JPH01178917A - Light control circuit and production thereof - Google Patents

Light control circuit and production thereof

Info

Publication number
JPH01178917A
JPH01178917A JP33602287A JP33602287A JPH01178917A JP H01178917 A JPH01178917 A JP H01178917A JP 33602287 A JP33602287 A JP 33602287A JP 33602287 A JP33602287 A JP 33602287A JP H01178917 A JPH01178917 A JP H01178917A
Authority
JP
Japan
Prior art keywords
substrate
optical
refractive index
optical waveguide
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33602287A
Other languages
Japanese (ja)
Inventor
Yoshiro Komatsu
啓郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33602287A priority Critical patent/JPH01178917A/en
Publication of JPH01178917A publication Critical patent/JPH01178917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To lower voltage and losses and to eliminate a DC drift without requiring a buffer layer by introducing a 2nd metal ion to decrease the refractive index of a substrate surface into the substrate surface thereby embedding light guides into the substrate. CONSTITUTION:The buffer layer is not formed between transparent electrodes (ITO) 103 and the LiNbO3 substrate 101 and an Mg-diffused layer 104 diffused with the Mg ion is formed on the surface of the LiNbO3 substrate 101. The light guides 102 are formed by diffusing Ti into the LiNbO3 substrate 101 and hereafter, the Mg which is the ion to lower the refractive index of the LiNbO3 substrate 101 conversely from the Ti ion is diffused into the substrate surface. The refractive index direction in the depth direction is then symmetrized and the position where the refractive index is max. can be made as the position of the depth of several mum in the substrate. The embedded guides 102 having the position of the max. light intensity in the depth of several mum in the substrate can be formed by selecting the diffusion depth of the Mg at this time. The voltage required for switching is thus lowered by the effect of removing the buffer layer and the phenomenon of the DC drift is prevented as well.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光波の変調、光路切り替え、光波のモード変換
などを行う光回路に関し、特に基板中に設けた光導波路
を用いて制御を行う導波型の光回路に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an optical circuit that modulates a light wave, switches an optical path, and converts a mode of a light wave, and particularly relates to an optical circuit that performs control using an optical waveguide provided in a substrate. Regarding wave-type optical circuits.

(従来技術とその問題点) 近年、光通信システムや光信号システムの実用化が進む
につれ、さらに大容量の光信号を処理することができか
つ高機能なシステムが要求されるようになり、より低損
失、低電圧、高速の光制御素子が必要となってきている
。高速の光制御素子としては、大きな電気光学効果を有
するLiNbO3結晶基板中にTi拡散光導波路を形成
し、導波路の屈折率分布を電気光学効果を利用して電界
で変化させることにより制御する方式の光制御素子が良
く知られており、方向性結合器型光変調器またはスイッ
チ、全反射型スイッチ、分岐干渉を光変調器またはスイ
ッチなどに関する報告がなされている。例えば、LiN
bO3結晶中にTiを拡散して形成した光導波路におい
ては、波長1.3pmの伝搬光に対して0.1〜0.2
dB/amという小さな伝搬損失が得られており、また
単一モードファイバ出射光のスポットサイズにTi拡散
LiNbO5光導波路のスポットサイズを比較的容易に
合わせることができるので単一モードファイバとの結合
損失が比較的小さいと言う特長がある。しかしなから、
この 0.1〜0.2dB/cmという伝搬損失の値は、基板
の上に電界印加用の金属電極が形成されていない場合、
もしくは上記電極と基板の間に第6図(b)(−例とし
て方向性結合器型光スイッチのA−A′断面図が示され
ている)に示すようなバッファ層601を形成した場合
の値である。通常、光制御素子に用いられるLiNb0
a基板の方位及び導波光の偏光としては、もっとも大き
な電気光学定数であるr33を用いることができるよう
に2板およびTMモードが選ばれる。
(Prior art and its problems) In recent years, as optical communication systems and optical signal systems have become more practical, systems that can process even larger capacity optical signals and have higher functionality are required. There is a growing need for low-loss, low-voltage, high-speed optical control elements. As a high-speed optical control element, there is a method in which a Ti-diffused optical waveguide is formed in a LiNbO3 crystal substrate that has a large electro-optic effect, and the refractive index distribution of the waveguide is controlled by changing it with an electric field using the electro-optic effect. These optical control elements are well known, and reports have been made regarding directional coupler type optical modulators or switches, total internal reflection type switches, branching interference optical modulators or switches, etc. For example, LiN
In the optical waveguide formed by diffusing Ti in the bO3 crystal, 0.1 to 0.2 for propagating light with a wavelength of 1.3 pm
A small propagation loss of dB/am has been obtained, and since the spot size of the Ti-diffused LiNbO5 optical waveguide can be relatively easily matched to the spot size of the single-mode fiber output light, the coupling loss with the single-mode fiber can be reduced. It has the advantage of being relatively small. However, because
This value of propagation loss of 0.1 to 0.2 dB/cm is obtained when a metal electrode for applying an electric field is not formed on the substrate.
Alternatively, a buffer layer 601 as shown in FIG. 6(b) (-A-A' cross-sectional view of a directional coupler type optical switch is shown as an example) is formed between the electrode and the substrate. It is a value. LiNb0 usually used for light control elements
For the orientation of the a-substrate and the polarization of the guided light, two plates and TM mode are selected so that r33, which is the largest electro-optic constant, can be used.

このとき、第6図(e)に示すように、バッファ層なし
で基板上に直接金属電極を形成すると、金属電極によっ
て導波光は大きな吸収を受け、伝搬損失は大きく増加す
る。これは、Ti拡散光導波路の深さ方向の屈折率分布
が、基板表面において最大屈折率を有するような分布と
なっており、導波光の深さ方向エネルギ分布も基板表面
に集中しているためである。電極として透明電極を用い
ることも考えられるが、現在知られている透明電極の吸
収係数は数百cm−”とまだまだ大きいので、導波光の
深さ方向エネルギ分布が基板表面に集中しているとやは
り大きな吸収損失を生じる。このような電極における吸
収損失を除去する方法として、第6図(b)に示すよう
に電極とLiNb0a基板との間に5i02等の誘電体
膜を用いたバッファ層を形成する方法が良く用いられて
いる。しかしながら、5i02等の誘電体バッファ層の
誘電率はLiNb0a誘電率よりも通常大きいので、実
際にLiNbO3基板へ印加される電界強度がバッファ
層のない場合に比べてかなり減少し、素子の動作電圧が
増加するという問題点かある。また、誘電体バッファ層
を導入することにより、金属電極とバッファ層の界面お
よびバッファ層とLiNb0a基板の界面に空間電荷が
蓄積し、素子の動作状態が時間の経過とともに変化する
いわゆるDCドリフトの現象が生じることが知られてお
り、この点でも問題である。
At this time, as shown in FIG. 6(e), if a metal electrode is directly formed on the substrate without a buffer layer, the guided light will be greatly absorbed by the metal electrode, and the propagation loss will increase significantly. This is because the refractive index distribution in the depth direction of the Ti diffused optical waveguide is such that the maximum refractive index is at the substrate surface, and the depth direction energy distribution of the guided light is also concentrated on the substrate surface. It is. Although it is possible to use a transparent electrode as the electrode, the absorption coefficient of currently known transparent electrodes is still large at several hundred cm-'', so it is assumed that the depthwise energy distribution of the guided light is concentrated on the substrate surface. A large absorption loss still occurs.As a method to eliminate such absorption loss in the electrode, a buffer layer using a dielectric film such as 5i02 is placed between the electrode and the LiNb0a substrate as shown in FIG. 6(b). However, since the dielectric constant of a dielectric buffer layer such as 5i02 is usually larger than that of LiNb0a, the electric field strength actually applied to the LiNbO3 substrate is lower than that in the case without a buffer layer. There is a problem in that the operating voltage of the device increases as the dielectric buffer layer decreases considerably.In addition, by introducing the dielectric buffer layer, space charges accumulate at the interface between the metal electrode and the buffer layer and the interface between the buffer layer and the LiNb0a substrate. However, it is known that a so-called DC drift phenomenon occurs in which the operating state of an element changes over time, and this is also a problem.

上述のような問題点を除去する一つの方法としては、T
i拡散光導波路形成後に基板表面にLiNbO3の屈折
率を減少させるイオンを拡散してTi拡散光導波路を埋
め込むことによってバッファ層をなくする方法がある。
One way to eliminate the above problems is to
There is a method of eliminating the buffer layer by embedding a Ti-diffused optical waveguide by diffusing ions that reduce the refractive index of LiNbO3 onto the substrate surface after forming the i-diffused optical waveguide.

このようなLiNb0aの屈折率を減少させるイオンと
してはMgイオンがあり、Ti拡散光導波路形成後にM
gO膜をLiNbO3基板中へ熱拡散することにより、
Ti拡散光導波路の基板表面屈折率が減少して、導波光
のエネルギ最大となる位置が基板表面から基板中ある深
さの位置へ変わり、Ti拡散光導波路の埋め込み化が可
能なことが本願の発明者らにより第8回集積光学と導波
光学に関する会議(8th Topical Meet
ing on Integrated 0pticsa
nd Guided−Wave 0ptics)のテク
ニカルダイジェストFDP−2に述べられている。しか
しながら、Ti拡散光導波路形成後にMgイオンを拡散
することにより導波路を完全に埋め込む、すなわち基板
表面にバッファ層なしで直接形成された電極にエネルギ
が全くしみ出さないように導波路を埋め込む、ことは非
常に困難である。また、仮に完全に埋め込むことができ
たとしても、光エネルギの深さ方向の分布においてエネ
ルギ最大の位置は基板深くに位置することになり、結果
的に動作電圧の上昇を招くので、この方法も得策とは言
えない。
Mg ions are ions that reduce the refractive index of LiNb0a, and Mg ions are added after forming the Ti diffused optical waveguide.
By thermally diffusing the gO film into the LiNbO3 substrate,
According to the present application, the refractive index of the substrate surface of the Ti-diffused optical waveguide decreases, and the position where the energy of guided light is maximum changes from the substrate surface to a position at a certain depth in the substrate, making it possible to embed the Ti-diffused optical waveguide. The inventors attended the 8th Topical Meet on Integrated Optics and Waveguide Optics.
ing on Integrated 0ptics
nd Guided-Wave Optics) Technical Digest FDP-2. However, it is possible to completely embed the waveguide by diffusing Mg ions after forming the Ti-diffused optical waveguide, that is, to embed the waveguide so that no energy leaks into the electrodes formed directly on the substrate surface without a buffer layer. is extremely difficult. Furthermore, even if it were possible to completely bury the light, the position of maximum energy in the depth distribution of light energy would be located deep into the substrate, resulting in an increase in operating voltage, so this method is also not suitable. I can't say it's a good idea.

(問題点を解決するための手段) 本願第1の発明は、誘電体基板中に基板の屈折率を増加
させる金属イオンが導入されて形成された光導波路と、
透明電極とからなる光制御回路において、少なくとも前
記透明電極下の前記光導波路部分の前記誘電体基板表面
に基板の屈折率を減少させる働きをする第二の金属イオ
ンの導入により形成された拡散層を設けたことを特徴と
する光制御回路である。
(Means for Solving the Problems) The first invention of the present application provides an optical waveguide formed by introducing metal ions that increase the refractive index of the substrate into a dielectric substrate;
a light control circuit comprising a transparent electrode, at least a diffusion layer formed on the surface of the dielectric substrate in the optical waveguide portion under the transparent electrode by introducing a second metal ion that acts to reduce the refractive index of the substrate; This is an optical control circuit characterized in that it is provided with.

本願第2の発明は、誘電体基板上に基板の屈折率を増加
させる金属元素を含む第一の薄膜を所望のパターン状に
形成した後、上記基板を加熱して上記薄膜パターンを該
基板中に拡散させ、次いで該基板上の少なくとも一部領
域上に基板の屈折率を減少させる金属元素を含む第二の
薄膜パターンを形成し、上記基板を再度加熱して上記の
第二の薄膜パターンを該基板中に拡散させて光導波路を
形成する工程と、上記第一および第二の百方の薄膜パタ
ーンが拡散された光導波路上に透明電極を形成する工程
とを少なくとも具備していることを特徴とする光制御回
路の製造方法である。
The second invention of the present application is to form a first thin film containing a metal element that increases the refractive index of the substrate on a dielectric substrate in a desired pattern, and then heat the substrate to form the thin film pattern in the substrate. a second thin film pattern containing a metal element that reduces the refractive index of the substrate on at least a partial region of the substrate, and heating the substrate again to form the second thin film pattern. The method includes at least the steps of: forming an optical waveguide by diffusing the first and second thin film patterns into the substrate; and forming a transparent electrode on the optical waveguide on which the first and second thin film patterns are diffused. This is a characteristic method of manufacturing an optical control circuit.

(作用) 本発明においては、上述のように光制御回路を構成する
光導波路の基板の屈折率を増加させる第一の金属イオン
を基板中に導入して形成した後に基板表面の屈折率を減
少させる第二の金属イオンを基板表面に導入して上記光
導波路を基板中にある程度埋め込み、導波路伝搬光の制
御を行うための電界印加用の電極としては透明電極を採
用する。この透明電極の採用により、第二の金属イオン
導入による導波路埋め込みを完全に行わなくても電極吸
収損失はほとんど増加しないので、バッファ層を必要と
せず、低電圧、低損失でDCドリフトのない光制御回路
を得ることができる。
(Function) In the present invention, as described above, the first metal ions that increase the refractive index of the substrate of the optical waveguide constituting the optical control circuit are introduced into the substrate to reduce the refractive index of the substrate surface. The optical waveguide is embedded to some extent in the substrate by introducing second metal ions into the substrate surface, and a transparent electrode is used as an electrode for applying an electric field to control the light propagating through the waveguide. By adopting this transparent electrode, the electrode absorption loss hardly increases even if the waveguide is not completely buried by introducing the second metal ion, so there is no need for a buffer layer, low voltage, low loss, and no DC drift. A light control circuit can be obtained.

(実施例) 以下図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図(a)は本発明によるTi拡散LiNbO3方向
性結合器型光制御回路の斜視図であり、第1図(b)は
そのA−A’断面図である。
FIG. 1(a) is a perspective view of a Ti-diffused LiNbO3 directional coupler type optical control circuit according to the present invention, and FIG. 1(b) is a sectional view taken along line AA'.

第1図においては、LiNbO3z基板101中にTi
が拡散されて形成された帯状のTi拡散光導波路102
、−対の透明電極(ITO)103とにより光方向性結
合器が構成されている。ここで第1図(b)においては
A−A’断面に示すように、透明電極(ITO)103
とLiNbO3基板との間にバッファ層は形成されてお
らず、LiNbO3基板101の表面にはMgイオンが
拡散されたMg拡散層が形成されている。
In FIG. 1, Ti is contained in the LiNbO3z substrate 101.
A band-shaped Ti diffused optical waveguide 102 formed by diffusing
, -pair of transparent electrodes (ITO) 103 constitute an optical directional coupler. Here, as shown in the AA' cross section in FIG. 1(b), the transparent electrode (ITO) 103
No buffer layer is formed between the LiNbO3 substrate 101 and the LiNbO3 substrate 101, and an Mg diffusion layer in which Mg ions are diffused is formed on the surface of the LiNbO3 substrate 101.

第1図に構成を示した光方向性結合器においては、入射
側光導波路105aから入射された光波は、透明電極1
03間に電圧が印加されていない場合には、方向性結合
器の長さが完全結合長に一致するように作られているた
め、出射側光導波路106a(入射側光導波路105b
から入射された場合は出射側光導波路106bへ)結合
するが、透明電極103間に電圧が印加されると電気光
学効果によすTi拡散光導波路の屈折率が変化し、2本
のTi拡散光導波路102の間に位相不整合が生じるた
め導波路105aから入射された光波は出射側光導波路
106bへ出射し、透明電極103への印加電圧により
光のスイッチングを生じさせることができる。
In the optical directional coupler whose configuration is shown in FIG.
03, the length of the directional coupler is made to match the perfect coupling length, so the output side optical waveguide 106a (the input side optical waveguide 105b
However, when a voltage is applied between the transparent electrodes 103, the refractive index of the Ti diffused optical waveguide changes due to the electro-optic effect, and the two Ti diffused Since a phase mismatch occurs between the optical waveguides 102, the light wave incident from the waveguide 105a is emitted to the output side optical waveguide 106b, and the voltage applied to the transparent electrode 103 can cause light switching.

第1図に示した光方向性結合器の製造方法を次に説明す
る。まず、LiNbO3基板101上に通常のフォトリ
ソグラフィ技術を用いてTi膜による方向性結合器の光
導波路パターンを形成する。すなわちリフトオフ法もし
くはエツチングにより厚さ500〜1500人、幅数〜
1011m程度のTi膜201による導波路パターンを
形成する(第2図(a))。Tiにより導波路パターン
が形成された基板は1000〜1100°C15〜10
時間程度拡散炉中で加熱されることによりTiがLiN
b0a基板中へ拡散され、その部分のみ屈折率がわずか
に増加して光導波路103となる(第2図(b))。次
にスパッタ法などにより基板全面にMgO薄膜202を
100〜500人程度形成する。第2図(C)のように
MgO薄膜202が形成された基板は700〜1000
°C12〜10時間は程度拡散炉中で加熱されることに
よりMgイオンがLiNbO3基板中へ拡散され、基板
表面にMg拡散層104が形成される(第2図(d))
。ここで、MgイオンはすてにTiが拡散されて形成さ
れたTi拡散光導波路102の表面にも拡散されている
ことは言うまでもない。その後、通常のフォトリソグラ
フィ技術を用いてITOによる透明電極103のパター
ンを形成しく第2図(e))、最後に入出力光導波路に
垂直方向に研磨もしくはへき開により光入出力端面を形
成する。以上が方向性結合器型光制御回路の製造方法で
あり、以上の製造方法により第1図に示す方向性結合器
型光制御回路が形成されている。
A method of manufacturing the optical directional coupler shown in FIG. 1 will now be described. First, an optical waveguide pattern of a directional coupler made of a Ti film is formed on a LiNbO3 substrate 101 using a normal photolithography technique. That is, by lift-off method or etching, the thickness is 500 to 1500, and the width is several.
A waveguide pattern of about 1011 m of Ti film 201 is formed (FIG. 2(a)). The substrate on which the waveguide pattern is formed with Ti is heated at 1000-1100°C15-10
Ti is converted into LiN by heating in a diffusion furnace for about an hour.
It is diffused into the b0a substrate, and the refractive index of that portion increases slightly, forming an optical waveguide 103 (FIG. 2(b)). Next, about 100 to 500 MgO thin films 202 are formed on the entire surface of the substrate by sputtering or the like. As shown in FIG. 2(C), the substrate on which the MgO thin film 202 is formed has a thickness of 700 to 1000
By heating in a diffusion furnace for 12 to 10 hours at °C, Mg ions are diffused into the LiNbO3 substrate, and an Mg diffusion layer 104 is formed on the substrate surface (Fig. 2(d)).
. Here, it goes without saying that the Mg ions are also diffused on the surface of the Ti diffused optical waveguide 102 formed by diffusing Ti. Thereafter, a pattern of a transparent electrode 103 made of ITO is formed using a conventional photolithography technique (FIG. 2(e)), and finally, an optical input/output end face is formed by polishing or cleaving perpendicular to the input/output optical waveguide. The above is the method for manufacturing a directional coupler type optical control circuit, and the directional coupler type optical control circuit shown in FIG. 1 is formed by the above manufacturing method.

次に本発明により低損失、低電圧でかつDCドリフトの
ない方向性結合器型光制御回路が得られる原理について
説明する。従来のようにTiのみをLiNb0a基板へ
拡散して形成した光導波路においては、その深さ方向屈
折率分布は第3図(e)に示すように基板表面で最大屈
折率n2を有するため、深さ方向の光強度分布は第3図
(d)に示すように電極側へ相当しみ出し、電極が金属
電極であれば、しみ出した部分が吸収を受ける。この場
合、たとえ電極が透明電極であっても、電極側へのしみ
出しは相当大きいので、現状の透明電極の吸収係数の大
きさから考えて電極吸収はやはり大きいものとなる。
Next, the principle of obtaining a directional coupler type optical control circuit with low loss, low voltage, and no DC drift according to the present invention will be explained. In a conventional optical waveguide formed by diffusing only Ti into a LiNb0a substrate, the refractive index distribution in the depth direction has the maximum refractive index n2 at the substrate surface, as shown in Figure 3(e). As shown in FIG. 3(d), the light intensity distribution in the horizontal direction oozes out to the electrode side, and if the electrode is a metal electrode, the ooze out portion is absorbed. In this case, even if the electrode is a transparent electrode, the seepage toward the electrode side is quite large, so the electrode absorption is still large considering the current absorption coefficient of the transparent electrode.

TiをLiNbO3基板101へ拡散して光導波路を形
成したのち、Tiイオンとは逆にLiNbO3基板の屈
折率を下げるイオンであるMgを基板表面へ拡散すると
第4図に示すように、深さ方向屈折率分布が対称化し、
屈折率最大の位置が基板中数11mの深さの位置とする
ことができる。このときMgの拡散深さを選ぶことによ
り第2図(b)に示すように基板中数pmの深さに光強
度最大の位置を有する埋め込み導波路を形成することが
できる。このときも若干深さ方向光強度分布において電
極へのしみ出しはあるものの、Tiだけを拡散して形成
した光導波路の場合と比べるとそのしみ出し量はかなり
小さい。従って、電極が金属である場合には無視し得な
い吸収損失が生じるものの、電極が透明電極であればそ
の吸収損失は非常に小さい。そしてこのときの光強度分
布は第3図(b)に示すように、光強度最大の位置がT
i拡散のみの場合に比べて数pm深くなるだけで光強度
分布の拡がりはほとんど無い。従って導波光と電界との
重なりはTi拡散のみの場合に比べて若干劣化するだけ
である。この重なりの劣化による動作電圧の上昇は、本
発明によりバッファ層が不要になる効果により十分補償
可能であるばかりか、バッファ層除去の効果により、ス
イッチングに要する電圧はTi拡散のみで誘電体バッフ
ァ層が必要な場合よりも低減化することができる。また
、本発明によればバッファ層を除去することが可能とな
るため、DCドリフトの現象を防止することができるこ
とは言うまでもない。なおMgの拡散深さを第3図(a
)、(b)に示した場合よりも深くし、第3図(e)に
示すように屈折率最大の位置をさらに深くして、第3図
(Dに示すように、基板中深くまで埋め込んだ光導波路
を形成することにより電極における吸収損失を低減する
方法も考えられる。しかしながら、この場合第3図(0
に示すように、光強度最大の位置が基板中の深い位置と
なるばかりでなく、深さ方向光強度分布の半値幅はTi
拡散のみの場合と比べてかなり広くなるため、電界と導
波光の重なりが大きく減少し、動作電圧の増加を招き望
ましくない。
After Ti is diffused into the LiNbO3 substrate 101 to form an optical waveguide, when Mg, which is an ion that lowers the refractive index of the LiNbO3 substrate in contrast to Ti ions, is diffused to the substrate surface, as shown in FIG. The refractive index distribution becomes symmetrical,
The position of the maximum refractive index can be located at a depth of several 11 meters within the substrate. At this time, by selecting the diffusion depth of Mg, it is possible to form a buried waveguide having a position of maximum light intensity at a depth of several pm in the substrate, as shown in FIG. 2(b). At this time, although there is some seepage into the electrodes in the depth direction light intensity distribution, the amount of seepage is considerably smaller than in the case of an optical waveguide formed by diffusing only Ti. Therefore, if the electrode is a metal, a non-negligible absorption loss occurs, but if the electrode is a transparent electrode, the absorption loss is very small. The light intensity distribution at this time is as shown in Figure 3(b), where the position of maximum light intensity is T.
Compared to the case of only i-diffusion, the depth is only a few pm, and the light intensity distribution hardly spreads. Therefore, the overlap between the guided light and the electric field is only slightly degraded compared to the case of only Ti diffusion. The increase in operating voltage due to the deterioration of this overlap can be sufficiently compensated by the effect of eliminating the need for a buffer layer according to the present invention, and also because of the effect of removing the buffer layer, the voltage required for switching is reduced only by Ti diffusion, and the dielectric buffer layer can be reduced from what would otherwise be required. Further, according to the present invention, since the buffer layer can be removed, it goes without saying that the phenomenon of DC drift can be prevented. The diffusion depth of Mg is shown in Figure 3 (a
) and (b), the position of the maximum refractive index is made deeper as shown in Fig. 3(e), and the refractive index is buried deep into the substrate as shown in Fig. 3(D). It is also conceivable to reduce the absorption loss in the electrode by forming an optical waveguide.However, in this case, the
As shown in , not only is the position of the maximum light intensity deep within the substrate, but also the half-width of the depth direction light intensity distribution is
Since the area is considerably wider than in the case of only diffusion, the overlap between the electric field and the guided light is greatly reduced, which leads to an undesirable increase in the operating voltage.

Ti拡散光導波路形成後にMgイオンを基板表面に拡散
して深さ方向の光強度分布を対称化することにより導波
路と単一モードファイバとの結合損失が大幅に低減可能
であることが、本願の発明者らにより第8回集積光学と
導波光学に関する会議(sthTopical Mee
ting on Integrated and Gu
ided−WaveOptics)のテクニカルダイジ
ェストFDP−2に報告されており、またこの方法を用
いて製作された光制御素子(光位相変調器)においてわ
ずか1.1dBという低挿入損失が得られることが、や
はり本願発明者らによって1987年の光フアイバ通信
会議(OpticalFiber Communica
tion Conference)のテクニカルダイジ
ェストWK5において報告されている。従って本発明に
よれば低電圧、低吸収損失のみならず、低損失で単一モ
ードファイバとも結合できることは言うまでもない。な
お上記の報告において製作された素子は単一モードファ
イバとの結合損失低減が主眼におかれており、電極は金
属であり誘電体バッファ層を有している。本発明の構成
を用い、電極を透明電極としてバッファ層を除去するこ
とにより、挿入損失はそのままで低電圧化することが可
能である。
The present application shows that the coupling loss between the waveguide and the single mode fiber can be significantly reduced by diffusing Mg ions onto the substrate surface after forming the Ti-diffused optical waveguide to make the optical intensity distribution in the depth direction symmetrical. 8th Conference on Integrated Optics and Waveguide Optics (sthTopical Meet
ting on Integrated and Gu
It is reported in the Technical Digest FDP-2 of IDE-WaveOptics), and it is also clear that an optical control element (optical phase modulator) manufactured using this method can achieve a low insertion loss of only 1.1 dB. At the Optical Fiber Communications Conference in 1987, the inventors of the present application
It was reported in the Technical Digest WK5 of the 2011 Technical Conference. Therefore, it goes without saying that according to the present invention, it is possible to couple not only low voltage and low absorption loss but also single mode fiber with low loss. Note that the element manufactured in the above report focuses on reducing coupling loss with a single mode fiber, and the electrode is made of metal and has a dielectric buffer layer. By using the configuration of the present invention and using transparent electrodes and removing the buffer layer, it is possible to lower the voltage while maintaining the insertion loss.

第5図(a)は本発明による光制御回路の他の実施例で
あるTi拡散LiNbO3分岐干渉型光変調器め斜視図
であり、第5図(b)はそのA−A’断面図である。
FIG. 5(a) is a perspective view of a Ti-diffused LiNbO3 branching interference type optical modulator which is another embodiment of the optical control circuit according to the present invention, and FIG. 5(b) is a cross-sectional view taken along the line AA'. be.

第5図においては、入射側光導波路105aから入射さ
れた光は3dB分岐部501において2本の光導波路へ
1:1に分岐される。透明電極へ電圧が印加されないと
きには、2本の光導波路へ分岐された光は合流部502
において同相で合流されるので、そのまま出射側光導波
路106aから出射される。透明電極(ITO)103
へ電圧を印加すると、電気光学効果により電極直下の導
波路の屈折率が変化するが、電極部で光の位相がn/2
だけずれるような電圧(半波長電圧Vnの半分のVn/
2)が印加されると、合流部502において逆相となっ
た光が合流されるので、この時は基板中へ導波光は放射
され、出射側光導波路106aからは光は出射されない
。したがって、第1図に示した光制御素子は電圧による
入射光の0N10FFが可能な光変調器として動作する
In FIG. 5, the light incident from the incident side optical waveguide 105a is branched into two optical waveguides at a 1:1 ratio at a 3 dB branching section 501. When no voltage is applied to the transparent electrode, the light branched into the two optical waveguides passes through the convergence section 502.
Since they are merged in the same phase at , they are emitted as they are from the output side optical waveguide 106a. Transparent electrode (ITO) 103
When a voltage is applied to the electrode, the refractive index of the waveguide directly under the electrode changes due to the electro-optic effect, but the phase of the light changes by n/2 at the electrode.
(Vn/half of the half-wavelength voltage Vn)
When 2) is applied, the light having opposite phases is combined at the merging section 502, so that the guided light is radiated into the substrate at this time, and no light is emitted from the output side optical waveguide 106a. Therefore, the light control element shown in FIG. 1 operates as an optical modulator capable of 0N10FF of incident light depending on the voltage.

第1図(a)に示した分岐干渉型光変調器においては、
Tiが拡散されて形成されたTi拡散光導波路102、
透明電極(ITO)103とにより分岐干渉型光変調器
が形成されている。なお、Ti拡散光導波路パターン中
には3dB分岐部501および合流部502を含んでい
る。ここで、第1図(b)にA−A’断面を示すように
、透明電極(ITO)103とLiNb0a基板101
との間にはバッファ層は形成されておらず、LiNbO
3基板101の表面にはMgイオンが拡散されたMg拡
散層が形成されている。第5図に示したTi拡散LiN
b0a分岐干渉型光変調器の製造方法は、Ti拡散光導
波路および電極のパターンが異なることを除けば、第1
の実施例である方向性結合器型光制御回路と同一である
のでここでは説明を省略する。
In the branching interference type optical modulator shown in FIG. 1(a),
a Ti diffused optical waveguide 102 formed by diffusing Ti;
A branching interference type optical modulator is formed by the transparent electrode (ITO) 103. Note that the Ti diffused optical waveguide pattern includes a 3 dB branching section 501 and a merging section 502. Here, as shown in the AA' cross section in FIG. 1(b), a transparent electrode (ITO) 103 and a LiNb0a substrate 101
No buffer layer is formed between LiNbO
A Mg diffusion layer in which Mg ions are diffused is formed on the surface of the third substrate 101. Ti-diffused LiN shown in Figure 5
The manufacturing method of the b0a branching interference type optical modulator is the same as that of the first method except that the Ti diffused optical waveguide and electrode patterns are different.
Since this is the same as the directional coupler type optical control circuit in the embodiment, the explanation will be omitted here.

本実施例においても、TiをLiNbO3基板101へ
拡散して光導波路を形成したのち、Tiイオンとは逆に
LiNbO3基板の屈折率を下げるイオンであるMgを
基板表面へ拡散することにより、深さ方向屈折率分布を
対称化し、屈折率最大の位置を基板中数pmの深さの位
置とした埋め込み光導波路を形成している。このとき深
さ方向光強度分布において、電極への若干のエネルギの
しみ出しはあるものの、Tiだけを拡散して形成した光
導波路の場合と比べるとそのしみ出し量はかなり小さい
。従って、電極が金属である場合には無視し得ない吸収
損失が生じるものの、電極が透明電極であればその吸収
損失は非常に小さい。そしてこのときの光強度分布は第
3図(b)に示すように、光強度最大の位置がTi拡散
のみの場合に比べて数11m深くなるだけで光強度分布
の拡がりはほとんど無い。従って導波光と電界との重な
りはTi拡散のみの場合に比べて若干劣化するだけであ
る。この重なりの劣化による動作電圧の上昇は、本発明
によりバッファ層が不要になる効果により十分補償可能
であるばかりか、バッファ層除去の効果により、スイッ
チングに要する電圧はTi拡散のみで誘電体バッファ層
が必要な場合よりも低減化することができる。また、本
発明によればバッファ層を除去することが可能となるた
めDCドリフトの現象を防止することができることは言
うまでもない。また、Mgイオンの追拡散により深さ方
向の光強度分布が対称化することにより導波路と単一モ
ードファイバとの結合損失が大幅に低減化される。
In this example as well, after Ti is diffused into the LiNbO3 substrate 101 to form an optical waveguide, Mg, which is an ion that lowers the refractive index of the LiNbO3 substrate in contrast to Ti ions, is diffused to the substrate surface to increase the depth. A buried optical waveguide is formed in which the directional refractive index distribution is made symmetrical and the position of the maximum refractive index is located at a depth of several pm within the substrate. At this time, in the depth direction light intensity distribution, although some energy seeps into the electrode, the amount of seepage is considerably smaller than in the case of an optical waveguide formed by diffusing only Ti. Therefore, if the electrode is a metal, a non-negligible absorption loss occurs, but if the electrode is a transparent electrode, the absorption loss is very small. As shown in FIG. 3(b), the light intensity distribution at this time is only several tens of meters deeper than in the case where only Ti diffusion is used, and the light intensity distribution hardly spreads. Therefore, the overlap between the guided light and the electric field is only slightly degraded compared to the case of only Ti diffusion. The increase in operating voltage due to the deterioration of this overlap can be sufficiently compensated by the effect of eliminating the need for a buffer layer according to the present invention, and also because of the effect of removing the buffer layer, the voltage required for switching is reduced only by Ti diffusion, and the dielectric buffer layer can be reduced from what would otherwise be required. Further, according to the present invention, since the buffer layer can be removed, it goes without saying that the phenomenon of DC drift can be prevented. Moreover, the optical intensity distribution in the depth direction becomes symmetrical due to the additional diffusion of Mg ions, thereby significantly reducing the coupling loss between the waveguide and the single mode fiber.

(発明の効果) 以上述べたように、本発明によれば、電極での吸収損失
が小さく、低電圧で動作し、単一モードファイバとの結
合損失も大幅に低減され、かつDCドリフトの無い光ス
ィッチ、光変調器などの光制御回路を得ることができる
(Effects of the Invention) As described above, according to the present invention, absorption loss at the electrode is small, operation is performed at low voltage, coupling loss with a single mode fiber is significantly reduced, and there is no DC drift. Optical control circuits such as optical switches and optical modulators can be obtained.

本発明は上記の実施例に限定されるものではない。本発
明は、いかなる方式の光制御回路、例えば光位相変調器
、交差型光スイッチ、光フェイズシフター、光モードコ
ンバータ等の光制御素子およびそれらの光制御素子同士
もしくはそれらの光制御素子と他の光素子とを同一基板
上に集積化した光制御回路においても適用可能である。
The invention is not limited to the above embodiments. The present invention is applicable to optical control circuits of any type, such as optical phase modulators, cross-type optical switches, optical phase shifters, optical mode converters, and other optical control elements, and between these optical control elements or between these optical control elements and other optical control elements. It is also applicable to an optical control circuit in which optical elements are integrated on the same substrate.

本発明における基板材料、光導波路形状、電極形状なと
、は上記実施例に限定されるのものではなく、基板材料
としてLiTaO3結晶などの強誘電体結晶を、光導波
路としてはスラブ導波路を電極形状としてはくし型電極
等も用いることができる。
The substrate material, the shape of the optical waveguide, and the shape of the electrodes in the present invention are not limited to those in the above embodiments, and a ferroelectric crystal such as LiTaO3 crystal is used as the substrate material, and a slab waveguide is used as the optical waveguide. As for the shape, a comb-shaped electrode or the like can also be used.

また、遅蒔、小松、太田により第7回集積光学と導波光
学に関する会議(7th Topical Meeti
ng onIntegrated and Guide
d−Wave 0ptics)のテクニカルダイジェス
トTuA−5に述べられているように、光制御部を構成
する光導波路と人出九部の光導波路との間で、拡散する
第一の金属イオンを含む薄膜の膜厚を別々に設定して再
考の境界をテーバ形状として基板上に積層し、この金属
原子を基板中に拡散し、さらに基板全面に屈折率を減少
させる第2の金属イオンを含む薄膜を均一な厚さで形成
した後に、この薄膜を基板中に熱拡散して光導波路を形
成すれば、入出力部の光導波路と光制御素子部の光導波
路の屈折率分布をさらにきめ細かく制御でき、動作電圧
を増加させることなく単一モードファイバとの結合損失
をさらに低減化することができる。このとき、第二の金
属イオンを含む薄膜の膜厚も入出力部と光制御素子部で
別々に設定すれば、よりきめ細かく各々の部分の光導波
路の屈折率分布が制御できることは言うまでもない。
In addition, Yomaki, Komatsu, and Ota convened the 7th Topical Meeti on Integrated Optics and Waveguide Optics.
ng onIntegrated and Guide
As stated in Technical Digest TuA-5 of d-Wave Optics), a thin film containing a first metal ion that diffuses between the optical waveguide constituting the optical control section and the optical waveguide of the main part. By setting the film thickness separately and stacking the layers on the substrate with the reconsidered boundary in the Taber shape, the metal atoms are diffused into the substrate, and a thin film containing a second metal ion that reduces the refractive index is further spread over the entire surface of the substrate. By forming an optical waveguide by thermally diffusing this thin film into the substrate after forming it to a uniform thickness, the refractive index distribution of the optical waveguide in the input/output section and the optical waveguide in the optical control element section can be controlled more precisely. Coupling loss with single mode fiber can be further reduced without increasing operating voltage. At this time, it goes without saying that if the thickness of the thin film containing the second metal ion is set separately for the input/output section and the light control element section, the refractive index distribution of the optical waveguide in each section can be controlled more precisely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明による光制御素子の第1の実施例
である方向性結合器型光制御回路の構成を示す図、第1
図(b)は第1図(a)に示した方向性結合器型光制御
回路のA−A’凹断面示す図、第2図は本発明による光
制御回路の製造方法を説明するための図、第3図および
第4図は本発明により低電圧で動作し、低損失でDCド
リフトの無い光制御回路が得られる原理を説明するため
の図、第5図(a)は本発明による光制御素子の他の実
施例である分岐干渉型光変調器の構成を示す図、第5図
(b)は第5図(a)に示した分岐干渉型光変調器のA
−A’凹断面示す図、第6図は従来技術の問題点を解決
するための図である。 図において、 101・LiNb0a基板 102・・−Ti拡散光導波路 103・・・透明電極(ITO) 104・・・Mg拡散層 105a、105b・・・入射側光導波路106a、1
06b・・・出射側光導波路201・・・Ti薄膜 202・・・MgO薄膜 501・・・3dB分岐部 502・・・合流部 601・・・5i02バッファ層 603・・・金属電極
FIG. 1(a) is a diagram showing the configuration of a directional coupler type optical control circuit which is a first embodiment of the optical control element according to the present invention.
Figure (b) is a concave cross-sectional view taken along line A-A' of the directional coupler type optical control circuit shown in Figure 1 (a), and Figure 2 is a diagram for explaining the manufacturing method of the optical control circuit according to the present invention. Figures 3 and 4 are diagrams for explaining the principle of obtaining an optical control circuit that operates at low voltage, has low loss, and has no DC drift according to the present invention, and Figure 5 (a) is a diagram according to the present invention. A diagram showing the configuration of a branching interference type optical modulator which is another embodiment of the optical control element, FIG. 5(b) is A of the branching interference type optical modulator shown in FIG. 5(a).
-A' is a diagram showing a concave cross section, and FIG. 6 is a diagram for solving the problems of the prior art. In the figure, 101.LiNb0a substrate 102...-Ti diffused optical waveguide 103...Transparent electrode (ITO) 104...Mg diffused layer 105a, 105b...Incidence side optical waveguide 106a, 1
06b... Output side optical waveguide 201... Ti thin film 202... MgO thin film 501... 3 dB branch part 502... Merging part 601... 5i02 Buffer layer 603... Metal electrode

Claims (2)

【特許請求の範囲】[Claims] (1)誘電体基板中に基板の屈折率を増加させる金属イ
オンが導入されて形成された光導波路と、透明電極とか
らなる光制御回路において、少なくとも前記透明電極下
の前記光導波路部分の前記誘電体基板表面に基板の屈折
率を減少させる働きをする第二の金属イオンの導入によ
り形成された拡散層を設けたことを特徴とする光制御回
路。
(1) In an optical control circuit comprising an optical waveguide formed by introducing metal ions that increase the refractive index of the substrate into a dielectric substrate, and a transparent electrode, at least the optical waveguide portion under the transparent electrode is 1. A light control circuit comprising a dielectric substrate surface provided with a diffusion layer formed by introducing a second metal ion that acts to reduce the refractive index of the substrate.
(2)誘電体基板上に基板の屈折率を増加させる金属元
素を含む第一の薄膜を所望のパターン状に形成した後、
上記基板を加熱して上記薄膜パターンを該基板中に拡散
させ、次いで該基板上の少なくとも一部領域上に基板の
屈折率を減少させる金属元素を含む第二の薄膜パターン
を形成し、上記基板を再度加熱して上記の第二の薄膜パ
ターンを該基板中に拡散させて光導波路を形成する工程
と、上記第一および第二の両方の薄膜パターンが拡散さ
れた光導波路上に透明電極を形成する工程とを少なくと
も具備していることを特徴とする光制御回路の製造方法
(2) After forming a first thin film containing a metal element that increases the refractive index of the substrate on the dielectric substrate in a desired pattern,
heating the substrate to diffuse the thin film pattern into the substrate, and then forming a second thin film pattern on at least a partial region of the substrate that includes a metal element that reduces the refractive index of the substrate; heating again to diffuse the second thin film pattern into the substrate to form an optical waveguide, and forming a transparent electrode on the optical waveguide where both the first and second thin film patterns are diffused. 1. A method of manufacturing an optical control circuit, comprising at least the step of forming.
JP33602287A 1987-12-29 1987-12-29 Light control circuit and production thereof Pending JPH01178917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33602287A JPH01178917A (en) 1987-12-29 1987-12-29 Light control circuit and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33602287A JPH01178917A (en) 1987-12-29 1987-12-29 Light control circuit and production thereof

Publications (1)

Publication Number Publication Date
JPH01178917A true JPH01178917A (en) 1989-07-17

Family

ID=18294885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33602287A Pending JPH01178917A (en) 1987-12-29 1987-12-29 Light control circuit and production thereof

Country Status (1)

Country Link
JP (1) JPH01178917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119311A (en) * 1989-10-03 1991-05-21 Nec Corp Optical modulator
JP2021162683A (en) * 2020-03-31 2021-10-11 住友大阪セメント株式会社 Optical waveguide element, and optical modulation device and optical transmitter using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392149A (en) * 1977-01-24 1978-08-12 Mitsubishi Electric Corp Method of fabricating thin film light wave guide
JPS56126810A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Preparation for light waveguide line
JPS62103604A (en) * 1985-07-23 1987-05-14 Nec Corp Optical circuit and its production
JPS62258419A (en) * 1986-05-02 1987-11-10 Nec Corp Optical control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392149A (en) * 1977-01-24 1978-08-12 Mitsubishi Electric Corp Method of fabricating thin film light wave guide
JPS56126810A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Preparation for light waveguide line
JPS62103604A (en) * 1985-07-23 1987-05-14 Nec Corp Optical circuit and its production
JPS62258419A (en) * 1986-05-02 1987-11-10 Nec Corp Optical control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119311A (en) * 1989-10-03 1991-05-21 Nec Corp Optical modulator
JP2021162683A (en) * 2020-03-31 2021-10-11 住友大阪セメント株式会社 Optical waveguide element, and optical modulation device and optical transmitter using the same

Similar Documents

Publication Publication Date Title
US5749132A (en) Method of fabrication an optical waveguide
EP0201684B1 (en) Electro-optic wave guide modulator
JP2007212787A (en) Optical control element, optical switching unit, and optical modulator
KR19990052202A (en) Electro-optic polymer optical waveguide device structure to reduce driving voltage and loss
KR100431084B1 (en) Optical waveguide and method for manufacturing the same
US20030016896A1 (en) Electro-optic waveguide devices
US20020131745A1 (en) Electro-optic waveguide devices
JPH01178917A (en) Light control circuit and production thereof
JPS63298309A (en) Integrated light waveguide, manufacture thereof and use in electrooptical modulator
JP5467414B2 (en) Optical functional waveguide
JPH05303022A (en) Single mode optical device
JPS6396626A (en) Waveguide type light control element
JPH0644086B2 (en) Method of manufacturing light control element
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JPH01201609A (en) Optical device
JP2635986B2 (en) Optical waveguide switch
JPH01201628A (en) Optical switch
JPH03188423A (en) Optical directional coupler and production thereof
JPH07306324A (en) Optical waveguide device
JPH0697287B2 (en) Light control circuit manufacturing method
JPH07168042A (en) Light control device and its manufacture
CN117908281A (en) Optical switch based on non-parallel thin film waveguide and control method thereof
JP2643927B2 (en) Manufacturing method of optical branching / optical coupling circuit
JPH0943442A (en) Optical circuit and its production
KR100374345B1 (en) Method for manufacturing buried optical waveguide