JPH04172316A - Wave guide type light control device - Google Patents

Wave guide type light control device

Info

Publication number
JPH04172316A
JPH04172316A JP29928190A JP29928190A JPH04172316A JP H04172316 A JPH04172316 A JP H04172316A JP 29928190 A JP29928190 A JP 29928190A JP 29928190 A JP29928190 A JP 29928190A JP H04172316 A JPH04172316 A JP H04172316A
Authority
JP
Japan
Prior art keywords
buffer layer
optical
optical waveguide
waveguide
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29928190A
Other languages
Japanese (ja)
Other versions
JP2940141B2 (en
Inventor
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29928190A priority Critical patent/JP2940141B2/en
Publication of JPH04172316A publication Critical patent/JPH04172316A/en
Application granted granted Critical
Publication of JP2940141B2 publication Critical patent/JP2940141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Abstract

PURPOSE:To facilitate manufacture and obtain the low operation voltage and high speed operation by making the thickness of a buffer layer under one electrode, larger at the part separated from a light wave guide part in comparison with the part close to the optical waveguide. CONSTITUTION:The wave guide type light control device is equipped with the optical waveguides 3 - 5 formed on a crystal substrate 1 which possesses the photoelectric effect, buffer layer 16 formed on the optical waveguides 3 - 6, and at least a pair of electrodes 7 and 8 a part of which is installed on the buffer layer 16. The phase speed of the microwave is increased by increasing the thickness of the buffer layer 16 under the electrodes 7 and 8 at the part separated from the optical waveguides 3 - 5, and the phase speed of the microwave is made close to that of the light wave. At this time, the buffer layer 16 is kept thin at the part close to the optical waveguides 3 - 5, i.e., at the part generating an electric field in the optical waveguide. Accordingly, the increase of the operation voltage is small, and the phase speed matching of the microwave and light wave and the low voltage operation can be satisfied at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光波の変調、光路切換え等を行なう光制御デバ
イスに関し、特に基板中に設けた先導波路を用いて制御
を行なう導波型光制御デバイスに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical control device that modulates light waves, switches optical paths, etc., and particularly relates to a waveguide type optical control device that performs control using a guide waveguide provided in a substrate. Regarding devices.

〔従来の技術〕[Conventional technology]

光通信システムの実用化が進むにつれ、さらに大容量や
多機能をもつ高度のシステムが求められている。このよ
うなシステムはより高速の光信号の発生や光伝送路の切
換え、交換等の新たな機能の付加が必要とされている。
As the practical use of optical communication systems progresses, advanced systems with even higher capacity and multiple functions are required. Such systems require the addition of new functions such as generation of higher-speed optical signals and switching and switching of optical transmission lines.

現在の実用システムでは光信号は直接半導体レーザや発
光ダイオードの注入電流を変調することによって得られ
ているが、直接変調では緩和振動等の効果のため数GH
z以上の高速変調が難しいこと、波長変動が発生するた
めコヒーレント光伝送方式には適用が難しいこと等の欠
点がある。これを解決する手段としては、外部光変調器
を使用する方法がある。この方法に用いる光変調器とし
ては、特に基板中に形成した光導波路により構成した導
波形の光変調器が小形、高効率、高速動作という特長か
あり、適している。
In current practical systems, optical signals are obtained by directly modulating the injection current of semiconductor lasers or light emitting diodes, but direct modulation requires several GHz due to effects such as relaxation oscillation.
It has drawbacks such as difficulty in high-speed modulation of Z or higher, and difficulty in applying it to a coherent optical transmission system due to wavelength fluctuations. One way to solve this problem is to use an external optical modulator. As the optical modulator used in this method, a waveguide type optical modulator constituted by an optical waveguide formed in a substrate is particularly suitable because it has the features of small size, high efficiency, and high speed operation.

一方、光伝送路の切換えやネットワークの交換機能を得
る手段としては光スィッチが使用される。現在実用され
ている光スィッチは、プリズム、ミラー、ファイバー等
を機械的に移動させるものであり、低速であること、信
頼性か不十分、形状が大きくマトリクス化に不適当の欠
点がある。これを解決する手段としてやはり導波形の光
スィッチがある。この導波形光スイッチは高速動作、多
素子の集積化が可能、高信頼等の特長かある。特にニオ
ブ酸リチウム(SiNbOs)結晶等の強誘電体材料を
用いたものは、光吸収が小さく低損失であること、大き
な電気光学効果を有しているため高効率である等の特長
があり、従来がらも方向性結合形光変調器またはスイッ
チ、全反射形光スイッチ等の種々の方式の光制御デバイ
スか報告されている。
On the other hand, an optical switch is used as a means for switching optical transmission lines and providing network switching functions. Optical switches currently in practical use mechanically move prisms, mirrors, fibers, etc., and have the disadvantages of slow speed, insufficient reliability, and large size making them unsuitable for matrix formation. A waveguide type optical switch is a means to solve this problem. This waveguide optical switch has features such as high-speed operation, integration of multiple elements, and high reliability. In particular, those using ferroelectric materials such as lithium niobate (SiNbOs) crystals have features such as low light absorption and low loss, and high efficiency because they have a large electro-optic effect. Conventionally, various types of optical control devices such as directional coupling type optical modulators or switches, total internal reflection type optical switches, etc. have been reported.

第4図に従来の光制御テハイスの一例として、分岐干渉
形光変調器の斜視図を示す。第4図において、z軸に垂
直に切り出しなニオブ酸リチウム(L、 i N b○
3)結晶基板1上にチタンを拡散して屈折率を基板より
大きくして形成した帯状の入射側の光導波路2、光導波
路2がら分岐した長さ数mm〜30mm程度の光導波#
13及び4、さらに光導波路3.4か合流した出射側の
光導波路5が形成され、分岐干渉器を構成している。ま
た、電極による光吸収を防ぐためのバッファ層6を介し
て、光導波路3上には接地電極7が、光導波路4上には
信号電極8がそれぞれ形成され、信号電極8の出射端は
線路インピーダンスに近い抵抗R6で終端されている。
FIG. 4 shows a perspective view of a branching interference type optical modulator as an example of a conventional optical control technology. In Figure 4, lithium niobate (L, i N b○
3) A strip-shaped optical waveguide 2 on the incident side formed by diffusing titanium on a crystal substrate 1 to have a refractive index larger than that of the substrate, and an optical waveguide # having a length of about several mm to 30 mm branched from the optical waveguide 2.
13 and 4, and an optical waveguide 5 on the output side where the optical waveguides 3.4 and 3.4 merge together to form a branching interferometer. Further, a ground electrode 7 is formed on the optical waveguide 3 and a signal electrode 8 is formed on the optical waveguide 4 via a buffer layer 6 for preventing light absorption by the electrodes, and the output end of the signal electrode 8 is connected to the line. It is terminated with a resistor R6 close to impedance.

第4図において、光導波路2への入射光9は分岐により
エネルギーか分割され、光導波路3,4を通過後、光導
波路5へ合流する。このとき、光導波路3,4を通過し
た光が同位相で合流すれば損失は小さく出射光10は大
きな光量となるが、光導波路3.4を通過した光が互い
に逆相となる場合は、合流部分で大きな損失となり出射
光10の光量は小さい。そこで、信号電極8への印加電
圧の大きさによって電極下の光導波路の屈折率が電気光
学効果によって変化し、そこを通過する光の位相が変化
するので、印加電圧に対応した光出力が得られ、出射光
10は変調される。また、第3図では、信号電極8.接
地電極7間のインピーダンスを入力電気信号線のインピ
ーダンス(通常50Ω)に近づけ、電極をそのインピー
タンスに近い抵抗ROで終端して分布定数化、即ち、進
行波形電極とすることにより広帯域化をはかっている。
In FIG. 4, the energy of light 9 incident on the optical waveguide 2 is split by branching, and after passing through the optical waveguides 3 and 4, it merges into the optical waveguide 5. At this time, if the lights that have passed through the optical waveguides 3 and 4 merge in the same phase, the loss will be small and the output light 10 will have a large amount of light, but if the lights that have passed through the optical waveguides 3 and 4 are in opposite phases to each other, A large loss occurs at the merging portion, and the amount of output light 10 is small. Therefore, depending on the magnitude of the voltage applied to the signal electrode 8, the refractive index of the optical waveguide under the electrode changes due to the electro-optic effect, and the phase of the light passing through it changes, so an optical output corresponding to the applied voltage can be obtained. The output light 10 is modulated. Further, in FIG. 3, the signal electrode 8. The impedance between the ground electrodes 7 is made close to the impedance of the input electric signal line (usually 50Ω), and the electrodes are terminated with a resistor RO close to that impedance to create a distributed constant, that is, a traveling waveform electrode, thereby achieving a wide band. I know.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

通常の駆動回路では高速で高電圧を出力するのは難しく
、光制御デバイスには出来るだけ低い動作電圧が要求さ
れる。第4図の分岐干渉型光変調器や方向性結合型光ス
ィッチでは低電圧化をはかるためには素子長を大きくす
る必要がある。しかしこのような従来の導波型光制御デ
バイスでは、変調電気信号であるマイクロ波と導波路中
の光波の位相速度か大きく異なるため、長い素子長にわ
たって有効に電界が印加されなくなり、速度が制限され
てしまう。このマイクロ波と光波の位相速度を近づける
ためには誘電率の小さいバッファ層の厚さを厚くする方
法や、電極を厚くしてマイクロ波の速度を早くする方法
が報告されているが、前者の方法では動作電圧が大きく
、後者の方法では、製作か非常に難しいという欠点があ
る。
It is difficult for ordinary drive circuits to output high voltages at high speeds, and optical control devices are required to operate at as low an operating voltage as possible. In the branching interference type optical modulator and directional coupling type optical switch shown in FIG. 4, it is necessary to increase the element length in order to lower the voltage. However, in such conventional waveguide-type optical control devices, the phase velocity of the modulated electric signal, the microwave, and the light wave in the waveguide are significantly different, so the electric field cannot be effectively applied over a long element length, limiting the speed. It will be done. In order to bring the phase velocity of microwaves and light waves closer to each other, it has been reported that there is a method of increasing the thickness of a buffer layer with a small dielectric constant, or a method of increasing the velocity of microwaves by thickening an electrode. This method requires a high operating voltage, and the latter method has the disadvantage of being extremely difficult to manufacture.

本発明の目的は、製作か容易て、低い動作電圧で、高速
動作が可能な導波型光制御デバイスを提供することにあ
る。
An object of the present invention is to provide a waveguide type optical control device that is easy to manufacture, requires low operating voltage, and can operate at high speed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば電気光学効果を有する結晶基板上に形成
された光導波路、該光導波路上に形成されたバッファ層
、及び少くとも一部分が該バッファ上に設置された少く
とも一対の電極より構成され、前記一対の電極の少くと
も一方の下の前記バッファ層の厚さが、前記光導波路に
近接した部分よりも前記先導波路より離れた部分の方が
厚くなつていることを特徴とする導波型光制御デバイス
及び、電気光学効果を有する結晶基板上に形成された光
導波路、該光導波路上に形成された少くとも一対の電極
、該電極上に形成された誘電率が前記結晶基板よりも小
さな誘電体膜、該誘電体膜上に形成され、前記一対の電
極の一方に電気的に接続された電極膜より構成される導
波型光制御デバイスが得られる。
According to the present invention, the optical waveguide is formed on a crystal substrate having an electro-optic effect, a buffer layer is formed on the optical waveguide, and at least a pair of electrodes are disposed at least in part on the buffer. and the buffer layer under at least one of the pair of electrodes is thicker in a portion away from the leading waveguide than in a portion close to the optical waveguide. a wave-type optical control device; an optical waveguide formed on a crystal substrate having an electro-optic effect; at least a pair of electrodes formed on the optical waveguide; A waveguide type optical control device is obtained, which includes a small dielectric film and an electrode film formed on the dielectric film and electrically connected to one of the pair of electrodes.

〔作用〕[Effect]

本発明の導波型光制御デバイスでは光導波路より離れた
部分の電極下のバッファ層の厚さを厚くすることにより
マイクロ波の位相速度を早くして、光波の位相速度に近
づけている。このとき、本発明では光導波路に近い部分
、すなわち、光導波路中への電界を発生させる部分では
バッファ層は薄いままであるので動作電圧の増加は小さ
い。
In the waveguide type optical control device of the present invention, by increasing the thickness of the buffer layer under the electrode in the portion away from the optical waveguide, the phase velocity of the microwave is increased and brought closer to the phase velocity of the light wave. At this time, in the present invention, since the buffer layer remains thin in a portion close to the optical waveguide, that is, in a portion where an electric field is generated in the optical waveguide, the increase in operating voltage is small.

進行波電極の場合、電極全体の面積は通常、光導波路よ
り離れた部分の方が大きいので、そこでのバッファ層を
厚くすればマイクロ波の位相速度に対しては十分に効果
を及ぼすことができ、マイクロ波と光波の位相速度整合
と、低電圧動作の両方を同時に満たすことができる。ま
た、バッファ層の厚さを変えることはエツチング等の方
法により容易に実現でき、また、電極パターンのように
高精度を必要としないので製作が容易である。
In the case of a traveling wave electrode, the area of the entire electrode is usually larger in the part away from the optical waveguide, so making the buffer layer thicker there can have a sufficient effect on the phase velocity of the microwave. , it can simultaneously satisfy both microwave and light wave phase velocity matching and low voltage operation. Further, the thickness of the buffer layer can be easily changed by a method such as etching, and manufacturing is easy because it does not require high precision unlike an electrode pattern.

本発明のもう1つの導波型光制御デバイスでは、信号電
極上に誘電率の小さい誘電体膜を設け、その上にさらに
接地電極と接続された電極膜を設けることによって、信
号電極と前記電極膜の間に信号電極に印加するマイクロ
波エネルギーの少くとも一部を伝搬させることによって
、上記マイクロ波の位相速度を小さくし、光波との位相
速度整合を得るものである。上記誘電体膜の厚さ及び誘
電率を選ぶことによって、バッファ層の厚さ及び電極の
厚さを薄くできるので、低動作電圧が可能であり、かつ
、製作も容易である。
In another waveguide type optical control device of the present invention, a dielectric film with a small dielectric constant is provided on the signal electrode, and an electrode film connected to the ground electrode is further provided on the dielectric film, so that the signal electrode and the electrode By propagating at least a portion of the microwave energy applied to the signal electrode between the films, the phase velocity of the microwave is reduced and phase velocity matching with the light wave is obtained. By selecting the thickness and dielectric constant of the dielectric film, the thickness of the buffer layer and the thickness of the electrode can be made thin, so that a low operating voltage is possible and manufacturing is easy.

〔実施例〕〔Example〕

第1図は本発明による導波型光制御デバイスの一実施例
である分岐干渉型光変調器を示し、第11図(a)に斜
視図、第1図(b)に断面図を示す。第4図の例と同様
に、L、1Nb03基板1の上にチタンを900〜11
00℃の温度で数時間熱拡散して形成された幅5〜12
μm、深さ3〜10μm程度の光導波路2,3,4.5
が設!され、分岐干渉器が形成されている。光導波路上
には5i02膜からなるバッファ層16が形成され、そ
の上に幅10〜30μm程度の信号電極8、幅100〜
1000μmの接地電極7が設置されている。ここで、
バッファ層16の厚さは光導波路3及び4の上ではt、
=Q、3〜1.0μmとなっており、それより外側では
t2=2.0〜10.0μmとなっている。従来の第3
図の光制御デバイスではバッファ層6の厚さは一様で0
゜5〜5.0umであり、バッファ層が厚いときには変
調帯域は広いが、変調電圧は高く、バッファ層が薄いと
きは変調電圧が低いが変調帯域が狭くなり、両者同時に
満足させる特性は得られていない。
FIG. 1 shows a branching interference type optical modulator which is an embodiment of the waveguide type optical control device according to the present invention, with FIG. 11(a) showing a perspective view and FIG. 1(b) showing a sectional view. Similar to the example in FIG.
Width 5-12 formed by thermal diffusion at a temperature of 00℃ for several hours
μm, optical waveguide 2, 3, 4.5 with a depth of about 3 to 10 μm
Established! A branching interferometer is formed. A buffer layer 16 made of a 5i02 film is formed on the optical waveguide, and a signal electrode 8 with a width of about 10 to 30 μm is formed on the buffer layer 16, and a signal electrode 8 with a width of about 100 to 30 μm is formed on the buffer layer 16.
A ground electrode 7 of 1000 μm is installed. here,
The thickness of the buffer layer 16 is t on the optical waveguides 3 and 4,
= Q, 3 to 1.0 μm, and outside of that, t2 = 2.0 to 10.0 μm. Conventional third
In the optical control device shown in the figure, the thickness of the buffer layer 6 is uniform and 0.
When the buffer layer is thick, the modulation band is wide but the modulation voltage is high; when the buffer layer is thin, the modulation voltage is low but the modulation band is narrow, and characteristics that satisfy both simultaneously cannot be obtained. Not yet.

一方、本実施例では光導波路上のバッファ層は薄いので
有効に光導波路へ電界が印加され、変調電圧は小さく、
一方、変調信号のマイクロ波はバッファ層の厚い部分を
より多く伝搬し、位相速度が光波に近づくので広い変調
帯域が得られる。
On the other hand, in this example, since the buffer layer on the optical waveguide is thin, an electric field is effectively applied to the optical waveguide, and the modulation voltage is small.
On the other hand, the microwave of the modulation signal propagates more through the thicker portion of the buffer layer, and its phase velocity approaches that of light waves, so a wide modulation band can be obtained.

第2図は本発明による導波型光制御デバイスの他の実施
例の断面図を示す。
FIG. 2 shows a cross-sectional view of another embodiment of the waveguide type optical control device according to the present invention.

第2図(a)はX軸に垂直に切り出しなLiNb0.結
晶基板1の上に形成された分岐干渉形光変調器の断面図
であり、本実施例では基板表面に平行な方向の電界成分
を利用するので、分岐された光導波路3.4の横に信号
電極8.接地電極7が設置されている。この場合、光吸
収を防ぐためのバッファ層は必ずしも必要とされないの
で、本実施例では、光導波路3.4の近傍ではバッファ
層の厚さをOとし、そこから離れた部分で厚いバッファ
層26を設けている。
Figure 2(a) shows a LiNb0. 3 is a cross-sectional view of a branching interference type optical modulator formed on a crystal substrate 1. In this embodiment, since an electric field component in a direction parallel to the substrate surface is used, a branched optical waveguide 3.4 is Signal electrode 8. A ground electrode 7 is installed. In this case, a buffer layer for preventing light absorption is not necessarily required, so in this embodiment, the thickness of the buffer layer is set to 0 in the vicinity of the optical waveguide 3.4, and the thick buffer layer 26 is used in a portion away from there. has been established.

また、信号電極8の幅が狭い場合には第2図(b)に示
すようにその下のバッファ層をすべて除いても良い。
Furthermore, if the width of the signal electrode 8 is narrow, the buffer layer below it may be entirely removed as shown in FIG. 2(b).

第3図は本発明による導波型光制御デバイスの一実施例
である分岐干渉型光変調器を示し、第3図(a)に平面
図、第3図(b)に断面図を示す。第1図の例と同様に
LiNbO3基板1の上にチタンを900〜1100°
Cの温度で数時間熱拡散して形成された幅5〜12μm
、深さ3〜10μm程度の光導波路2,3,4.5が設
置され、分岐干渉器が形成されている。光導波路上には
SiO□膜からなるバッファ層6か形成されその上に幅
10〜30μm程度の信号電極8、幅100〜1000
μmの接地電極7が設置されている。ここて、バッファ
層6の厚さは0,5〜3.0μmで、−様である。さら
に、上記信号電極8上にはSiC2膜からなる厚さ5〜
20μmの誘電体膜20がコーティングされ、その上に
電極膜21が設置され、その一端は接地型$i7に接続
されている。
FIG. 3 shows a branching interference type optical modulator which is an embodiment of the waveguide type optical control device according to the present invention, with FIG. 3(a) showing a plan view and FIG. 3(b) showing a sectional view. Similar to the example in Fig. 1, titanium is placed on the LiNbO3 substrate 1 at an angle of 900 to 1100°.
A width of 5 to 12 μm formed by thermal diffusion at a temperature of C for several hours.
, optical waveguides 2, 3, 4.5 having a depth of approximately 3 to 10 μm are installed to form a branching interferometer. On the optical waveguide, a buffer layer 6 made of SiO
A ground electrode 7 of .mu.m is installed. Here, the thickness of the buffer layer 6 is 0.5 to 3.0 μm, and is -like. Furthermore, on the signal electrode 8, a thickness of 5 to 500 ml of SiC2 film is formed.
A 20 μm dielectric film 20 is coated, and an electrode film 21 is placed thereon, one end of which is connected to the ground type $i7.

本実施例では、バッファ層の厚さは薄くできるので低動
作電圧が得られ、電極の厚さも通常の1〜4μm程度で
良いので製作が容易である。
In this embodiment, the thickness of the buffer layer can be made thin, so a low operating voltage can be obtained, and the thickness of the electrode can also be the usual 1 to 4 .mu.m, making it easy to manufacture.

以上は、分岐干渉形光変調器へ本発明を適用した場合に
ついて説明したが、方向性結合形スイッチ及び光変調器
や交差形光スイッチ等、先導波路に近接して1対以上の
電極を設置した光制御テハイスに本発明を適用できるの
は言うまでもない。
The above describes the case where the present invention is applied to a branching interference type optical modulator, but one or more pairs of electrodes are installed in the vicinity of a leading waveguide, such as a directional coupling type switch, an optical modulator, or a crossing type optical switch. It goes without saying that the present invention can be applied to light-controlled technology.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の導波型光制御デバイスは製作
か容易で、低動作電圧及び高速動作か得られる。
As described above, the waveguide type optical control device of the present invention is easy to manufacture, and provides low operating voltage and high speed operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明による導波型光制御テ
ハイスの実施例を示す図、第4図は従来の導波型光制御
デバイスの一例を示す図である。 図において、1はLiNb○2結晶基板、2゜3.4.
5は光導波路、6,16.26はバッファ層、7は接地
電極、8・・信号電極である。
FIGS. 1, 2, and 3 are diagrams showing an embodiment of a waveguide type optical control device according to the present invention, and FIG. 4 is a diagram showing an example of a conventional waveguide type optical control device. In the figure, 1 is a LiNb○2 crystal substrate, 2°3.4.
5 is an optical waveguide, 6, 16, 26 are buffer layers, 7 is a ground electrode, 8... signal electrodes.

Claims (1)

【特許請求の範囲】 1、電気光学効果を有する結晶基板上に形成された光導
波路、該光導波路上に形成されたバッファ層、及び少く
とも一部分が該バッファ上に設置された少くとも一対の
電極より構成され、前記一対の電極の少くとも一方の下
の前記バッファ層の厚さが、前記光導波路に近接した部
分よりも前記光導波路より離れた部分の方が厚くなって
いることを特徴とする導波型光制御デバイス。 2、電気光学効果を有する結晶基板上に形成された光導
波路、該光導波路上に形成された少くとも一対の電極、
該電極上に形成された誘電率が前記結晶基板よりも小さ
な誘電体膜、該誘電体膜上に形成され、前記一対の電極
の一方に電気的に接続された電極膜より構成される導波
型光制御デバイス。
[Claims] 1. An optical waveguide formed on a crystal substrate having an electro-optic effect, a buffer layer formed on the optical waveguide, and at least a pair of at least a portion of which is disposed on the buffer. comprising an electrode, and the buffer layer under at least one of the pair of electrodes is thicker in a portion away from the optical waveguide than in a portion close to the optical waveguide. Waveguide type optical control device. 2. An optical waveguide formed on a crystal substrate having an electro-optic effect, at least a pair of electrodes formed on the optical waveguide,
A waveguide composed of a dielectric film formed on the electrode and having a dielectric constant smaller than that of the crystal substrate, and an electrode film formed on the dielectric film and electrically connected to one of the pair of electrodes. type light control device.
JP29928190A 1990-11-05 1990-11-05 Waveguide type optical control device Expired - Fee Related JP2940141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29928190A JP2940141B2 (en) 1990-11-05 1990-11-05 Waveguide type optical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29928190A JP2940141B2 (en) 1990-11-05 1990-11-05 Waveguide type optical control device

Publications (2)

Publication Number Publication Date
JPH04172316A true JPH04172316A (en) 1992-06-19
JP2940141B2 JP2940141B2 (en) 1999-08-25

Family

ID=17870515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29928190A Expired - Fee Related JP2940141B2 (en) 1990-11-05 1990-11-05 Waveguide type optical control device

Country Status (1)

Country Link
JP (1) JP2940141B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166565A (en) * 1994-12-15 1996-06-25 Nec Corp Optical control device
JPH1054964A (en) * 1997-04-21 1998-02-24 Nec Corp Optical control device
US5764822A (en) * 1996-01-19 1998-06-09 Nec Corporation Optical waveguide device including a buffer layer of a thickness inwardly decreasing from each waveguide edge
JPH10274758A (en) * 1997-03-31 1998-10-13 Sumitomo Osaka Cement Co Ltd Waveguide type optical modulator
US6021232A (en) * 1996-05-10 2000-02-01 Nec Corporation Wide band and low driving voltage optical modulator with an improved dielectric buffer layer
JP2003029224A (en) * 2002-05-28 2003-01-29 Sumitomo Osaka Cement Co Ltd Optical waveguide modulator
JP2009086065A (en) * 2007-09-28 2009-04-23 Sumitomo Osaka Cement Co Ltd Optical waveguide modulator
JP2010044197A (en) * 2008-08-12 2010-02-25 Anritsu Corp Light modulator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166565A (en) * 1994-12-15 1996-06-25 Nec Corp Optical control device
US5764822A (en) * 1996-01-19 1998-06-09 Nec Corporation Optical waveguide device including a buffer layer of a thickness inwardly decreasing from each waveguide edge
US6021232A (en) * 1996-05-10 2000-02-01 Nec Corporation Wide band and low driving voltage optical modulator with an improved dielectric buffer layer
JPH10274758A (en) * 1997-03-31 1998-10-13 Sumitomo Osaka Cement Co Ltd Waveguide type optical modulator
JPH1054964A (en) * 1997-04-21 1998-02-24 Nec Corp Optical control device
JP2003029224A (en) * 2002-05-28 2003-01-29 Sumitomo Osaka Cement Co Ltd Optical waveguide modulator
JP2009086065A (en) * 2007-09-28 2009-04-23 Sumitomo Osaka Cement Co Ltd Optical waveguide modulator
JP4544479B2 (en) * 2007-09-28 2010-09-15 住友大阪セメント株式会社 Optical waveguide modulator
JP2010044197A (en) * 2008-08-12 2010-02-25 Anritsu Corp Light modulator

Also Published As

Publication number Publication date
JP2940141B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
JPH07234391A (en) Device for controlling light
JPH04172316A (en) Wave guide type light control device
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP2932742B2 (en) Waveguide type optical device
JPH0667130A (en) Light control element
JPH0375847B2 (en)
JPH0593891A (en) Waveguide type optical modulator and its driving method
JPH02170142A (en) Waveguide type optical control device and driving method thereof
JPH0721597B2 (en) Optical switch
JPH05224245A (en) Hybrid optical circuit and matrix optical switch
JP2580088Y2 (en) Directional coupler type light control device
JP2606552B2 (en) Light control device
JPH0566428A (en) Optical control device
JP2998373B2 (en) Light control circuit
JP2912039B2 (en) Light control device
JPH01201628A (en) Optical switch
JP2720654B2 (en) Light control device
JPH0351826A (en) Optical control device
JPH06347839A (en) Optical control device
JPH04258918A (en) Light control circuit
JP2836174B2 (en) Light control device
JPH06250131A (en) Optical control element
JP3740803B2 (en) Light modulator
JPH0795173B2 (en) Light control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees