JPH1054964A - Optical control device - Google Patents

Optical control device

Info

Publication number
JPH1054964A
JPH1054964A JP10330897A JP10330897A JPH1054964A JP H1054964 A JPH1054964 A JP H1054964A JP 10330897 A JP10330897 A JP 10330897A JP 10330897 A JP10330897 A JP 10330897A JP H1054964 A JPH1054964 A JP H1054964A
Authority
JP
Japan
Prior art keywords
electrodes
substrate
pair
film
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10330897A
Other languages
Japanese (ja)
Other versions
JP2850899B2 (en
Inventor
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9103308A priority Critical patent/JP2850899B2/en
Publication of JPH1054964A publication Critical patent/JPH1054964A/en
Application granted granted Critical
Publication of JP2850899B2 publication Critical patent/JP2850899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical control device capable of eliminating a limit imparted to resistance of a conductive film for suppressing temp. drift, also suppressing the temp. drift and CD drift and obtaining a low driving voltage. SOLUTION: Electrodes 4a, 4b are formed on an optical circuit 5 consisting of two channel type optical waveguides 2a, 2b formed on a surface of a LiNbO3 , substrate 1 and the optical waveguides 2a, 2b through a buffer layer 3. Further, the conductive film 6 is formed in the vicinity of the electrodes 4a, 4b. The conductive film 6 doesn't conduct between the electrodes 4a, 4b, and parts 7 insulated in the vicinity of the electrodes 4a, 4b exist.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光波の変調、光路
の切替え、光波長のフィルタリングを行う光制御デバイ
スに関し、特に焦電効果を有する基板に形成された光導
波路を用いて制御を行う導波型光制御デバイスに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical control device for modulating an optical wave, switching an optical path, and filtering an optical wavelength, and more particularly to an optical control device for performing control using an optical waveguide formed on a substrate having a pyroelectric effect. The present invention relates to a corrugated light control device.

【0002】[0002]

【従来の技術】光通信システムの実用化に伴い、更に大
容量で多機能の高度なシステムが求められており、より
高速の光信号の発生や光伝走路の切り替え、交換等の新
たな機能の付加が必要とされている。光伝走路の切り替
えやネットワークの交換機能を得る手段としては、光ス
イッチが使用されている。現在実用化されている光スイ
ッチは、プリズム、ミラー、ファイバ等を機械的に移動
させて光路を切り替えるものであり、低速であること、
形状が大きくマトリクス化に不適等の欠点がある。
2. Description of the Related Art With the practical use of optical communication systems, higher-capacity, multifunctional advanced systems have been demanded, and new functions such as higher-speed generation of optical signals, switching of optical transmission paths, and switching have been proposed. Is required. An optical switch is used as a means for obtaining a function of switching an optical transmission path or a network. Optical switches currently in practical use are those that switch the optical path by mechanically moving a prism, mirror, fiber, etc., and have a low speed.
There is a disadvantage that the shape is large and the matrix formation is unsuitable.

【0003】これを解決する手段としても光導波路を用
いた導波型の光スイッチの開発が進められており、高
速、多素子の集積化が可能、高信頼等の特徴がある。特
にニオブ酸リチウム(LiNbO3 )結晶等の強誘電体
材料を用いたものは、光吸収が小さく低損失であるこ
と、大きな電気光学効果を有しているため高効率である
こと等の特徴があり、方向性結合器型光スイッチ、マッ
ハツェンダ型やバランスブリッジ型光スイッチ、全反射
型光スイッチ等の種々の方式の光制御デバイスが報告さ
れている。
As a means for solving this problem, a waveguide type optical switch using an optical waveguide has been developed, and has features such as high speed, integration of many elements, and high reliability. In particular, a device using a ferroelectric material such as lithium niobate (LiNbO 3 ) has features such as low light absorption and low loss, and high efficiency due to a large electro-optic effect. In addition, various types of optical control devices such as a directional coupler optical switch, a Mach-Zehnder optical switch, a balanced bridge optical switch, and a total reflection optical switch have been reported.

【0004】近年、LiNbO3 電気光学結晶基板中に
形成された方向性結合器を用いた導波路型光スイッチの
高密度集積化の研究開発が盛んに行われており、西本裕
らの文献、電子情報通信学会、OQE 88−147に
よれば、Z板のLiNbO3基板を用いて方向性結合器
型光スイッチを64素子集積した8×8マトリクス光ス
イッチを得ている。一方、外部光変調器のような単一の
光スイッチ素子からなるデバイスの研究開発も盛んに進
められている。このような光導波路デバイスの特性項目
には、動作の安定性、スイッチング電圧(電力)、クロ
ストーク、消光比、損失、切り替え速度などがある。
In recent years, research and development on high-density integration of a waveguide type optical switch using a directional coupler formed in a LiNbO 3 electro-optic crystal substrate has been actively conducted. According to the Institute of Electronics, Information and Communication Engineers, OQE 88-147, an 8 × 8 matrix optical switch in which 64 directional coupler optical switches are integrated using a Z-plate LiNbO 3 substrate is obtained. On the other hand, research and development of devices including a single optical switch element such as an external optical modulator are also actively pursued. The characteristic items of such an optical waveguide device include operation stability, switching voltage (power), crosstalk, extinction ratio, loss, switching speed, and the like.

【0005】[0005]

【発明が解決しようとする課題】上述した特性項目の中
でも、動作の安定性やスイッチング電圧(電力)の低減
は最も重要な課題である。ここで従来の技術を図5、図
6及び図7に示し、解決しようとする課題を説明する。
図5は、焦電効果を有するLiNbO3 やLiTiO3
基板(1)に形成された2本の光導波路(2a)(2
b)からなる方向性結合器(5)を用いた導波型光制御
デバイスの構造を示す断面図である。
Among the above-mentioned characteristic items, stability of operation and reduction of switching voltage (power) are the most important issues. Here, the prior art is shown in FIGS. 5, 6 and 7, and the problem to be solved will be described.
FIG. 5 shows LiNbO 3 or LiTiO 3 having a pyroelectric effect.
The two optical waveguides (2a) (2) formed on the substrate (1)
It is sectional drawing which shows the structure of the waveguide type optical control device using the directional coupler (5) consisting of b).

【0006】図5に示すように、光学的に透明な膜体で
あるバッファ層(3)は、導波光を制御するための外部
制御信号が印加される電極(4a)(4b)による導波
光の吸収を防ぐための光学的バッファ層として用いら
れ、光学的バッファ層(3)には通常はSiO2 が用い
られる。これは、SiO2 が光をほとんど吸収しないこ
とやLiNbO3 基板やLiTiO3 基板に比べて屈折
率が十分に小さいことによる。電極(4a)(4b)
は、通常は高速動作が行えるように体積抵抗率が小さい
金属などが用いられ、光導波路(2a)(2b)の近傍
に電極(4a)(4b)が配置される。このような構成
を有した光スイッチ、光変調器などさまざまな光導波路
型光制御デバイスの検討が進められているが、焦電効果
を有するために温度変動があると電荷発生し、その電荷
が局在するため動作点電圧が変動する温度ドリフトとい
う信頼性問題がある。
As shown in FIG. 5, a buffer layer (3), which is an optically transparent film, is provided with guided light by electrodes (4a) and (4b) to which an external control signal for controlling the guided light is applied. This is used as an optical buffer layer for preventing absorption of SiO2, and SiO 2 is usually used for the optical buffer layer (3). This is because SiO 2 hardly absorbs light and the refractive index is sufficiently smaller than that of the LiNbO 3 substrate or the LiTiO 3 substrate. Electrodes (4a) (4b)
Usually, a metal or the like having a small volume resistivity is used so that high-speed operation can be performed, and electrodes (4a) and (4b) are arranged near the optical waveguides (2a) and (2b). Various optical waveguide type optical control devices, such as optical switches and optical modulators, having such a configuration are being studied, but due to the pyroelectric effect, electric charge is generated when there is a temperature change, and the electric charge is generated. There is a reliability problem of temperature drift in which the operating point voltage fluctuates due to localization.

【0007】これを解決する方法として、図6に示すよ
うな光制御デバイスが提案されている。この従来の光制
御デバイスは、佐脇らの文献、特開昭62−73207
号公報、及び特開昭62−173428号公報によれ
ば、焦電効果を有する基板(1)に形成された少なくと
も1対の電極(4a)(4b)の間を導体膜(6)で導
通させることが行われている。これにより温度発生時に
従来は局在した電荷が均一化されるため、温度ドリフト
が抑圧されることが報告されている。
As a method for solving this, an optical control device as shown in FIG. 6 has been proposed. This conventional light control device is disclosed in Sawaki et al., Japanese Patent Application Laid-Open No. Sho 62-73207.
According to Japanese Unexamined Patent Application Publication No. 62-173428 and Japanese Patent Application Laid-Open No. 62-173428, at least one pair of electrodes (4a) and (4b) formed on a substrate (1) having a pyroelectric effect is conducted by a conductive film (6). Let it be done. It has been reported that the localization of the electric charges at the time of temperature generation is thereby uniformed, thereby suppressing the temperature drift.

【0008】しかし、電極間のリーク電流による動作不
良を避けるために導体膜(6)による電極(4a)(4
b)の抵抗を107 〜1010Ωにする必要がある。従っ
て、これを実現する抵抗値の制御を行うために温度管理
が厳しい熱処理などの製造工程を加える必要があり、製
造工程が煩雑化し、またデバイス歩留まりも劣化する欠
点がある。また、電極(4a)(4b)間が電気的に導
通しているため、デバイスを動作させるために電極(4
a)(4b)間に外部から電位差を与えると、導体膜
(6)の膜中、導体膜(6)の表面や導体膜(6)と接
している層との界面を不純物などのキャリアが容易に移
動する。キャリアの移動が発生すると電極(4a)(4
b)間で外部からの印加電圧をキャンセルすることにな
る。すなわち、DC電圧を連続印加した場合に光出力−
印加電圧特性がシフトしていくというDCドリフトと呼
ばれる信頼性問題が発生する欠点がある。
However, in order to avoid malfunction due to a leak current between the electrodes, the electrodes (4a) and (4)
The resistance of b) needs to be 10 7 to 10 10 Ω. Therefore, it is necessary to add a manufacturing process such as heat treatment in which temperature control is strict in order to control the resistance value for realizing this, and there are disadvantages that the manufacturing process becomes complicated and the device yield is deteriorated. Since the electrodes (4a) and (4b) are electrically connected, the electrodes (4a) and (4b) are required to operate the device.
When a potential difference is externally applied between (a) and (4b), carriers such as impurities are formed on the surface of the conductor film (6) or the interface with the layer in contact with the conductor film (6) in the conductor film (6). Move easily. When carrier movement occurs, the electrodes (4a) (4
The applied voltage from the outside is canceled between b). That is, when a DC voltage is continuously applied, the light output
There is a drawback that a reliability problem called DC drift occurs in which the applied voltage characteristic shifts.

【0009】一方、電極間を導体膜で導通させている場
合に駆動電圧を低減する方法として、清野らの文献、特
開平1−302325号公報で述べている。それについ
て図7に光制御デバイスの断面構造を示す。つまり、2
本の光導波路(2a)(2b)の真上のみにバッファ層
(3)を形成し、そのバッファ層(3)を導体膜(6)
で覆い、導体膜(6)を介して2本の光導波路(2a)
(2b)の間に電位差を与える方法が報告されている。
On the other hand, a method of reducing the driving voltage when the electrodes are electrically connected by a conductive film is described in Kiyono et al., JP-A-1-302325. FIG. 7 shows a sectional structure of the light control device. That is, 2
A buffer layer (3) is formed just above the optical waveguides (2a) and (2b), and the buffer layer (3) is formed as a conductor film (6).
And two optical waveguides (2a) via the conductor film (6).
A method of giving a potential difference between (2b) has been reported.

【0010】しかし、駆動電圧を決める2本の光導波路
(2a)(2b)の間に発生する電位差は、電極(4
a)(4b)間を導体膜(6)で導通させている場合に
は、導体膜(6)による基板(1)に対して垂直と水平
方向のそれぞれの電圧降下分で決まる。すなわち図7の
構造では、2本の光導波路(2a)(2b)の間に発生
する電位差は、ほぼ外部印加電圧から2カ所の垂直方向
の電圧降下を差し引いた値となる。この垂直と水平方向
の電圧降下分が電極(4a)(4b)間における導体膜
(6)の垂直と水平方向の長さの割合で単純に決まるこ
とは自明である。
However, the potential difference generated between the two optical waveguides (2a) and (2b) that determine the drive voltage is caused by the potential difference between the electrodes (4).
In the case where the conductive film (6) conducts between a) and (4b), the voltage is determined by the respective voltage drops in the vertical and horizontal directions with respect to the substrate (1) due to the conductive film (6). That is, in the structure of FIG. 7, the potential difference generated between the two optical waveguides (2a) and (2b) is a value obtained by subtracting two vertical voltage drops from the externally applied voltage. It is obvious that the voltage drop in the vertical and horizontal directions is simply determined by the ratio of the vertical and horizontal lengths of the conductor film (6) between the electrodes (4a) and (4b).

【0011】従って、この図7の構造における2本の光
導波路(2a)(2b)の間に発生する電位差は、バッ
ファ層(3)による垂直と水平方向の電圧降下のうち、
外部印加電圧から2カ所の垂直方向の電圧降下で、2本
の光導波路(2a)(2b)の間に発生する電位差がほ
ぼ決まっていた図5及び図6に示した従来の光制御デバ
イスとはほとんど変わらず、駆動電圧の低減が少ない欠
点がある。本発明の目的は、温度ドリフトを抑圧するた
めの導体膜の抵抗に与えられていた制限を無くするとと
もに、温度ドリフトはもちろんのことDCドリフトも抑
圧し、さらに低い駆動電圧が得られる光制御デバイスを
与えることにある。
Therefore, the potential difference generated between the two optical waveguides (2a) and (2b) in the structure of FIG. 7 is the difference between the vertical and horizontal voltage drops caused by the buffer layer (3).
5 and 6, where the potential difference between the two optical waveguides (2a) and (2b) is substantially determined by two vertical voltage drops from the externally applied voltage. Has the disadvantage that the drive voltage is hardly reduced. SUMMARY OF THE INVENTION It is an object of the present invention to eliminate a limitation imposed on the resistance of a conductor film for suppressing a temperature drift, suppress a DC drift as well as a temperature drift, and obtain an optical control device capable of obtaining a lower driving voltage. Is to give.

【0012】[0012]

【課題を解決するための手段】本発明の光制御デバイス
は、焦電効果を有する基板表面に形成された光導波路
と、前記光導波路の近傍に形成された少なくとも1対の
電極と、少なくとも前記基板と前記電極の間に形成され
た膜体と、前記膜体より導電性が大きく前記1対の電極
の近傍を覆う導体膜とを有し、前記導体膜は前記1対の
電極の近傍で絶縁されていることを特徴とする。
According to the present invention, there is provided an optical control device comprising: an optical waveguide formed on a surface of a substrate having a pyroelectric effect; at least one pair of electrodes formed near the optical waveguide; A film body formed between the substrate and the electrode, and a conductive film having higher conductivity than the film body and covering the vicinity of the pair of electrodes, wherein the conductive film is in the vicinity of the pair of electrodes. It is characterized by being insulated.

【0013】本発明の光制御デバイスは、焦電効果を有
する基板表面に形成された光導波路と、前記光導波路の
近傍に形成された少なくとも1対の電極と、少なくとも
前記基板と前記電極の間に形成された膜体と、前記膜体
より導電性が大きく前記1対の電極の近傍を覆う導体膜
とを有し、前記導体膜は前記光導波路の近傍で絶縁され
ていることを特徴とする。
[0013] The light control device of the present invention comprises an optical waveguide formed on a surface of a substrate having a pyroelectric effect, at least one pair of electrodes formed near the optical waveguide, and at least a portion between the substrate and the electrode. And a conductive film having a higher conductivity than the film body and covering the vicinity of the pair of electrodes, wherein the conductive film is insulated near the optical waveguide. I do.

【0014】本発明の光制御デバイスは、前記導体膜は
少なくとも前記1対の電極間に形成されていることを特
徴とする。
The light control device according to the present invention is characterized in that the conductor film is formed at least between the pair of electrodes.

【0015】本発明の光制御デバイスは、前記1対の電
極間に形成された膜体の厚さが前記1対の電極近傍まで
他の部分に形成された前記膜体の厚さより薄く形成さ
れ、かつ前記導体膜が前記薄く形成された膜体上で絶縁
されていることを特徴とする。
In the light control device of the present invention, the thickness of the film formed between the pair of electrodes is formed to be smaller than the thickness of the film formed in another portion up to the vicinity of the pair of electrodes. And the conductive film is insulated on the thinly formed film body.

【0016】本発明の光制御デバイスは、焦電効果を有
する基板表面に形成された光導波路と、前記光導波路近
傍に形成された少なくとも1対の電極と、少なくとも前
記基板と前記電極の間に形成された膜体と、前記基板上
かつ前記1対の電極間に形成され前記膜体より絶縁性が
高い絶縁材と、前記絶縁材上に形成され前記膜体より導
電性の大きい導体膜とを有し、前記導体膜は前記1対の
電極のそれぞれの電極近傍で絶縁されていることを特徴
とする。
According to another aspect of the present invention, there is provided an optical control device comprising: an optical waveguide formed on a surface of a substrate having a pyroelectric effect; at least one pair of electrodes formed near the optical waveguide; A formed film, an insulating material formed on the substrate and between the pair of electrodes and having higher insulating property than the film, and a conductive film formed on the insulating material and having higher conductivity than the film. Wherein the conductive film is insulated in the vicinity of each of the pair of electrodes.

【0017】本発明の光制御デバイスは、焦電効果を有
する基板表面に形成された光導波路と、前記光導波路近
傍に形成された少なくとも1対の電極と、少なくとも前
記基板と前記電極の間に形成された膜体と、前記基板上
かつ前記1対の電極の間に形成され前記膜体より絶縁性
の高い絶縁材と、前記膜体より導電性が大きく前記1対
の電極の近傍を覆う導体膜とを有し、前記導体膜は前記
1対の電極の間で前記絶縁材上に形成され、かつ、前記
電極近傍で絶縁されていることを特徴とする。
An optical control device according to the present invention comprises an optical waveguide formed on a surface of a substrate having a pyroelectric effect, at least one pair of electrodes formed in the vicinity of the optical waveguide, and between at least the substrate and the electrodes. A formed film body, an insulating material formed on the substrate and between the pair of electrodes, and having higher insulating property than the film body, and covering the vicinity of the pair of electrodes, which has higher conductivity than the film body. A conductive film, wherein the conductive film is formed on the insulating material between the pair of electrodes, and is insulated near the electrodes.

【0018】本発明の光制御デバイスは、焦電効果を有
する基板表面に形成された光導波路と、前記光導波路近
傍に形成された少なくとも1対の電極と、少なくとも前
記基板と前記電極の間に形成された膜体と、前記基板上
かつ前記1対の電極の間に形成され前記膜体より絶縁性
の高い絶縁材と、前記膜体より導電性が大きく前記1対
の電極の近傍を覆う導体膜とを有し、前記導体膜は前記
1対の電極の間で前記絶縁材上に形成され、かつ、前記
光導波路近傍で絶縁されていることを特徴とする。ま
た、本発明において、焦電効果を有する基板とは、雰囲
気の温度変化などにより基板の温度が変動した部分に電
荷が発生するもので、例えば、LiNbO3 やLiTi
3 よりなる基板である。
An optical control device according to the present invention includes an optical waveguide formed on a substrate surface having a pyroelectric effect, at least one pair of electrodes formed in the vicinity of the optical waveguide, and between at least the substrate and the electrodes. A formed film body, an insulating material formed on the substrate and between the pair of electrodes, and having higher insulating property than the film body, and covering the vicinity of the pair of electrodes, which has higher conductivity than the film body. A conductive film, wherein the conductive film is formed on the insulating material between the pair of electrodes, and is insulated near the optical waveguide. In the present invention, a substrate having a pyroelectric effect is one in which electric charges are generated in a portion where the temperature of the substrate fluctuates due to a change in the temperature of the atmosphere, for example, LiNbO 3 or LiTib.
This is a substrate made of O 3 .

【0019】本発明による光制御デバイスでは、導体膜
が電極間のごく1部で絶縁しているが、このとき、焦電
効果により発生する電荷の局在は起こらず、温度ドリフ
トは発生しないことを見いだした。これにより導体膜の
抵抗に与えられていた制限を無くすことができ、生産歩
留まりが向上する光制御デバイスが得られる。また、そ
の絶縁が電極の近傍で行われているため、外部印加電圧
の降下は絶縁された部分で発生し、導体膜にかかる電圧
は小さくなる。従って、導体膜の膜中、導体膜の表面や
導体膜と接している層との界面を不純物などのキャリア
の移動量が少なくなり、DCドリフトが抑圧できる光制
御デバイスが得られる。
In the light control device according to the present invention, the conductor film is insulated at only a part between the electrodes, but at this time, localization of charges generated by the pyroelectric effect does not occur, and no temperature drift occurs. Was found. As a result, the restriction imposed on the resistance of the conductive film can be eliminated, and an optical control device with improved production yield can be obtained. Further, since the insulation is performed in the vicinity of the electrode, the drop of the externally applied voltage occurs in the insulated portion, and the voltage applied to the conductor film decreases. Therefore, the amount of movement of carriers such as impurities on the surface of the conductive film or the interface with the layer in contact with the conductive film in the conductive film is reduced, and an optical control device capable of suppressing DC drift can be obtained.

【0020】さらに、絶縁されたそれぞれの部分を電極
の近傍、すなわち2本の光導波路の近傍に設定している
ため、駆動電圧を決める外部印加電圧に対する2本の光
導波路(2a)(2b)の間に発生する電位差を従来構
造より大きくできる。従って、低電圧駆動の光制御デバ
イスが得られる。
Further, since each insulated portion is set in the vicinity of the electrode, that is, in the vicinity of the two optical waveguides, the two optical waveguides (2a) and (2b) for the externally applied voltage that determines the driving voltage. Can be made larger than the conventional structure. Therefore, a light control device driven at low voltage can be obtained.

【0021】[0021]

【発明の実施の形態】次に本発明の実施例について図面
を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0022】[実施例1]図1は、本発明の一つの実施
例に係わる光制御デバイスの構造を示す断面図である。
図1に示す光制御デバイスは、LiNbO3 基板(1)
の表面に形成された2本のチャネル型光導波路(2a)
(2b)からなる光回路(5)と、光導波路(2a)
(2b)の上にバッファ層(3)を介して電極(4a)
(4b)が形成されている。また電極(4a)(4b)
の近傍に導体膜(6)が形成されている。
Embodiment 1 FIG. 1 is a sectional view showing a structure of a light control device according to one embodiment of the present invention.
The light control device shown in FIG. 1 is a LiNbO 3 substrate (1)
Channel optical waveguides (2a) formed on the surface of
An optical circuit (5) comprising (2b) and an optical waveguide (2a)
An electrode (4a) on (2b) via a buffer layer (3)
(4b) is formed. The electrodes (4a) and (4b)
, A conductor film (6) is formed.

【0023】導体膜(6)は電極(4a)(4b)間を
導通されておらず、電極(4a)(4b)の近傍の箇所
で絶縁されている部分(7)(今後「絶縁部」と呼ぶ)
がある。なお、光回路(5)は方向性結合器、マッハツ
ェンダ型、バランスブリッジ型などである。バッファ層
(3)の役割には、光学的に透明で基板より屈折率が低
い材料を用いることで電極(4a)(4b)による導波
光の吸収を防ぐ役割であり、また電極(4a)(4b)
にマイクロ波を印加する場合に、バッファ層(3)の誘
電率や厚さなどを利用して電極(4a)(4b)を伝搬
するマイクロ波の速度の調整を行う役割などがある。
The conductive film (6) is not electrically connected between the electrodes (4a) and (4b), and is insulated at a position near the electrodes (4a) and (4b) (7) (hereinafter referred to as "insulating part"). Call it)
There is. The optical circuit (5) is a directional coupler, a Mach-Zehnder type, a balance bridge type, or the like. The role of the buffer layer (3) is to prevent absorption of guided light by the electrodes (4a) and (4b) by using a material that is optically transparent and has a lower refractive index than that of the substrate. 4b)
When a microwave is applied to the substrate, there is a role of adjusting the speed of the microwave propagating through the electrodes (4a) and (4b) by using the dielectric constant and the thickness of the buffer layer (3).

【0024】この2つの役割を果たす材料としては、主
にSiO2 系材料が用いられるが、導体膜(6)より導
電性の小さい、すなわち、絶縁性が大きいものであれば
何でもよく、その他にもITO(InO3 −SnO
2 )、Al2O3 、MgF2 、SiON、Si34
燐(P)、チタン(Ti)、ボロン(B)、ゲルマニウ
ム(Ge)などドーピングしたSiO2 が用いられ、そ
の堆積方法にはCVD法、スパッタリング法、蒸着法な
どを用いる。電極(4a)(4b)の材料としては、A
u、Al、Mo、Cu、WSi、ITO、ZnO系材
料、導電性高分子などの各種の導電性物質が用いられ
る。
As a material that fulfills these two roles, an SiO 2 -based material is mainly used, but any material may be used as long as it has lower conductivity than the conductor film (6), that is, a material having higher insulation. Also ITO (InO 3 -SnO)
2), Al2O 3, MgF 2 , SiON, Si 3 N 4,
SiO 2 doped with phosphorus (P), titanium (Ti), boron (B), germanium (Ge), or the like is used, and a CVD method, a sputtering method, an evaporation method, or the like is used as a deposition method. As a material of the electrodes (4a) and (4b), A
Various conductive substances such as u, Al, Mo, Cu, WSi, ITO, ZnO-based materials, and conductive polymers are used.

【0025】また、導体膜(6)には、本実施例ではS
iを用いたが、その他にAu、Al、Mo、Cu、WS
iなどの金属材料、ITO、ZnO系、導電性高分子、
及びSiなどの半導体材料など導電性を有するものが用
いられる。また、本実施例における絶縁部(7)は、導
体膜(6)が無いことで形成されており、バッファ層
(3)により電極(4a)(4b)間の絶縁を得てい
る。なお、絶縁部(7)は通常のフォトリソグラヒィ法
を用いて形成した。なお、用いられる基板はLiNbO
3 基板に限らず、LiTiO3 など焦電効果を有する基
板なら何でもよいことは明らかである。また、絶縁部の
箇数は2箇所でなくそれ以上であっても得られる効果は
同一であることは明らかである。
In the present embodiment, the conductor film (6) has S
i, but Au, Al, Mo, Cu, WS
metal materials such as i, ITO, ZnO-based, conductive polymer,
A conductive material such as a semiconductor material such as Si and Si is used. Further, the insulating portion (7) in this embodiment is formed without the conductor film (6), and the insulation between the electrodes (4a) and (4b) is obtained by the buffer layer (3). Note that the insulating portion (7) was formed using a normal photolithography method. The substrate used is LiNbO.
Obviously, any substrate having a pyroelectric effect, such as LiTiO 3 , may be used instead of the three substrates. It is apparent that the same effect can be obtained even if the number of insulating portions is not two but more.

【0026】本発明の実施例において、導体膜(6)が
電極(4a)(4b)間の絶縁がごく1部のみで行われ
ている場合には、温度ドリフトの原因である焦電効果に
より発生する電荷の局在はおこらず、電荷は基板(1)
の表面に一様に分布し温度ドリフトは発生しないことを
見い出だした。従って、従来構造では電極(4a)(4
b)間のリーク電流による動作不良を避けるために、導
体膜(6)による電極(4a)(4b)間の抵抗を10
7 〜1010Ωにする必要があり、これを実現するために
導体膜(6)の材料に制約を受けたり、抵抗値の制御を
行うために温度管理が厳しい熱処理などの製造工程を加
える必要があるため、製造工程が煩雑化し、またデバイ
スの歩留まりも劣化していた。本発明を用いれば、導体
膜の材料や抵抗に与えられていた制約を無くすることが
でき、生産歩留まりが向上する光制御デバイスを得るこ
とができる。
In the embodiment of the present invention, if the insulation between the electrodes (4a) and (4b) of the conductor film (6) is only one part, the pyroelectric effect which causes the temperature drift is caused. The generated charges are not localized, and the charges are transferred to the substrate (1).
Was found to be uniformly distributed on the surface and no temperature drift occurred. Therefore, in the conventional structure, the electrodes (4a) (4
b), the resistance between the electrodes (4a) and (4b) by the conductor film (6) is set to 10
7-10 should be 10 Omega, necessary to add a production process, such as temperature control severe heat treatment in order to perform or restricted to the material of the conductive film (6), the control of the resistance value in order to achieve this As a result, the manufacturing process is complicated, and the yield of devices is also deteriorated. According to the present invention, it is possible to eliminate restrictions imposed on the material and the resistance of the conductive film, and to obtain a light control device with improved production yield.

【0027】また、図1の構造では、外部印加電圧の降
下は、導体膜(6)と絶縁部(7)の抵抗値の関係か
ら、導体膜(6)は小さく、絶縁部(7)が大きいこと
は自明である。従って、DCドリフトの発生原因である
印加電圧による不純物などのキャリアの移動が容易にな
される導体膜(6)の膜中、導体膜(6)の表面や導体
膜(6)と接している層との界面における電圧が従来構
造より小さくなる。よって、キャリアの移動が抑圧さ
れ、DCドリフトが小さい光制御デバイスを得ることが
できる。
In the structure shown in FIG. 1, the drop of the externally applied voltage is small in the conductor film (6) and small in the insulation portion (7) because of the relationship between the resistance values of the conductor film (6) and the insulating portion (7). It is obvious that it is great. Therefore, of the conductive film (6) in which carriers such as impurities are easily moved by an applied voltage that causes DC drift, a layer in contact with the surface of the conductive film (6) or the conductive film (6). The voltage at the interface with is smaller than that of the conventional structure. Therefore, it is possible to obtain an optical control device in which carrier movement is suppressed and DC drift is small.

【0028】[実施例2]図2(b)は、本発明のもう
一つ実施例に係わる光制御デバイスの構造を示す断面図
である。図2(b)では、2箇所の絶縁部(7)が電極
(4a)(4b)の近傍に形成されて、また、電極(4
a)(4b)間のバッファ層(3)の1部が他の部分の
バッファ層(3)の厚さに比べて薄くなっている。図2
(b)では、温度ドリフト、DCドリフト、及び低電圧
駆動化に関する効果は、図1に示した実施例と比べてさ
らに低電圧駆動化が得られる。
[Embodiment 2] FIG. 2B is a sectional view showing the structure of a light control device according to another embodiment of the present invention. In FIG. 2B, two insulating portions (7) are formed in the vicinity of the electrodes (4a) and (4b).
Part of the buffer layer (3) between a) and (4b) is thinner than the thickness of the buffer layer (3) in the other part. FIG.
In (b), the effects related to the temperature drift, the DC drift, and the low voltage driving can be further reduced as compared with the embodiment shown in FIG.

【0029】駆動電圧を決める外部電圧印加に対する2
本の光導波路(2a)(2b)の間に発生する電位差
は、電極(4a)(4b)間を導体膜(6)で導通させ
ている場合には、導体膜(6)による基板(1)に対し
て垂直と水平方向のそれぞれの電圧降下分で決まる。し
かしながら、本発明では、基板(1)に対して水平方向
の導体膜(6)にはほとんど電圧が印加されないため、
基板(1)に対して垂直方向及び水平方向の電圧降下は
バッファ層(3)でなされる。
2 for the application of an external voltage that determines the drive voltage
The potential difference generated between the two optical waveguides (2a) and (2b) is such that when the electrodes (4a) and (4b) are electrically connected by the conductive film (6), the substrate (1) formed by the conductive film (6) is used. ) Is determined by the respective voltage drops in the vertical and horizontal directions. However, in the present invention, since almost no voltage is applied to the conductor film (6) in the horizontal direction with respect to the substrate (1),
Voltage drops in the vertical and horizontal directions with respect to the substrate (1) are made in the buffer layer (3).

【0030】図2(b)では、電極(4a)(4b)間
のバッファ層(3)が他の部分のバッファ層(3)の厚
さに比べて薄くなっており、かつ2箇所の絶縁部(7)
が電極(4a)(4b)の近傍で薄くなったバッファ層
(3)の上に形成されている。このとき電極(4a)
(4b)間のバッファ層(3)の1部が薄くなっている
ため、水平方向の抵抗値は大きくなり、外部印加電圧の
水平方向の電圧降下は大きくなる。この構造により、基
板(1)に対して垂直方向の電圧降下はバッファ層
(3)と比較して抵抗値の小さい導体膜(6)でほぼ決
まり、基板(1)に対して水平方向の電圧降下は抵抗値
の大きい薄くなったバッファ層(3)で決まる。従って
さらに低電圧駆動が得られる。
In FIG. 2 (b), the buffer layer (3) between the electrodes (4a) and (4b) is thinner than the thickness of the buffer layer (3) in the other part, and two insulating layers are provided. Department (7)
Are formed on the thinned buffer layer (3) near the electrodes (4a) and (4b). At this time, the electrode (4a)
Since a part of the buffer layer (3) between (4b) is thin, the resistance value in the horizontal direction increases, and the horizontal voltage drop of the externally applied voltage increases. With this structure, the voltage drop in the vertical direction with respect to the substrate (1) is substantially determined by the conductive film (6) having a smaller resistance value than the buffer layer (3), and the voltage in the horizontal direction with respect to the substrate (1) is reduced. The drop is determined by the thinned buffer layer (3) having a large resistance value. Therefore, lower voltage driving can be obtained.

【0031】本発明の実施例では、バッファ層(3)に
はSiO2 を用い、バッファ層(3)の1部を薄くする
には、通常のフォトリソグラヒィ法を用いてた。また、
基板(1)、光導波路(2a)(2b)、導体膜(6)
には図1に示した実施例と同じものを用いた。
In the embodiment of the present invention, SiO 2 is used for the buffer layer (3), and a part of the buffer layer (3) is thinned by a usual photolithography method. Also,
Substrate (1), optical waveguides (2a) (2b), conductor film (6)
The same one as in the embodiment shown in FIG. 1 was used.

【0032】[実施例3]図3(b)は、本発明のもう
一つ実施例に係わる光制御デバイスの構造を示す断面図
である。図3(b)では、2箇所の絶縁部(7)が電極
(4a)(4b)の近傍に形成されて、また、電極(4
a)(4b)間のバッファ層の1部が除去され、その部
分にバッファ層(3)より絶縁性の高い材料(8)(今
後「絶縁材」と呼ぶ)が形成されている。バッファ層
(3)の厚さを薄した図2(b)の構造に比べて容易に
基板(1)に対して水平方向の抵抗値を大きくできるた
め、低電圧駆動を簡単に得ることができる。
[Embodiment 3] FIG. 3B is a sectional view showing the structure of a light control device according to another embodiment of the present invention. In FIG. 3B, two insulating portions (7) are formed in the vicinity of the electrodes (4a) and (4b).
A part of the buffer layer between a) and (4b) is removed, and a material (8) having higher insulating properties than the buffer layer (3) (hereinafter referred to as “insulating material”) is formed in that part. Since the resistance in the horizontal direction with respect to the substrate (1) can be easily increased as compared with the structure of FIG. 2B in which the thickness of the buffer layer (3) is reduced, low voltage driving can be easily obtained. .

【0033】すなわち図3(b)では、電極(4a)
(4b)間のバッファ層(3)が除去され、そこに絶縁
材(8)が形成され、かつ2箇所の絶縁部(7)が電極
(4a)(4b)の近傍で絶縁材(8)の上に形成され
ている。この構造により、基板(1)に対して垂直方向
の電圧降下はバッファ層(3)と比較して抵抗値の小さ
い導体膜(6)でほぼ決まり、基板(1)に対して水平
方向の電圧降下は抵抗値の大きい絶縁材(8)で決ま
る。従って、比較例である図3(a)よりさらに低電圧
駆動が得られる。さらに図3では、バッファ層には燐
(P)をドーピングしたSiO2 (今後「PSG」と呼
ぶ)を、絶縁材には何もドーピングしないSiO2 (今
後「NSG」と呼ぶ)を用いた。PSGは燐(P)の濃
度を選ぶことにより、NSGより抵抗値を5分の1から
1000万分の1程度まで小さくできる。つまり、基板
(1)に対して水平方向の電位差を限りなく外部印加電
圧と同じ大きさにできる。従って、低電圧駆動が可能に
なる。
That is, in FIG. 3B, the electrode (4a)
The buffer layer (3) between (4b) is removed, an insulating material (8) is formed there, and two insulating portions (7) are formed near the electrodes (4a) and (4b). Is formed on. With this structure, the voltage drop in the vertical direction with respect to the substrate (1) is substantially determined by the conductive film (6) having a smaller resistance value than the buffer layer (3), and the voltage in the horizontal direction with respect to the substrate (1) is reduced. The drop is determined by the insulating material (8) having a large resistance value. Therefore, a lower voltage drive can be obtained as compared with the comparative example shown in FIG. Further in FIG. 3, the buffer layer with phosphorus SiO 2 doped with (P) (hereafter referred to as "PSG"), SiO 2 (hereafter referred to as "NSG") nothing is doped in the insulating material. By selecting the concentration of phosphorus (P), PSG can reduce the resistance value from about 1/5 to about 1 / 10,000,000 compared to NSG. That is, the potential difference in the horizontal direction with respect to the substrate (1) can be made as large as possible with the externally applied voltage. Therefore, low voltage driving becomes possible.

【0034】バッファ層(3)の1部の除去や絶縁材
(8)の形成には、通常のフォトリソグラヒィ法を用い
てた。また、光導波路(2a)(2b)、導体膜(6)
の形成には図1に示した実施例と同じ材料と形成方法を
用いた。なお、バッファ層(3)と絶縁材(8)の材料
の組み合わせは、バッファ層(3)と絶縁材(8)が導
体膜(6)より導電性が小さく、かつ絶縁材(8)がバ
ッファ層(3)より絶縁性が大きければ何でもよく、限
定されないのは明らかである。
For removal of a part of the buffer layer (3) and formation of the insulating material (8), a usual photolithography method was used. Further, the optical waveguides (2a) and (2b) and the conductor film (6)
The same material and the same forming method as those of the embodiment shown in FIG. The combination of the materials of the buffer layer (3) and the insulating material (8) is such that the buffer layer (3) and the insulating material (8) are less conductive than the conductor film (6), and the insulating material (8) is a buffer. Obviously, any material can be used as long as it has a higher insulating property than the layer (3).

【0035】[実施例4]図4(b)は、本発明のもう
一つ実施例に係わる光制御デバイスの構造を示す断面図
である。図4(b)では、電極(4a)(4b)のバッ
ファ層(3)が除去されており、かつ2箇所の絶縁部
(7)が電極(4a)(4b)の近傍の基板(1)の表
面に形成されている。従って、この構造により基板
(1)に対して垂直方向の電圧降下は、すべて導体膜
(6)で決まり、基板(1)に対して水平方向の電圧降
下は通常はバッファ層(3)よりも抵抗値の大きい基板
(1)で決まる。
[Embodiment 4] FIG. 4B is a sectional view showing the structure of a light control device according to another embodiment of the present invention. In FIG. 4B, the buffer layer (3) of the electrodes (4a) and (4b) has been removed, and two insulating portions (7) are provided on the substrate (1) near the electrodes (4a) and (4b). Is formed on the surface. Therefore, according to this structure, the voltage drop in the vertical direction with respect to the substrate (1) is entirely determined by the conductive film (6), and the voltage drop in the horizontal direction with respect to the substrate (1) is usually higher than that of the buffer layer (3). It is determined by the substrate (1) having a large resistance value.

【0036】なお、バッファ層(3)の1部を除去する
には、通常のフォトリソグラヒィ法を用いた。また、基
板(1)、光導波路(2a)(2b)、導体膜(6)に
は図1と同一の材料と形成方法を用いた。
In order to remove a part of the buffer layer (3), a usual photolithographic method was used. Further, the same material and forming method as those of FIG. 1 were used for the substrate (1), the optical waveguides (2a) and (2b), and the conductor film (6).

【0037】図4(b)では、基板(1)、光導波路
(2a)(2b)、導体膜(6)には図1と同じものを
用いたが、LiNbO3 基板(1)の体積抵抗率は、S
iO2バッファ層(3)の体積抵抗率より2倍から10
00倍大きい。従って、比較例である図4(a)よりさ
らに低電圧駆動が得られる。
In FIG. 4B, the same substrates as in FIG. 1 are used for the substrate (1), the optical waveguides (2a) and (2b) and the conductor film (6), but the volume resistivity of the LiNbO 3 substrate (1) is used. The rate is S
2 to 10 times the volume resistivity of the iO 2 buffer layer (3)
00 times larger. Therefore, a lower voltage drive can be obtained as compared with the comparative example shown in FIG.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、温
度ドリフトを抑圧するための導体膜の抵抗に与えられて
いた制限を無くすとともに、温度ドリフトはもちろんの
ことDCドリフトも抑圧し、さらに低い駆動電圧が得ら
れる高信頼で低駆動電圧の光制御デバイスを提供するこ
とができるという効果を奏するものである。
As described above, according to the present invention, the restriction imposed on the resistance of the conductor film for suppressing the temperature drift is eliminated, and the DC drift as well as the temperature drift is suppressed. This has the effect of providing a highly reliable and low driving voltage light control device capable of obtaining a low driving voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一つの実施例の光制御デバイスの構造
を示す断面図
FIG. 1 is a sectional view showing a structure of a light control device according to one embodiment of the present invention.

【図2】本発明のもう一つの実施例の光制御デバイスの
構造を示す断面図
FIG. 2 is a sectional view showing the structure of a light control device according to another embodiment of the present invention.

【図3】本発明のもう一つの実施例の光制御デバイスの
構造を示す断面図
FIG. 3 is a sectional view showing the structure of a light control device according to another embodiment of the present invention.

【図4】本発明のもう一つの実施例の光制御デバイスの
構造を示す断面図
FIG. 4 is a sectional view showing the structure of a light control device according to another embodiment of the present invention.

【図5】従来例の光制御デバイスの構造を示す断面図FIG. 5 is a cross-sectional view showing the structure of a conventional light control device.

【図6】従来例の光制御デバイスの構造を示す断面図FIG. 6 is a sectional view showing the structure of a conventional light control device.

【図7】従来例の光制御デバイスの構造を示す断面図FIG. 7 is a sectional view showing the structure of a conventional light control device.

【符号の説明】[Explanation of symbols]

1 基板 2a、2b 光導波路 3 バッファ層 4a、4b 電極 5 光回路 6 導体膜 7 絶縁部 8 絶縁材 DESCRIPTION OF SYMBOLS 1 Substrate 2a, 2b Optical waveguide 3 Buffer layer 4a, 4b Electrode 5 Optical circuit 6 Conductive film 7 Insulating part 8 Insulating material

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】焦電効果を有する基板表面に形成された光
導波路と、前記光導波路の近傍に形成された少なくとも
1対の電極と、少なくとも前記基板と前記電極の間に形
成された膜体と、前記1対の電極の近傍を覆い前記膜体
より導電性の大きい導体膜とを有し、前記導体膜は前記
1対の電極のそれぞれの電極近傍で絶縁されていること
を特徴とする光制御デバイス。
An optical waveguide formed on a surface of a substrate having a pyroelectric effect, at least one pair of electrodes formed near the optical waveguide, and a film formed at least between the substrate and the electrodes. And a conductive film that covers the vicinity of the pair of electrodes and has higher conductivity than the film body, and the conductive film is insulated near the respective electrodes of the pair of electrodes. Light control device.
【請求項2】焦電効果を有する基板表面に形成された光
導波路と、前記光導波路の近傍に形成された少なくとも
1対の電極と、少なくとも前記基板と前記電極の間に形
成された膜体と、前記1対の電極の近傍を覆い前記膜体
より導電性の大きい導体膜とを有し、前記導体膜は前記
光導波路の近傍で絶縁されていることを特徴とする光制
御デバイス。
2. An optical waveguide formed on the surface of a substrate having a pyroelectric effect, at least one pair of electrodes formed near the optical waveguide, and a film formed between at least the substrate and the electrodes. And a conductive film that covers the vicinity of the pair of electrodes and has higher conductivity than the film body, wherein the conductive film is insulated near the optical waveguide.
【請求項3】請求項1又は2に記載の光制御デバイスに
おいて、前記導体膜は少なくとも前記1対の電極間に形
成されていることを特徴とする光制御デバイス。
3. The light control device according to claim 1, wherein said conductor film is formed at least between said pair of electrodes.
【請求項4】請求項1、2又は3に記載の光制御デバイ
スにおいて、前記1対の電極間に形成された膜体の厚さ
が前記1対の電極近傍まで他の部分に形成された前記膜
体の厚さより薄く形成され、かつ前記導体膜が前記薄く
形成された膜体上で絶縁されていることを特徴とする光
制御デバイス。
4. The light control device according to claim 1, wherein the thickness of the film formed between the pair of electrodes is formed in another portion up to the vicinity of the pair of electrodes. A light control device, wherein the light control device is formed thinner than the thickness of the film body, and the conductor film is insulated on the thinly formed film body.
【請求項5】焦電効果を有する基板表面に形成された光
導波路と、前記光導波路近傍に形成された少なくとも1
対の電極と、少なくとも前記基板と前記電極の間に形成
された膜体と、前記基板上かつ前記1対の電極間に形成
され前記膜体より絶縁性の高い絶縁材と、前記絶縁材上
に形成され前記膜体より導電性の大きい導体膜とを有
し、前記導体膜は前記1対の電極のそれぞれの電極近傍
で絶縁されていることを特徴とする光制御デバイス。
5. An optical waveguide formed on a surface of a substrate having a pyroelectric effect, and at least one optical waveguide formed near the optical waveguide.
A pair of electrodes, at least a film body formed between the substrate and the electrode, an insulating material formed on the substrate and between the pair of electrodes, and having a higher insulating property than the film body; And a conductive film having higher conductivity than the film body, wherein the conductive film is insulated near each of the pair of electrodes.
【請求項6】焦電効果を有する基板表面に形成された光
導波路と、前記光導波路近傍に形成された少なくとも1
対の電極と、少なくとも前記基板と前記電極の間に形成
された膜体と、前記基板上かつ前記1対の電極の間に形
成され前記膜体より絶縁性の高い絶縁材と、前記膜体よ
り導電性が大きく前記1対の電極の近傍を覆う導体膜と
を有し、前記導体膜は前記1対の電極の間で前記絶縁材
上に形成され、かつ、前記電極近傍で絶縁されているこ
とを特徴とする光制御デバイス。
6. An optical waveguide formed on the surface of a substrate having a pyroelectric effect, and at least one optical waveguide formed near the optical waveguide.
A pair of electrodes, a film formed at least between the substrate and the electrode, an insulating material formed on the substrate and between the pair of electrodes, and having a higher insulating property than the film; A conductive film having greater conductivity and covering the vicinity of the pair of electrodes, the conductive film being formed on the insulating material between the pair of electrodes, and being insulated near the electrodes. A light control device.
【請求項7】焦電効果を有する基板表面に形成された光
導波路と、前記光導波路近傍に形成された少なくとも1
対の電極と、少なくとも前記基板と前記電極の間に形成
された膜体と、前記基板上かつ前記1対の電極の間に形
成され前記膜体より絶縁性の高い絶縁材と、前記膜体よ
り導電性が大きく前記1対の電極の近傍を覆う導体膜と
を有し、前記導体膜は前記1対の電極の間で前記絶縁材
上に形成され、かつ、前記光導波路近傍で絶縁されてい
ることを特徴とする光制御デバイス。
7. An optical waveguide formed on a surface of a substrate having a pyroelectric effect, and at least one optical waveguide formed near the optical waveguide.
A pair of electrodes, a film formed at least between the substrate and the electrode, an insulating material formed on the substrate and between the pair of electrodes, and having a higher insulating property than the film; A conductive film having higher conductivity and covering the vicinity of the pair of electrodes, the conductive film being formed on the insulating material between the pair of electrodes, and insulated near the optical waveguide. A light control device characterized in that:
JP9103308A 1997-04-21 1997-04-21 Light control device Expired - Fee Related JP2850899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9103308A JP2850899B2 (en) 1997-04-21 1997-04-21 Light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9103308A JP2850899B2 (en) 1997-04-21 1997-04-21 Light control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6309707A Division JP2894961B2 (en) 1994-11-18 1994-11-18 Light control device

Publications (2)

Publication Number Publication Date
JPH1054964A true JPH1054964A (en) 1998-02-24
JP2850899B2 JP2850899B2 (en) 1999-01-27

Family

ID=14350598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9103308A Expired - Fee Related JP2850899B2 (en) 1997-04-21 1997-04-21 Light control device

Country Status (1)

Country Link
JP (1) JP2850899B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385360B1 (en) 1998-08-25 2002-05-07 Nec Corporation Light control device and a method for manufacturing the same
US7123784B2 (en) 2003-04-24 2006-10-17 Seikoh Giken Co., Ltd. Electro-optic modulator with particular diffused buffer layer
WO2009090687A1 (en) * 2008-01-18 2009-07-23 Anritsu Corporation Optical modulator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165122A (en) * 1980-05-24 1981-12-18 Nippon Telegr & Teleph Corp <Ntt> Direct current drift preventing method in optical modulator and optical deflecting device
JPH03253815A (en) * 1990-03-02 1991-11-12 Fujitsu Ltd Optical waveguide device
JPH0419714A (en) * 1990-05-15 1992-01-23 Oki Electric Ind Co Ltd Optical device
JPH04172316A (en) * 1990-11-05 1992-06-19 Nec Corp Wave guide type light control device
JPH04190322A (en) * 1990-11-26 1992-07-08 Oki Electric Ind Co Ltd Waveguide type light modulator
JPH04195115A (en) * 1990-11-28 1992-07-15 Nec Corp Optical control device
JPH08146367A (en) * 1994-11-18 1996-06-07 Nec Corp Optical control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165122A (en) * 1980-05-24 1981-12-18 Nippon Telegr & Teleph Corp <Ntt> Direct current drift preventing method in optical modulator and optical deflecting device
JPH03253815A (en) * 1990-03-02 1991-11-12 Fujitsu Ltd Optical waveguide device
JPH0419714A (en) * 1990-05-15 1992-01-23 Oki Electric Ind Co Ltd Optical device
JPH04172316A (en) * 1990-11-05 1992-06-19 Nec Corp Wave guide type light control device
JPH04190322A (en) * 1990-11-26 1992-07-08 Oki Electric Ind Co Ltd Waveguide type light modulator
JPH04195115A (en) * 1990-11-28 1992-07-15 Nec Corp Optical control device
JPH08146367A (en) * 1994-11-18 1996-06-07 Nec Corp Optical control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385360B1 (en) 1998-08-25 2002-05-07 Nec Corporation Light control device and a method for manufacturing the same
KR100364033B1 (en) * 1998-08-25 2002-12-11 닛본 덴기 가부시끼가이샤 A light control device and a method for manufacturing the same
US7123784B2 (en) 2003-04-24 2006-10-17 Seikoh Giken Co., Ltd. Electro-optic modulator with particular diffused buffer layer
US7664344B2 (en) 2003-04-24 2010-02-16 Seikoh Giken Co., Ltd. Electro-optic modulator
WO2009090687A1 (en) * 2008-01-18 2009-07-23 Anritsu Corporation Optical modulator
JPWO2009090687A1 (en) * 2008-01-18 2011-05-26 アンリツ株式会社 Light modulator

Also Published As

Publication number Publication date
JP2850899B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US7529433B2 (en) Humidity tolerant electro-optic device
JP2894961B2 (en) Light control device
JP3929814B2 (en) Mach-Zehnder electro-optic modulator
US8774565B2 (en) Electro-optic device
US5473711A (en) Dielectric optical waveguide device
JP2674535B2 (en) Light control device
JP2825056B2 (en) Light control device
EP2183643B1 (en) Low switching voltage, fast time response digital optical switch
JP2850899B2 (en) Light control device
JP2007199500A (en) Optical modulator
US5687265A (en) Optical control device and method for making the same
US6891982B2 (en) Optical modulation device having excellent electric characteristics by effectively restricting heat drift
JP5117082B2 (en) Light modulator
JP2717980B2 (en) Integrated optical waveguide device
JP3139712B2 (en) Light control device
JP2809112B2 (en) Light control device and manufacturing method thereof
JP2624199B2 (en) Light control device and manufacturing method thereof
JP2730465B2 (en) Light control device and manufacturing method thereof
JPH06347839A (en) Optical control device
JPH055334B2 (en)
JPH07152051A (en) Optical waveguide element
JPH06347838A (en) Optical control device
JPH07294759A (en) Light control device and its production
JP2007192887A (en) Method for manufacturing optical modulator
JPH09211503A (en) Waveguide type optical control element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees