JPS62258419A - Optical control device - Google Patents

Optical control device

Info

Publication number
JPS62258419A
JPS62258419A JP10242086A JP10242086A JPS62258419A JP S62258419 A JPS62258419 A JP S62258419A JP 10242086 A JP10242086 A JP 10242086A JP 10242086 A JP10242086 A JP 10242086A JP S62258419 A JPS62258419 A JP S62258419A
Authority
JP
Japan
Prior art keywords
optical
substrate
electrode
refractive index
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10242086A
Other languages
Japanese (ja)
Inventor
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10242086A priority Critical patent/JPS62258419A/en
Publication of JPS62258419A publication Critical patent/JPS62258419A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To perform stable operation even when a DC voltage is impressed by diffusing metal ions in an optical waveguide under an electrode and decreasing its refractive index when the electrode is installed on the optical waveguide. CONSTITUTION:Optical waveguides 12 and 13 of about 3-10mum in depth are formed on a lithium niobate crystal substrate 1 by the heat diffusion of Ti and both optical waveguides 12 and 13 come closer to each other at the center part of the substrate 1 to form a directional coupler 14. In this case, Mg, however, is diffused at part 10 of the surface of the substrate 1 where the coupler 14 is formed up to an area of about 1-2mum in depth and the part 10 is lower in refractive index than the remaining part where no Mg is diffused. Consequently, the leak quantity of the energy of a light wave propagated in the optical waveguides to the surface of the substrate is reduced to prevent the light from being absorbed by a control electrode 5 for a TM mode. Thus, no buffer film is used, so unstableness due to a buffer film and deterioration with time are eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光波の変調、光路切換え等を行なう光制御デバ
イスに関し、特に基板中に設けた光導波路を用い°C制
御を行なう導波形の光制御デバイスに関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an optical control device that modulates light waves, switches optical paths, etc., and particularly relates to a waveguide type optical device that performs °C control using an optical waveguide provided in a substrate. Regarding control devices.

(従来技術) 光通信システムの実用化が進むにつれ、さらに大容量や
多機能をもつ高度のシステムが求められている。より高
速の光信号の発生や光伝送路の切換え、交換等の新たな
機能の付加が必要とされている。現在の実用システムで
は光信号は直接半導体レーザや発光ダイオードの注入電
流を変調することによっC得られているが、直接変調で
は緩和振動等の効果のため数α1z以上の高速変調が難
しいこと、波長変動が発生するためコヒーレント光伝送
方式には適用が難しいこと等の欠点がある。
(Prior Art) As the practical use of optical communication systems progresses, advanced systems with even higher capacity and multiple functions are required. There is a need to add new functions such as generation of faster optical signals and switching and exchanging optical transmission lines. In current practical systems, optical signals are obtained by directly modulating the injected current of a semiconductor laser or light emitting diode, but with direct modulation, it is difficult to achieve high-speed modulation of several α1z or more due to effects such as relaxation oscillation. Coherent optical transmission methods have drawbacks such as difficulty in application due to wavelength fluctuations.

これを解決する手段としては、外部光変調器を使用する
方法があり、特に基板中に形成した光導波路により構成
した導波形の光変調器は、小形、高効率、高速という特
長がある。一方、光伝送路の切換えやネットワークの交
換機能を得る手段としては光スィッチが使用される。現
在実用されている光スィッチは、プリズム、ミラー、フ
ァイバー等を機械的に移動させるものであり、低速であ
ること、信頼性が不十分、形状が大きくマ) IJクス
化に不適等の欠点がある。これを解決する手段として開
発が進められているものはやはり光導波路を用いた導波
形の光スィッチであり、高速、多素子の集積化が可能、
高信頼等の特長がある。特にニオブ酸リチウム(LiN
b03)結晶等の強誘電体材料を用いたものは、光吸収
が小さく低損失であること、大きな電気光学効果を有し
ているため高効率である等の特長があり、従来からも方
向性結合形光変調器またはスイッチ、全反射形光スイッ
チ等の種々の方式の光制御素子が報告されている。
One way to solve this problem is to use an external optical modulator. In particular, a waveguide type optical modulator constructed from an optical waveguide formed in a substrate has the advantage of being small, highly efficient, and fast. On the other hand, an optical switch is used as a means for switching optical transmission lines and providing network switching functions. Optical switches currently in use mechanically move prisms, mirrors, fibers, etc., and have drawbacks such as slow speed, insufficient reliability, and large size. be. What is being developed as a means to solve this problem is a waveguide type optical switch using an optical waveguide, which is capable of high speed and multi-element integration.
It has features such as high reliability. Especially lithium niobate (LiN)
b03) Materials using ferroelectric materials such as crystals have features such as low light absorption and low loss, and high efficiency due to large electro-optic effects, and have traditionally been used for directivity. Various types of optical control elements such as coupled optical modulators or switches and total internal reflection optical switches have been reported.

このような導波形の光制御素子を実際の光通信システム
に適用する場合、低損失、高速性等の基本的性能と同時
に特に、動作の安定性や長期的な信頼性が実用上不OT
欠である。
When applying such a waveguide type optical control element to an actual optical communication system, at the same time as basic performance such as low loss and high speed, operational stability and long-term reliability are particularly important.
It is lacking.

(発明が解決しようとする問題点) しかし、従来の導波形の光制御デバイスでは、安定性、
信頼性に関しては十分な特性は得られていない。第2図
に従来の光制仰デバイスの一例とし′C方向性結合型光
スイッチの平面図(a)及び側面図(b)を示す。第2
図(alにおいCニオブ酸リチウム結晶基板1の上にチ
タンを拡散して屈折率を基板よりも太きくし−c形成し
た帯状の光導波路2及び3が形成されており、光導波路
2及び3は基板の中央部で互いに数μm程度まで近接し
、方向性結合器4を構成している。また、方向性結合器
4を構成する光導波路上にはバッファ膜6を介し′C制
御電極5が形成されている。第2図(blは光導波路2
にそった断面図を示している。
(Problems to be solved by the invention) However, in conventional waveguide type optical control devices, stability and
Sufficient characteristics regarding reliability have not been obtained. FIG. 2 shows a plan view (a) and a side view (b) of a directional coupling type optical switch as an example of a conventional optical control device. Second
In Figure (al), band-shaped optical waveguides 2 and 3 are formed by diffusing titanium on a C lithium niobate crystal substrate 1 to make the refractive index thicker than that of the substrate. They are close to each other by several micrometers in the center of the substrate, and constitute a directional coupler 4. In addition, a 'C control electrode 5 is provided on the optical waveguide constituting the directional coupler 4 via a buffer film 6. Figure 2 (bl is the optical waveguide 2
A cross-sectional view along the line is shown.

第2図において、光導波路2に入射した入射光7は方向
性結合器4の部分を伝搬するに従って近接した光導波路
3へ除々に光エネルギーが移;バ方向性結合器4を通過
後は光導波路3にほぼ100チエネルギーが移って出射
光8となる。一方、制卸電極5に電圧を印加した場合、
電気光学効果により電極下の先導波路の屈折率が変化し
、光導波路2と3を伝搬する導波モードの間に位相速度
の不整合が生じ、両者の間の結合状態は変化する。
In FIG. 2, as the incident light 7 that has entered the optical waveguide 2 propagates through the directional coupler 4, its optical energy gradually transfers to the adjacent optical waveguide 3; Approximately 100 degrees of energy is transferred to the wave path 3 and becomes the emitted light 8. On the other hand, when a voltage is applied to the control electrode 5,
The refractive index of the leading waveguide under the electrode changes due to the electro-optic effect, causing phase velocity mismatch between the waveguide modes propagating in the optical waveguides 2 and 3, and the coupling state between them changes.

印加電圧を上昇するに従って先導波路2から3への光エ
ネルギーの移行量は減少し、ある電圧値Vsでは、入射
光7は方向性結合器4を通過後に光エネルギーの1oo
q6が光導波路2にもどってしまう状態となる。すなわ
ち、制卸電極5への印加電圧の有無により入射光7は光
導波路2からの出射光9又は光導波路3からの出射光8
となる。
As the applied voltage increases, the amount of optical energy transferred from the leading waveguide 2 to 3 decreases, and at a certain voltage value Vs, the incident light 7 has 1oo of optical energy after passing through the directional coupler 4.
q6 returns to the optical waveguide 2. That is, depending on the presence or absence of the voltage applied to the control electrode 5, the incident light 7 becomes the output light 9 from the optical waveguide 2 or the output light 8 from the optical waveguide 3.
becomes.

ニオブ酸リチウム結晶を使った導波形の光制御デバイス
では、最も大きな電気光学効果が得られC低電圧動作が
期待でき、しかも、ファイバとの低損失結合が容易なZ
軸に垂直に切り出した基板すなわち、Z板と基板垂直方
向の偏波モードすなわちTMモードの組合せが最もよく
用いられている。このような組合せでは光導波路上に電
極を設置する場合、従来は電極による光吸収を防ぐため
に第2図に示すようなバッファ膜6が設置されている。
Waveguide-type optical control devices using lithium niobate crystals have the greatest electro-optic effect and can be expected to operate at low voltages, and are easy to connect with fibers with low loss.
A combination of a substrate cut perpendicular to the axis, that is, a Z plate, and a polarization mode in the direction perpendicular to the substrate, that is, TM mode, is most often used. In such a combination, when an electrode is installed on the optical waveguide, a buffer film 6 as shown in FIG. 2 is conventionally installed to prevent light absorption by the electrode.

上41jバッファ膜6は、導波路中の光エネルギーの電
極へのしみ出しを除き、かつニオブ酸リチウム結晶中に
電界を有効に印加するために、ニオブ酸リチウムよりも
屈折率が小さく、かつ、絶縁性があって、光吸収のない
透明な材料、例えば二酸化ケイ素(S 1o2)膜や酸
化アルミ(At20s )膜等が使われる。このような
バッファ膜を設置する場合、その絶縁性の良否かデバイ
ス安定性に大きく影響することがよく知られている。す
なわち、バッファ膜の絶縁性が不十分で比抵抗が小さい
場合DC電圧を印加したとき、バッファ膜中な電荷がド
リフトし、時間とともにバッファ膜と電極及び結晶との
界面に電荷が蓄積し、結晶中に印加される電圧が小さく
なり、スイッチング特性が変化する。このようなりC電
圧を印加したときの動作特性の経時的な変化は、光スィ
ッチの場合はクロストークの発生やスイッチ電圧の変動
を招き、光変調器の場合はバイアス電圧値のドリフトを
招く等の導波形光制御デバイスを実際のシステムに適用
する上での大きな障害となっている。バッファ膜の高抵
抗化のためにそのコーティング方法の改良や、コーテイ
ング後の酸素アニールによる高品質化等も試みられてい
るが十分な安定性や長期的な信頼性はイUられていない
The upper 41j buffer film 6 has a refractive index smaller than that of lithium niobate in order to prevent optical energy in the waveguide from seeping into the electrode and to effectively apply an electric field to the lithium niobate crystal, and A transparent material that is insulating and does not absorb light, such as a silicon dioxide (S 1o2) film or an aluminum oxide (At20s) film, is used. It is well known that when such a buffer film is provided, the quality of its insulation greatly affects device stability. In other words, when the buffer film has insufficient insulation properties and low resistivity, when a DC voltage is applied, the charge in the buffer film drifts, and over time, the charge accumulates at the interface between the buffer film, the electrode, and the crystal, and the crystal The voltage applied thereto becomes smaller and the switching characteristics change. In the case of optical switches, this change in operating characteristics over time when applying the C voltage causes crosstalk and fluctuations in the switch voltage, and in the case of optical modulators, it causes drift in the bias voltage value, etc. This is a major obstacle in applying waveguided optical control devices to actual systems. Attempts have been made to improve the coating method and improve quality by oxygen annealing after coating in order to increase the resistance of the buffer film, but sufficient stability and long-term reliability have not been achieved.

本発明の目的は上述の従来の光制御デバイスの欠点を除
き、l) C電圧を印加した場合にも安定な動作が得ら
れる光制御デバイスを提供することにある。
An object of the present invention is to provide an optical control device which eliminates the drawbacks of the conventional optical control devices described above and which can operate stably even when a voltage of 1) C is applied.

(問題点を解決するための手段) 本発明による光制御デバイスは、結晶基板中に金属イオ
ンを拡散して形成された光導波路と該光導波路の上部に
設置された電極とによって構成され、前記電極下の光導
波路は前記結晶基板の屈折率を増加させる第1の金属イ
オンと前記結晶基板の屈折率を減少させる第2の金属イ
オンを拡散して形成され、前記第2の金属イオンの拡散
深さは前記第1の金属イオンの拡散深さよりも小さくか
つ、前記電極は直接前記結晶基板に接している。
(Means for Solving the Problems) An optical control device according to the present invention is constituted by an optical waveguide formed by diffusing metal ions into a crystal substrate, and an electrode installed on the upper part of the optical waveguide. The optical waveguide under the electrode is formed by diffusing first metal ions that increase the refractive index of the crystal substrate and second metal ions that decrease the refractive index of the crystal substrate, and the diffusion of the second metal ions The depth is smaller than the diffusion depth of the first metal ion, and the electrode is in direct contact with the crystal substrate.

(作 用) 本発明が従来と異なる大きな点は、バッファ膜を用いな
いことである。本発明では、通常用いる基板の屈折率を
増加させる第1の金属イオンを拡散させて光導波路を形
成した後、その上部の電極が設置される部分にさらに基
板の屈折率を減少させる第2の金属イオンを拡散させる
ことによって電極下の屈折率を下げ、光導波路中を伝搬
する光波のエネルギーの基板表向へのしみ出し量を減少
させて’I’Mモートの電極による光吸収を防いでいる
。このように本発明で1jバツフア膜を用いないので従
来のようなバッファ膜に起因する不安定性や経時的な劣
化を除くことができる。
(Function) The major difference between the present invention and the conventional method is that a buffer film is not used. In the present invention, after forming an optical waveguide by diffusing a first metal ion that increases the refractive index of a substrate that is normally used, a second metal ion that further decreases the refractive index of the substrate is added to the upper part where an electrode is installed. By diffusing metal ions, the refractive index under the electrode is lowered, reducing the amount of energy of light waves propagating in the optical waveguide seeping out to the substrate surface, and preventing light absorption by the electrodes of the 'I'M mote. There is. As described above, since the present invention does not use a 1j buffer film, it is possible to eliminate instability and deterioration over time caused by conventional buffer films.

(実施例) 第1図は本発明による先制a+++デバイスの一実施例
である方向性結合型、光スィッチの平面図(a)及び側
面図(blを示す。第2図の例と同様に二オフ酸リチウ
ム結晶基板1の上に第1の金属イオンであるチタンを9
00〜1100℃程度で数時間熱拡散して形成された深
さ3〜10μm程度の光導波路12及び13が設置され
、基板の中央部で両光導波路は互いに数μmまで近接し
て方向性結合器14を構成している。但し本実施例にお
いては方向性結合器14が形成されている基板表面の一
部分10には深さ1〜2μm程度の領域まで第2の金属
イオンであるマグネシウムが拡散されCおり、その部分
10の屈折率はマグネシウムが拡散されていない部分に
比べC低くなっている。マグネシウムの拡散は、先ず光
導波路12.13を形成後、酸化マグネシウムをスパッ
ク等の方法で基板表面にコーティングし、8000〜1
000℃で熱拡散すること(二よってなされる。このよ
うにマグネシウムを第2の金属イオンとしで使用した場
合、マグネシウムの拡散速度はチタンの拡散速度に比べ
て十分大きく、また、本発明ではマグネシウムの拡散深
さはチタンの拡散深さに比べて十分小さくてよいので、
マグネシウム拡散の際に、既にチタンを拡散して形成さ
れている光導波路はほとんど影普を受けないという特長
がある。なお、マグネシウムを拡散した場合のニオブ酸
リチウム結晶基板の屈折率が減少することはジャーナル
・オブ・アプライド・フィジックス(J 、Appl 
、Phys・)、第49巻、3150頁に述べられてい
る。
(Example) FIG. 1 shows a plan view (a) and a side view (bl) of a directional coupling type optical switch which is an example of a preemptive a+++ device according to the present invention. Titanium, which is the first metal ion, is placed on the lithium oxide crystal substrate 1.
Optical waveguides 12 and 13 with a depth of about 3 to 10 μm formed by thermal diffusion at about 00 to 1100°C for several hours are installed, and both optical waveguides are brought close to each other within a few μm in the center of the substrate for directional coupling. It constitutes a container 14. However, in this embodiment, magnesium, which is the second metal ion, is diffused into the part 10 of the substrate surface where the directional coupler 14 is formed to a depth of about 1 to 2 μm, and the part 10 is The refractive index C is lower than that of the part where magnesium is not diffused. For the diffusion of magnesium, first, after forming the optical waveguide 12.13, magnesium oxide is coated on the substrate surface by a method such as spacing.
When magnesium is used as the second metal ion, the diffusion rate of magnesium is sufficiently higher than that of titanium. The diffusion depth of titanium may be sufficiently smaller than that of titanium, so
An advantage of magnesium diffusion is that the optical waveguide, which has already been formed by diffusing titanium, is hardly affected. Note that the refractive index of a lithium niobate crystal substrate decreases when magnesium is diffused, as reported in the Journal of Applied Physics (J, Appl.
Phys.), Vol. 49, p. 3150.

本実施例の方向性結合型光スィッチの基本的なスイッチ
動作は、第2図の従来の方向性結合型光スィッチと同様
であり入射″lt、17は制御電極5への印加電圧の有
無により出射光19又は18となる。但し、本実施例に
おいては、上述のようにバッファ膜6は設置されておら
ず、かわりに制御室4愼5の下の光導波路12及び13
の表面にはマグネシウムか拡散されて屈折率が減少して
いる。そこで本実施例もバッファ膜を設置した場合と同
様に、光導波路を伝搬するTMモードの光エネルギーの
基板表面へのしみ出しを、上述のマグネシウムが拡散さ
れた領域によって防ぎ、制御電極5による光吸収を除い
ている。さらに本実施例では、バッファ膜を用いていな
いので、バ・ノファ膜の不完全性に起因するDC電圧を
印加した場合の不安定な現象は存在しない。
The basic switch operation of the directional coupling type optical switch of this embodiment is the same as that of the conventional directional coupling type optical switch shown in FIG. The output light is 19 or 18. However, in this embodiment, the buffer film 6 is not installed as described above, and instead, the optical waveguides 12 and 13 under the control room 45 are
Magnesium is diffused on the surface, reducing the refractive index. Therefore, in this embodiment, as in the case where a buffer film is provided, the light energy of the TM mode propagating through the optical waveguide is prevented from seeping out to the substrate surface by the above-mentioned region in which magnesium is diffused, and the control electrode 5 prevents the light energy from seeping into the substrate surface. Excludes absorption. Furthermore, in this embodiment, since no buffer film is used, there is no instability phenomenon when a DC voltage is applied due to imperfections in the buffer film.

なお、本発明は、上記実施例に用いた基板材料金属イオ
ンに限定されるものではなく、基板材料としては電気光
学効果を有するいかなる結晶、例えばLiTa0.結晶
等を使用することができ、また第1の金属イオンとして
は屈折率を増加させる効果をもつイオン、例えば銅やニ
オブ等を用いることができる。
Note that the present invention is not limited to the substrate material metal ions used in the above embodiments, but any crystal having an electro-optic effect, such as LiTa0. A crystal or the like can be used, and as the first metal ion, an ion having an effect of increasing the refractive index, such as copper or niobium, can be used.

(発明の効果) 以上述べたように本発明の光制御デバイスではバッファ
膜を用いないので従来の光制御デバイスに比べ安定な動
作が得られる。
(Effects of the Invention) As described above, since the optical control device of the present invention does not use a buffer film, stable operation can be obtained compared to conventional optical control devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は本発明による光制御デバイスの一
例を示す図、第2図(a) 、 (b)は従来の光制御
デバイスの一例を示す図でともに(a)は平面図、(b
)は側面図である。図において、1はニオブ酸リチウム
結晶基板2,3,12.13は光導波路、5は制御電極
、6はバッファ膜、10は第2の金属イオンが拡散され
た部分である。 5 滲すイq電4戸ν 第    1    rgl
FIGS. 1(a) and (b) are diagrams showing an example of a light control device according to the present invention, and FIGS. 2(a) and (b) are diagrams showing an example of a conventional light control device, in which (a) is a plane. Figure, (b
) is a side view. In the figure, 1 is a lithium niobate crystal substrate 2, 3, 12.13 is an optical waveguide, 5 is a control electrode, 6 is a buffer film, and 10 is a portion into which the second metal ion is diffused. 5 Iq electric 4 doors ν 1st rgl

Claims (1)

【特許請求の範囲】[Claims] 結晶基板中に金属イオンを拡散して形成された光導波路
と該光導波路の上部に設置された電極とによって構成さ
れる光制御デバイスにおいて、前記電極下の光導波路は
前記結晶基板の屈折率を増加させる第1の金属イオンと
、前記結晶基板の屈折率を減少させる第2の金属イオン
を拡散して形成され、前記第2の金属イオンの拡散深さ
は前記第1の金属イオンの拡散深さよりも小さく、かつ
前記電極は直接前記結晶基板に接していることを特徴と
する光制御デバイス。
In an optical control device that includes an optical waveguide formed by diffusing metal ions into a crystal substrate and an electrode installed above the optical waveguide, the optical waveguide under the electrode has a refractive index that is controlled by the refractive index of the crystal substrate. It is formed by diffusing first metal ions that increase the refractive index of the crystal substrate and second metal ions that decrease the refractive index of the crystal substrate, and the diffusion depth of the second metal ions is equal to the diffusion depth of the first metal ions. 1. A light control device characterized in that the device is smaller than the crystal substrate, and the electrode is in direct contact with the crystal substrate.
JP10242086A 1986-05-02 1986-05-02 Optical control device Pending JPS62258419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10242086A JPS62258419A (en) 1986-05-02 1986-05-02 Optical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10242086A JPS62258419A (en) 1986-05-02 1986-05-02 Optical control device

Publications (1)

Publication Number Publication Date
JPS62258419A true JPS62258419A (en) 1987-11-10

Family

ID=14326955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10242086A Pending JPS62258419A (en) 1986-05-02 1986-05-02 Optical control device

Country Status (1)

Country Link
JP (1) JPS62258419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178917A (en) * 1987-12-29 1989-07-17 Nec Corp Light control circuit and production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392149A (en) * 1977-01-24 1978-08-12 Mitsubishi Electric Corp Method of fabricating thin film light wave guide
JPS56126810A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Preparation for light waveguide line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392149A (en) * 1977-01-24 1978-08-12 Mitsubishi Electric Corp Method of fabricating thin film light wave guide
JPS56126810A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Preparation for light waveguide line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178917A (en) * 1987-12-29 1989-07-17 Nec Corp Light control circuit and production thereof

Similar Documents

Publication Publication Date Title
JPH04328720A (en) Waveguide type optical device
JPH04172316A (en) Wave guide type light control device
JPS62258419A (en) Optical control device
JPH0721597B2 (en) Optical switch
JPH0566428A (en) Optical control device
JP2998373B2 (en) Light control circuit
JPH02114243A (en) Optical control device and its manufacture
JP2635986B2 (en) Optical waveguide switch
JP2900569B2 (en) Optical waveguide device
JP2993192B2 (en) Light control circuit
JP2606552B2 (en) Light control device
JP3106710B2 (en) Light control device
JP2800297B2 (en) Light control device
JP3139009B2 (en) Light switch
JP2912039B2 (en) Light control device
JPS6370827A (en) Production of optical control device
JP2836174B2 (en) Light control device
JP2720654B2 (en) Light control device
JP2982448B2 (en) Light control circuit
JPH06347839A (en) Optical control device
JPH01252929A (en) Optical control device
JP2004333949A (en) Optical waveguide element
JPH0550436U (en) Directional coupler type optical control device
JPH0795173B2 (en) Light control device
Burns Polarization-Independent Switches For Use With Single-Mode Optical Fibers