims (1)

【特許請求の範囲】[Claims]  電気光学効果を有する強誘電体結晶基板の表面に形成
された光導波路と、この光導波路の近傍に誘電体から成
るバッファ層を介して設けられかつ電界を制御すること
によって前記光導波路の屈折率を変化させる電極とを含
んで構成される光導波路デバイスにおいて、前記強誘電
体結晶基板の裏面にも前記バッファ層と同一の誘電体膜
をバッファ層と同一条件で形成したことを特徴とする光
導波路デバイス。
An optical waveguide is formed on the surface of a ferroelectric crystal substrate having an electro-optic effect, and a buffer layer made of a dielectric is provided in the vicinity of the optical waveguide, and the refractive index of the optical waveguide is changed by controlling the electric field. An optical waveguide device comprising an electrode for changing the ferroelectric crystal substrate, wherein the same dielectric film as the buffer layer is formed on the back surface of the ferroelectric crystal substrate under the same conditions as the buffer layer. wave path device.
JP24243890A 1990-09-14 1990-09-14 Optical waveguide device Expired - Lifetime JP2900569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24243890A JP2900569B2 (en) 1990-09-14 1990-09-14 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24243890A JP2900569B2 (en) 1990-09-14 1990-09-14 Optical waveguide device

Publications (2)

Publication Number Publication Date
JPH04122915A true JPH04122915A (en) 1992-04-23
JP2900569B2 JP2900569B2 (en) 1999-06-02

Family

ID=17089093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24243890A Expired - Lifetime JP2900569B2 (en) 1990-09-14 1990-09-14 Optical waveguide device

Country Status (1)

Country Link
JP (1) JP2900569B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593925A (en) * 1991-10-01 1993-04-16 Nec Corp Optical control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593925A (en) * 1991-10-01 1993-04-16 Nec Corp Optical control device

Also Published As

Publication number Publication date
JP2900569B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JPH04328720A (en) Waveguide type optical device
CN212009207U (en) Polarization mode converter
JPH04172316A (en) Wave guide type light control device
JP5467414B2 (en) Optical functional waveguide
JPH04122915A (en) Optical waveguide device
JPH0721597B2 (en) Optical switch
JP2581486B2 (en) Optical waveguide device and method of manufacturing the same
JP2613942B2 (en) Waveguide type optical device
JP2635986B2 (en) Optical waveguide switch
JP2606552B2 (en) Light control device
JPH02114243A (en) Optical control device and its manufacture
JPH01201628A (en) Optical switch
JP2998373B2 (en) Light control circuit
JP2993192B2 (en) Light control circuit
JPH0566428A (en) Optical control device
JP2720654B2 (en) Light control device
JPH0351826A (en) Optical control device
JPH01197724A (en) Optical waveguide switch
JP2912039B2 (en) Light control device
JPS62258419A (en) Optical control device
JPH01252929A (en) Optical control device
JPS5936249B2 (en) light switch
JPH03202817A (en) Light control device
JPS6370827A (en) Production of optical control device
JPS6283731A (en) Optical switch

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12