JPH03119311A - Optical modulator - Google Patents
Optical modulatorInfo
- Publication number
- JPH03119311A JPH03119311A JP25912489A JP25912489A JPH03119311A JP H03119311 A JPH03119311 A JP H03119311A JP 25912489 A JP25912489 A JP 25912489A JP 25912489 A JP25912489 A JP 25912489A JP H03119311 A JPH03119311 A JP H03119311A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- optical
- layer
- waveguide
- gaas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 99
- 239000004065 semiconductor Substances 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 230000005684 electric field Effects 0.000 claims abstract description 9
- 238000005253 cladding Methods 0.000 claims description 28
- 230000000694 effects Effects 0.000 claims description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 38
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 abstract description 6
- 230000005693 optoelectronics Effects 0.000 abstract 1
- 230000002250 progressing effect Effects 0.000 abstract 1
- 230000000644 propagated effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910002711 AuNi Inorganic materials 0.000 description 1
- -1 LiNb03 Substances 0.000 description 1
- 230000005697 Pockels effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、将来の高速光通信システムにおいて重要なエ
レメントとなる半導体光変調器、特に材料として化合物
半導体を用いた高効率の光変調器に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor optical modulator that will be an important element in future high-speed optical communication systems, and in particular to a high-efficiency optical modulator using a compound semiconductor as a material. .
光変調器は将来の高速光通信システムのキーエレメント
の1つと考えられ、各所で研究開発が活発化してきてい
る。光変調器としては、LiNb03等の誘電体を用い
たものと、GaAaやInPの半導体を用いたものとが
考えられてい不が、小型で高効率動作が可能な半導体光
変調器への期待が近年高まりつつある。このような半導
体光変調器としては、上記適用分野から考えて、高速動
作、低消費電力動作、低電圧動作が要求される。このよ
うな高速の光変調器を実現するための物理効果としては
、その動作が原理的に高速である1次の電気光学効果(
ポッケルス効果)が通常用いられている。この1次の電
気光学効果においては、媒質に電界を印加するとその屈
折率が印加電界に対して線形に増加あるいは減少する。Optical modulators are considered to be one of the key elements of future high-speed optical communication systems, and research and development are becoming active in various places. Optical modulators are thought to be made of dielectric materials such as LiNb03, or semiconductors such as GaAa or InP, but expectations are high for semiconductor optical modulators that are compact and capable of highly efficient operation. It has been increasing in recent years. Considering the above application fields, such a semiconductor optical modulator is required to operate at high speed, with low power consumption, and at low voltage. The physical effects needed to realize such a high-speed optical modulator include the first-order electro-optic effect (which operates at high speed in principle).
Pockels effect) is commonly used. In this first-order electro-optic effect, when an electric field is applied to a medium, its refractive index increases or decreases linearly with respect to the applied electric field.
したがって、1次の電気光学効果を有する媒質であるG
a A s系やInP系の化合物半導体上に3次元光
導波路、すなわち、光の進行方向に垂直表方向に光閉じ
込め構造を備えている光導波路を形成し、その導波層へ
有効に電界を印加すれば屈折率変化に伴う位相変化を伝
搬光へ与えることができる。よって、光位相変調器、方
向性結合置屋光変調器、分岐干渉製光変調器等がこの原
理によシ実現される。Therefore, G, which is a medium with a first-order electro-optic effect,
A three-dimensional optical waveguide, that is, an optical waveguide with an optical confinement structure in the surface direction perpendicular to the direction of light propagation, is formed on an As-based or InP-based compound semiconductor, and an electric field is effectively applied to the waveguide layer. If applied, a phase change due to a change in refractive index can be imparted to propagating light. Therefore, optical phase modulators, directional coupling optical modulators, branching interference optical modulators, etc. can be realized using this principle.
ところで、これらの光変調器の動作電圧は低ければ低い
ほど、高速動作及び低消費電力動作のために望ましい、
また、素子長も短ければ短いほど電極容量が小さくなる
ため高速化のために望ましい。このような光変調器の動
作電圧を小さくし、また素子長を短くするためには屈折
率変化量ができるにけ大きいことが必要である。現在、
上述の光変調器用材料としては(100)方位のG a
A s糸材料及びInP系材料が検討されているが、
この方位における単位電圧・単位長幽シの屈折率変化量
は(111)方位のそれよシも小さく、材料の持つ特性
を最大限に活かしているとは言えない。By the way, the lower the operating voltage of these optical modulators is, the more desirable it is for high-speed operation and low power consumption operation.
Furthermore, the shorter the element length, the smaller the electrode capacitance, which is desirable for speeding up. In order to reduce the operating voltage and element length of such an optical modulator, it is necessary that the amount of change in the refractive index be as large as possible. the current,
As the above-mentioned material for the optical modulator, Ga in the (100) direction is used.
Although As yarn materials and InP-based materials are being considered,
The amount of change in refractive index per unit voltage/unit length in this orientation is smaller than that in the (111) orientation, and it cannot be said that the characteristics of the material are utilized to the fullest.
上述のような問題点を解決するために、本発明において
は、(111)半導体基板上に第1の半導体クラッド層
、半導体導波層、第2の半導体クラッド層が少なくとも
積層されておル、ストライプ状の光導波路を半導体導波
層内に形成する手段と、前記3次元光導波路部分の誼半
導体導波層へ電界を印加する手段とを具備した光変調器
の構造、あるいは、(111)半導体基板上に第1の半
導体クラッド層、半導体導波層、第2の半導体クラッド
層か少なくとも積層されてお〕、2本の近接したストラ
イプ状光導波路を率導体導゛波層内に形成する手段と、
前記2本のストライプ状光導波路、光合流器を形成する
手段とを具備したことを%歓とする方向性結合器型光変
調器の構造、および、(111)半導体基板上に第1の
半導体クラッド層、半導体導波層、第2の半導体クラッ
ド層が少なくとも積層されており、該半導体基板上に、
3次元光導波路構造の3a光分妓器、2つの位相変調器
、光合流器を形成する手段と、前記2′)の光位相変調
器、光合流器を形成する手段とを具備して広ることを特
徴とする分岐干渉製光変調器の構造を採用した。
□〔作用〕
本発明においては、結晶としては(111)方位を用い
、入射光の偏光状態としてはTMモードを用いるので、
単位電圧−単位長さ当シの屈折率変化量が(100)方
位を用い入射光としてTEモードを用いる場合に比べて
大きくなる。具体的には、GaAs+InPのような閃
亜鉛鉱型結晶においては、(100)方位の結晶を用い
、入射光の偏光状態がTEモードであるときの屈折率変
化量Δnの絶対値は、n6を導波路実効屈折率、r41
を電気光学係数、Eを電界強度としたとき、
1Δn l =” n: r41 B
と表されるのに対して、(111)方位を用い、入射光
の偏光状態としてTMモードを用いたi合に1Δnl=
” n:r41E
1−
と表されるのでs (111)方位TMモードを用い
倍に低減される、あるいは同一の動作電圧に対しいう効
果がある。表お、(100)方位の結晶を用い入射光の
偏光状態がTMモードであると屈折率変化は全く生じな
い。また、(111)方位TEモードの場合には、屈折
率変化量Δnの絶対値は、2
1Δ”’ :2d nO””
であ!?、(100)方位TEモードの場合よ〕も小さ
くなる。In order to solve the above problems, in the present invention, at least a first semiconductor cladding layer, a semiconductor waveguide layer, and a second semiconductor cladding layer are laminated on a (111) semiconductor substrate, A structure of an optical modulator comprising means for forming a striped optical waveguide in a semiconductor waveguide layer, and means for applying an electric field to the semiconductor waveguide layer of the three-dimensional optical waveguide portion, or (111) At least a first semiconductor cladding layer, a semiconductor waveguide layer, and a second semiconductor cladding layer are laminated on the semiconductor substrate], and two adjacent striped optical waveguides are formed in the conductive waveguide layer. means and
A structure of a directional coupler type optical modulator comprising the two striped optical waveguides and a means for forming an optical combiner, and (111) a first semiconductor on a semiconductor substrate. At least a cladding layer, a semiconductor waveguide layer, and a second semiconductor cladding layer are laminated, and on the semiconductor substrate,
A 3a optical splitter having a three-dimensional optical waveguide structure, two phase modulators, means for forming an optical combiner, and a means for forming the optical phase modulator and optical combiner of 2'). The structure of the branching interference optical modulator is adopted.
□ [Function] In the present invention, the (111) orientation is used as the crystal, and the TM mode is used as the polarization state of the incident light.
The amount of change in refractive index (unit voltage - unit length) is larger than that when the (100) direction is used and the TE mode is used as the incident light. Specifically, in a zinc blende crystal such as GaAs+InP, the absolute value of the refractive index change Δn when the (100) oriented crystal is used and the polarization state of the incident light is TE mode is n6. Waveguide effective refractive index, r41
When is the electro-optic coefficient and E is the electric field strength, it is expressed as 1Δn l = "n: r41 B. On the other hand, when the 1Δnl=
"n: r41E 1-", so using the s (111) orientation TM mode has the effect of reducing the voltage by a factor of two, or for the same operating voltage. When the polarization state of the light is TM mode, no refractive index change occurs at all.In addition, in the case of (111) orientation TE mode, the absolute value of the refractive index change amount Δn is 2 1Δ"' : 2d nO"" So! ? , (100) azimuth TE mode] is also smaller.
以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.
第1図は本発明によるGaAs / Al!GaAs光
位相変調器の実施例を示す斜視図である。図においては
、(111) n+−GaAs基板101上に形成され
たリプ型のGaA s /AIG aA s光位相変調
器が示されている。FIG. 1 shows GaAs/Al! according to the present invention. FIG. 2 is a perspective view showing an example of a GaAs optical phase modulator. In the figure, a Lip type GaAs/AIG aAs optical phase modulator formed on a (111) n+-GaAs substrate 101 is shown.
まず第1図に示したGaAs/AlGaAs光位相変調
器の製造方法について簡単に説明する。 (111)方
位のn+−GaAs基板101上にn −A I G
a A s(Alの組成比X=α5)クラッド層102
をL5pm程度、p−−GaAs導波層103をα3μ
m1p−AIGaAs(klの組成比X=α5)クラッ
ド層104をα1 fin 、 p−AlGaAs (
A lの組成比x=0.5)クラッド層108を1.0
μff1%p”GaAsキ’ryプ層105をo、zμ
m、 MBE (Mo −Iecular Beam
Epitaxy )法を用いて順次積層する。その後、
p側電極106となるTi/Au膜を基板全面に蒸着し
た後、通常のフォトリングラフィ法によシこのTi/A
u膜をストライプ形状に加工する。さらにこのストライ
プ形状に加工されたT i /Au膜およびTi/Au
膜上に残されたフォトレジストをマスクとしてRIBE
(Reactive Ion −Beam Etcb
ing )法によシストライプ部以外の部分をp−Al
GaAsクラッド層108とp−−AlGaAsクラッ
ド層104の界面に達するまでエツチングによシ除去し
、第1図に示すようなリプ型光導波路を形成する。そ、
の後(111)n −GaAs基板100の研磨、n
側電極107となるA u G e N i /A u
N iの蒸着、および電極アロイを行りた後、素子を
2關の長さにへき関して光変調器の製作を終了する。こ
こで、リプ型光導波路の幅は2〜5μmであ□る。First, a method for manufacturing the GaAs/AlGaAs optical phase modulator shown in FIG. 1 will be briefly described. n-A I G on the (111)-oriented n+-GaAs substrate 101.
a As (Al composition ratio X=α5) cladding layer 102
L is about 5pm, p--GaAs waveguide layer 103 is α3μ
The m1p-AIGaAs (kl composition ratio X=α5) cladding layer 104 is made of α1 fin, p-AlGaAs (
Composition ratio of Al x = 0.5) cladding layer 108 is 1.0
μff1%p” GaAs cap layer 105 is o, zμ
m, MBE (Mo-Icular Beam
They are sequentially laminated using the epitaxy method. after that,
After depositing a Ti/Au film, which will become the p-side electrode 106, on the entire surface of the substrate, this Ti/Au film is
Process the u film into a stripe shape. Furthermore, the Ti/Au film processed into this stripe shape and the Ti/Au
RIBE using the photoresist left on the film as a mask
(Reactive Ion-Beam Etcb
ing) method, the parts other than the stripe area are coated with p-Al.
Etching is performed until the interface between the GaAs cladding layer 108 and the p--AlGaAs cladding layer 104 is reached, thereby forming a lip type optical waveguide as shown in FIG. So,
After (111) polishing of the n-GaAs substrate 100, n
A u G e N i /A u which becomes the side electrode 107
After performing Ni vapor deposition and electrode alloying, the device is divided into two lengths to complete the fabrication of the optical modulator. Here, the width of the lip type optical waveguide is 2 to 5 μm.
次に第1図に示したGaAs/AlGaAs光位相変調
器の動作原理について説明する。第1図に示した構造の
光位相変調器においては、リブ直下のp−−GaAs
導波層103へ光は3次元的、すなわち、光の進行方向
に垂直な方向は閉じ込められ、ストライプ状のリブ部に
沿って光は伝搬する。このとき、p側およびn@電極間
へ逆バイアス電圧を印加すると、1次の電気光学効果に
よ1)pGaAs導波層103とp −−A / G
a A sクラッド層104の屈折率が変化し、p−−
GaAs導波層103中およびp−−A I G a
A sクラッド層104中へ閉じ込められた光が位相変
化を受ける。本発明においては、結晶方位として(11
1)を、入射光偏光状態としてTMモードを用いるので
、単位長当シの位相変化量Δβと屈折率変化量Δ内の間
には、” ” n”r E−r
Δβ=k・△n=了×v’To4”
2π I“ 3 v
”() ’ τ丁’Or41 h
λ
(k:波数 h:p−層厚さ)(r:閉じ込
め係数 ■:印加電圧 )の関係があシ、位相をπだ
け変化させるのに必要表電圧、すなわち半波長電圧は、
と懺される。上式に波長λ=1.3μfn、 p−層
厚さh = 0.4 am、光閉じ込め係数r=0.8
、実効屈折率n。=3.22、電気光学係数’41 =
: 1.6 X 10−”(m/V )、素子長L=2
11を代入すると、半波長電圧として5.3vを得る。Next, the principle of operation of the GaAs/AlGaAs optical phase modulator shown in FIG. 1 will be explained. In the optical phase modulator with the structure shown in FIG.
The light is confined in the waveguide layer 103 three-dimensionally, that is, in the direction perpendicular to the direction in which the light travels, and the light propagates along the striped rib portions. At this time, when a reverse bias voltage is applied between the p-side and n@ electrodes, 1) the pGaAs waveguide layer 103 and the p--A/G
The refractive index of the aAs cladding layer 104 changes, and p--
In the GaAs waveguide layer 103 and p--A I Ga
The light confined in the As cladding layer 104 undergoes a phase change. In the present invention, the crystal orientation is (11
1), since the TM mode is used as the incident light polarization state, the difference between the phase change amount Δβ and the refractive index change amount Δ per unit length is “ ” n”r E−r Δβ=k・△n =end×v'To4'' 2π I``3 v''()'τ'Or41 h λ (k: wave number h: p-layer thickness) (r: confinement coefficient ■: applied voltage) relationship is The surface voltage required to change the phase by π, that is, the half-wave voltage, is expressed as follows. In the above equation, wavelength λ = 1.3μfn, p-layer thickness h = 0.4 am, optical confinement coefficient r = 0.8
, effective refractive index n. =3.22, electro-optic coefficient '41 =
: 1.6 x 10-” (m/V), element length L=2
By substituting 11, we obtain 5.3v as the half-wave voltage.
この半波長電圧の値は、(100)方位TEモードを用
いた同一構造の位相変調器の半波長電圧に比べて約15
%低減される。なお、この光位相変調器の素子容量は空
乏層容量からLl pFと見積られ、変調周波舷帯域と
して約6 GHzが期待される。The value of this half-wave voltage is approximately 15
% reduced. The element capacitance of this optical phase modulator is estimated to be Ll pF from the depletion layer capacitance, and the modulation frequency band is expected to be approximately 6 GHz.
第2図は本発明によるGaAs/AjGaAs方向性結
合器型光変調器の実施例を示す斜視図である。FIG. 2 is a perspective view showing an embodiment of a GaAs/AjGaAs directional coupler type optical modulator according to the present invention.
図においては、(111)n −GaAs基板101上
に形成されたリプ型のGaAs/Al!GaAs方向性
結合器型光変調器が示されている。In the figure, lip type GaAs/Al! formed on a (111)n-GaAs substrate 101! A GaAs directional coupler type optical modulator is shown.
まず第2図に示したGaAs/AjGaAs方向性結合
器型光変調器の製造方法について簡単に説明する。(1
11)方位のn ” −G a A s基板101上に
n−人jGaAs(人lの組成比x=0.5)り2ラド
層102を1.5j1m程度、p−−GaAs導波層1
03を0.3μ例、p−−A/GaAs(Atの組成比
!==0.5)クラッド層104を0.1μm、p−A
/GaAs (A 1の組成比x=0.5)クラッド層
10Bを1.0Am、p”−GaAs) ヤyプ層10
5を0.2flm、MBE(Molecular Be
am Epitaxy)法を用いて順次積層する。その
後、p側電極106a、106bとなるTi/Au膜を
基板全面に蒸着した後、通常のフォトリングラフィ法に
よシこのTi/Au膜を2本のストライプ形状に加工す
る。さらにこのストライプ形状に加工されたTt/Au
膜およびTt/Au膜上に残されたフォトレジストをマ
スクトシてRIBE(Reactive IonBea
m Etching )法によシストライプ部以外の部
分をp−AjGaAsクラッド層108とp−−AzG
aAsクラッド層104の層面04するまでエツチング
によ〕除去し、第1図に示すようなリプ型光導波路を2
本、近接して形成する。First, a method for manufacturing the GaAs/AjGaAs directional coupler type optical modulator shown in FIG. 2 will be briefly described. (1
11) On the n''-GaAs substrate 101 in the orientation, a p--GaAs waveguide layer 1 is formed with an n-GaAs (composition ratio x = 0.5) layer 102 of about 1.5m.
03 is 0.3 μm, p--A/GaAs (At composition ratio !==0.5) cladding layer 104 is 0.1 μm, p-A
/GaAs (composition ratio of A1 x = 0.5) cladding layer 10B is 1.0 Am, p"-GaAs) Yayp layer 10
5 at 0.2flm, MBE (Molecular Be
am epitaxy) method. Thereafter, a Ti/Au film that will become the p-side electrodes 106a and 106b is deposited over the entire surface of the substrate, and then this Ti/Au film is processed into two stripes using a normal photolithography method. Furthermore, Tt/Au processed into this stripe shape
The photoresist left on the film and the Tt/Au film was masked off and subjected to RIBE (Reactive IonBea).
The p-AjGaAs cladding layer 108 and the p--AzG
The aAs cladding layer 104 is removed by etching until the layer surface 04 is reached, and a lip type optical waveguide as shown in FIG.
Books, form close together.
その後(111)n”−GaAa基板100の研磨、n
側電極107となるAuGeNi/AuNiの蒸着、お
よび電極アロイを行った後、素子を2flの長さにへき
開して素子製作を終了する。ζこで、リプを光導波路の
幅は25μm、導波路間隔は25μmである。After that, polishing of the (111)n''-GaAa substrate 100, n
After vapor deposition of AuGeNi/AuNi that will become the side electrode 107 and electrode alloying, the device is cleaved to a length of 2 fl to complete the device fabrication. ζHere, the width of the optical waveguide is 25 μm, and the interval between the waveguides is 25 μm.
次に第2図に示したGaAs/A4GaAs方向性結合
器型光変調器の動作原理について説明する。第2図に示
した構造の方向性結合器型光変調器においては、入射さ
れたTM光はリプ直下のp−−GaAs導波層103へ
3次元的に閉じ込められ、ストライプ状のリプ部に沿っ
て光は伝搬するが、2本の光導波路の間隔が小さいため
、2本の導波路間に結合が生じる。したがって一方の光
導波路へ入射された光はある一定の長さを伝搬したとこ
ろで他方の光導波路へと完全に結合する。この長さは完
全結合長と呼ばれる。ここでは、素子長(2關)をこの
完全結合長に選んでいる。したがって、逆バイアス電圧
が印加されていないときには、−方の光導波路へ入力さ
れた光は他方の光導波路よシ出射する。これに対して、
2本の光導波路のうち一本のみへ逆バイアス電圧を印加
すると、電気光学効果によルその光導波路の屈折率が変
化し、2本の先導波路間の位相整合条件が崩れる。2本
の光導波路間の位相差が0πとなったとき12本の光導
波路間に結合はもはや生じなくなル一方の光導波路から
入射された光は同じ光導波路から出射し光のスイッチン
グが生じる。ここで、100%変調に必要な電圧Vsは
dπの位相変化を与えるための電圧であるから、第1の
実施例と同様の計算によシ、波長13μ情においてはV
、=12Vとなる。この場合も、(Zoo)方位TEモ
ードを用い九場合に比べて変調に必要な電圧は約15%
低減される。なお、この方向性結合器型変調器の素子容
量も前述の第1の実施例同様空乏層容量からttpFと
見積られ、変調周波数帯域として約5GHz′が期待さ
れる。Next, the operating principle of the GaAs/A4GaAs directional coupler type optical modulator shown in FIG. 2 will be explained. In the directional coupler type optical modulator having the structure shown in FIG. Light propagates along the waveguide, but since the distance between the two optical waveguides is small, coupling occurs between the two waveguides. Therefore, light incident on one optical waveguide is completely coupled to the other optical waveguide after propagating a certain length. This length is called the fully bonded length. Here, the element length (2 lines) is selected to be this perfect bond length. Therefore, when no reverse bias voltage is applied, the light input to the negative optical waveguide is emitted from the other optical waveguide. On the contrary,
When a reverse bias voltage is applied to only one of the two optical waveguides, the refractive index of that optical waveguide changes due to the electro-optic effect, and the phase matching condition between the two leading waveguides is disrupted. When the phase difference between the two optical waveguides becomes 0π, coupling no longer occurs between the 12 optical waveguides, and the light incident from one optical waveguide exits from the same optical waveguide, causing light switching. . Here, since the voltage Vs required for 100% modulation is the voltage for giving a phase change of dπ, calculations similar to those in the first embodiment can be performed.
,=12V. In this case as well, the voltage required for modulation is approximately 15% compared to the case where the (Zoo) azimuth TE mode is used.
reduced. Note that the element capacitance of this directional coupler type modulator is also estimated to be ttpF from the depletion layer capacitance as in the first embodiment, and a modulation frequency band of approximately 5 GHz' is expected.
第3図は本発明によるGaAs/AjGaAs分岐干渉
型光変調器の実施例を示す斜視図である0図においては
、(111)n”−GaAs基板101上に形成された
リプ型のG a A s/人/ G a A s分岐干
渉製光変調器が示されている。FIG. 3 is a perspective view showing an embodiment of the GaAs/AjGaAs branching interference type optical modulator according to the present invention. In FIG. s/person/GaAs interferometric optical modulator is shown.
第3図に示したGaAs/AjGaAs分岐干渉製光変
調器の層構造は第1の実施例に示した光位相変調器の層
構造と同一でthb、製造方法も光導波路の形状を除い
ては同一である。なお本実施例においては、第3図に示
すように、2つの位相変調器302a、302bへ独立
に電界を印加するために、位相変調器と3dB分岐部3
01の境界及び位相変調器と合流部303の境界にそれ
ぞれスリット304を設けている。ここで、光導波路幅
は、2〜5μ鯛、2本の直線位相変調器の長さは2Mで
ある。The layer structure of the GaAs/AjGaAs branch interference optical modulator shown in FIG. are the same. Note that in this embodiment, as shown in FIG.
A slit 304 is provided at the boundary of 01 and the boundary of the phase modulator and merging portion 303, respectively. Here, the width of the optical waveguide is 2 to 5 μm, and the length of the two linear phase modulators is 2M.
第3図においては、入射側の光導波路に入射されたTM
モード光は3M分岐部301において2本の光導波路(
位相変調器部302a、b)へ1:lに分岐される。2
つの位相変調器302a、302bのいずれへも逆バイ
アス電圧が印加されないときには、2本の光導波路へ分
岐された光は合流部303において同相で合流されるの
でそのまま出射側光導波路から出射される。2つの位相
変調器のうちの一方へ逆バイアス電圧を印加すると1電
気光学効果によシ逆バイアス電圧が印加された方の光導
波路を伝搬する光の位相が変化するが、この位相変化量
がπであれば合流部303において逆相となった光が合
流されるので、このときは基板中へ導波光は放射され、
出射側光導波路からは光は出射されない。したがって、
電圧による0N10FFが可能な光変調器として動作す
る。この分岐干渉型光変調器の場合、100%変調に要
する電圧は第1の実施例で示した光位相変調器の半波長
電圧と同じであるので、波長LSI仇において5.3V
であシ、(100)方位TEモードを用いた場合に比べ
て約15%低減化される。また、素子容量も第1の実施
例に示した位相変調器と同一であり、空乏層容量から1
.lFと見積られ、変調周波数帯域として約5 GHz
が期待される。In Fig. 3, the TM input into the optical waveguide on the input side
The mode light passes through two optical waveguides (
The signal is branched 1:1 to the phase modulator section 302a, b). 2
When no reverse bias voltage is applied to either of the two phase modulators 302a, 302b, the lights branched into the two optical waveguides are combined in the same phase at the merging section 303, and are emitted as they are from the output side optical waveguide. When a reverse bias voltage is applied to one of the two phase modulators, the phase of the light propagating through the optical waveguide to which the reverse bias voltage is applied changes due to the electro-optic effect, and the amount of this phase change is If it is π, the lights with opposite phases are merged at the merge section 303, so in this case the guided light is radiated into the substrate,
No light is emitted from the output side optical waveguide. therefore,
It operates as an optical modulator capable of 0N10FF depending on voltage. In the case of this branching interference type optical modulator, the voltage required for 100% modulation is the same as the half-wave voltage of the optical phase modulator shown in the first embodiment, so the voltage required for wavelength LSI is 5.3V.
The reduction is approximately 15% compared to the case where the (100) azimuth TE mode is used. In addition, the element capacitance is also the same as that of the phase modulator shown in the first embodiment, and is 1 from the depletion layer capacitance.
.. estimated to be 1F, with a modulation frequency band of approximately 5 GHz
There is expected.
以上述べたように、本発明によれば、通常の(100)
方位TEモードを用いる場合に比べて単位電圧・単位長
当シの屈折率変化を大きくすることができる。したがっ
て、本発明によれば、(100)方位の光変調器に比べ
て同じ素子長の光変調器では動作電圧を低くすることが
可能であシ、また同一の動作電圧が許容される場合には
よシ素子長を短くできるので素子容量を低減することが
できる。As described above, according to the present invention, the normal (100)
Compared to the case of using the azimuth TE mode, the refractive index change per unit voltage/unit length can be increased. Therefore, according to the present invention, an optical modulator with the same element length can have a lower operating voltage than an optical modulator with a (100) orientation, and when the same operating voltage is allowed, Since the length of the moving element can be shortened, the element capacitance can be reduced.
よって、よシ高速、低消費電力動作に向いた光変調器を
提供することができ、高速光通信の分野において寄与す
るところ大である。Therefore, it is possible to provide an optical modulator suitable for high-speed, low-power operation, which will greatly contribute to the field of high-speed optical communications.
なお、本発明は上記の実施例に限定されるものではない
。実施例としては、GaAs系の光変調器を取シ上げた
が、これに限るものではな(、InP系などの他の材料
を用いた光変調器に対しても本発明は適用可能である。Note that the present invention is not limited to the above embodiments. Although a GaAs-based optical modulator is used as an example, the present invention is not limited to this (the present invention is also applicable to optical modulators using other materials such as InP-based). .
また、変調器を実現するための光導波路構造そして実施
例においてはリプ型光導波路を例にあげたが、これに限
るものではなく、埋め込み型等、他の構造でもよい、ま
た本発明が実施例で示した素子形状、すなわち各層の厚
さや各層の組成及び導波路寸法等、に限定されるもので
はないことは言うまでもない。In addition, although the optical waveguide structure for realizing the modulator and the lip type optical waveguide are taken as an example in the embodiments, the present invention is not limited to this, and other structures such as a buried type may also be used. It goes without saying that the device shape shown in the example is not limited to the thickness of each layer, the composition of each layer, the waveguide dimensions, etc.
第1図は本発明の第1の実施例であるG a A s
/AlGa A s光位相変調器の構造を示す斜視図、
第2図は本発明の第2の実施例であるGaAs /Aj
GaAs方向性結合器型光変調器の構造を示す図、第3
図は本発明の第3の実施例であるGaAs/AI!Ga
As分岐干渉型光変調器の構造を示す図である。
101− (111) n”−GaAs基板、102
= n−Al!G a A sクラッド層、103−
p−−GaAs導波層、104 ・・−p−−AjGa
Asクラッド層、105−・・p ” −G a A
sキ’r7プ層、106a、106b−p側電極、10
7−n側電極、108− p−AjGaAsクラッド層
、301・ 3dB分岐部、302a、302b・・・
位相変調器部、303・・・合流部、・304・・・ス
リット。
党 1 口FIG. 1 shows a first embodiment of the present invention.
/A perspective view showing the structure of an AlGa As optical phase modulator,
FIG. 2 shows a second embodiment of the present invention, GaAs/Aj
Figure 3 showing the structure of a GaAs directional coupler type optical modulator.
The figure shows the third embodiment of the present invention, GaAs/AI! Ga
FIG. 2 is a diagram showing the structure of an As branching interference type optical modulator. 101- (111) n”-GaAs substrate, 102
= n-Al! GaAs cladding layer, 103-
p--GaAs waveguide layer, 104...-p--AjGa
As cladding layer, 105-...p''-G a A
s'r7 skip layer, 106a, 106b-p side electrode, 10
7-n side electrode, 108-p-AjGaAs cladding layer, 301.3 dB branch, 302a, 302b...
Phase modulator section, 303... merging section, 304... slit. party 1 mouth
Claims (3)
層、半導体導波層、第2の半導体クラッド層が少なくと
も積層されており、ストライプ状の光導波路を前記半導
体導波層内に形成する手段と、前記ストライプ状の光導
波路部分の該半導体導波層へ電界を印加する手段とを具
備していることを特徴とする光変調器。(1) (111) At least a first semiconductor cladding layer, a semiconductor waveguide layer, and a second semiconductor cladding layer are laminated on a semiconductor substrate, and a striped optical waveguide is formed in the semiconductor waveguide layer. and means for applying an electric field to the semiconductor waveguide layer of the striped optical waveguide portion.
層、半導体導波層、第2の半導体クラッド層が少なくと
も積層されており、2本の近接したストライプ状の光導
波路を前記半導体導波層内に形成する手段と、前記2本
のストライプ状光導波路の各々へ電界を独立に印加する
手段とを具備していることを特徴とする光変調器。(2) (111) At least a first semiconductor cladding layer, a semiconductor waveguide layer, and a second semiconductor cladding layer are laminated on a semiconductor substrate, and two adjacent striped optical waveguides are connected to the semiconductor waveguide. An optical modulator comprising: means formed in a layer; and means for independently applying an electric field to each of the two striped optical waveguides.
層、半導体導波層、第2の半導体クラッド層が少なくと
も積層されており、該半導体基板上に、光の進行方向に
垂直な方向に対して光閉じ込め作用を有する光導波路構
造で成る3dB光分岐器、2つの位相変調器、光合流器
を形成する手段と、前記2つの光位相変調器の各々へ電
界を独立に印加する手段とを具備していることを特徴と
する光変調器。(3) (111) At least a first semiconductor cladding layer, a semiconductor waveguide layer, and a second semiconductor cladding layer are laminated on a semiconductor substrate, and a first semiconductor cladding layer, a semiconductor waveguide layer, and a second semiconductor cladding layer are stacked on the semiconductor substrate in a direction perpendicular to the traveling direction of light. means for forming a 3 dB optical splitter, two phase modulators, and an optical combiner made of an optical waveguide structure having an optical confinement effect; and means for independently applying an electric field to each of the two optical phase modulators. An optical modulator comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1259124A JP2907890B2 (en) | 1989-10-03 | 1989-10-03 | Light modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1259124A JP2907890B2 (en) | 1989-10-03 | 1989-10-03 | Light modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03119311A true JPH03119311A (en) | 1991-05-21 |
JP2907890B2 JP2907890B2 (en) | 1999-06-21 |
Family
ID=17329653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1259124A Expired - Fee Related JP2907890B2 (en) | 1989-10-03 | 1989-10-03 | Light modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2907890B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0526023A2 (en) * | 1991-07-10 | 1993-02-03 | Nec Corporation | Semiconductor optical guided-wave device and its production method |
JP2010113084A (en) * | 2008-11-05 | 2010-05-20 | Nippon Telegr & Teleph Corp <Ntt> | Optical signal processing device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5245296A (en) * | 1975-10-07 | 1977-04-09 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductive phototransmission pass and semiconductor emission devic e used it |
JPS62164019A (en) * | 1986-01-16 | 1987-07-20 | Nec Corp | Optical directional coupling element |
JPS6435525A (en) * | 1987-07-31 | 1989-02-06 | Nippon Telegraph & Telephone | Quantum well type optical modulator |
JPH01178917A (en) * | 1987-12-29 | 1989-07-17 | Nec Corp | Light control circuit and production thereof |
JPH02220025A (en) * | 1989-02-21 | 1990-09-03 | Nec Corp | Optical modulator |
JPH0353225A (en) * | 1989-07-21 | 1991-03-07 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor optical modulator |
JPH0786624A (en) * | 1993-09-16 | 1995-03-31 | Yazaki Corp | Manufacture of solar-cell absorbing layer |
-
1989
- 1989-10-03 JP JP1259124A patent/JP2907890B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5245296A (en) * | 1975-10-07 | 1977-04-09 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductive phototransmission pass and semiconductor emission devic e used it |
JPS62164019A (en) * | 1986-01-16 | 1987-07-20 | Nec Corp | Optical directional coupling element |
JPS6435525A (en) * | 1987-07-31 | 1989-02-06 | Nippon Telegraph & Telephone | Quantum well type optical modulator |
JPH01178917A (en) * | 1987-12-29 | 1989-07-17 | Nec Corp | Light control circuit and production thereof |
JPH02220025A (en) * | 1989-02-21 | 1990-09-03 | Nec Corp | Optical modulator |
JPH0353225A (en) * | 1989-07-21 | 1991-03-07 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor optical modulator |
JPH0786624A (en) * | 1993-09-16 | 1995-03-31 | Yazaki Corp | Manufacture of solar-cell absorbing layer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0526023A2 (en) * | 1991-07-10 | 1993-02-03 | Nec Corporation | Semiconductor optical guided-wave device and its production method |
US5455433A (en) * | 1991-07-10 | 1995-10-03 | Nec Corporation | Semiconductor optical guided-wave device |
JP2010113084A (en) * | 2008-11-05 | 2010-05-20 | Nippon Telegr & Teleph Corp <Ntt> | Optical signal processing device |
Also Published As
Publication number | Publication date |
---|---|
JP2907890B2 (en) | 1999-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2754957B2 (en) | Semiconductor light control element and method of manufacturing the same | |
US5838844A (en) | Integrated optical circuit comprising a polarization convertor | |
JP2765545B2 (en) | Optical wavelength discriminating circuit and method of manufacturing the same | |
US5627929A (en) | Integrated optical XY coupler | |
US20030138179A1 (en) | Semiconductor optical modulator, mach-zehnder optical modulator employing the same, and method of manufacturing semiconductor optical modulator | |
US5841568A (en) | Optical modulator and method of manufacturing the same | |
JPH02226232A (en) | Directional coupler type optical switch | |
JPH07191290A (en) | Semiconductor mach-zehnder modulator and its production | |
JPH03119311A (en) | Optical modulator | |
JP2503558B2 (en) | Optical switch | |
JPH05251812A (en) | Distributed-feedback semiconductor laser with quantum well structured optical modulator and manufacture thereof | |
JPH0659294A (en) | Waveguide type optical switch | |
JPH0353225A (en) | Semiconductor optical modulator | |
US20230275399A1 (en) | Semiconductor optical device and method of manufacturing the same | |
JP2910218B2 (en) | Semiconductor optical mode splitter | |
JPH0230195B2 (en) | ||
JP2897371B2 (en) | Semiconductor waveguide polarization controller | |
JP2991418B2 (en) | Semiconductor light control element and method of manufacturing the same | |
JP2626208B2 (en) | Semiconductor waveguide polarization controller | |
JPH07325328A (en) | Semiconductor optical modulator | |
JP2781655B2 (en) | Directional coupler type semiconductor optical switch | |
JPH08136749A (en) | Semiconductor pin type optical waveguide and its production | |
JPH0659292A (en) | Semiconductor optical switch and its production | |
JPH0921985A (en) | Mach-zehunder modulator and its production | |
JPH04234020A (en) | Polarization independent type semiconductor optical switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |