JP2613942B2 - Waveguide type optical device - Google Patents

Waveguide type optical device

Info

Publication number
JP2613942B2
JP2613942B2 JP1192679A JP19267989A JP2613942B2 JP 2613942 B2 JP2613942 B2 JP 2613942B2 JP 1192679 A JP1192679 A JP 1192679A JP 19267989 A JP19267989 A JP 19267989A JP 2613942 B2 JP2613942 B2 JP 2613942B2
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
waveguide
polarization
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1192679A
Other languages
Japanese (ja)
Other versions
JPH0358033A (en
Inventor
靖久 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1192679A priority Critical patent/JP2613942B2/en
Publication of JPH0358033A publication Critical patent/JPH0358033A/en
Application granted granted Critical
Publication of JP2613942B2 publication Critical patent/JP2613942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスイッチングや変調機能を有する導波路型光
デバイスに関する。
Description: TECHNICAL FIELD The present invention relates to a waveguide type optical device having switching and modulation functions.

[従来の技術] 導波路型光デバイスは強誘電体や半導体材料からなる
基板に光導波路となる屈折率の高い部分を形成し,この
光導波路の上部または近傍に電極を形成し,外部から電
圧を印加することによりスイッチングや光変調を行う光
デバイスである。
[Prior Art] A waveguide-type optical device forms a high-refractive-index portion serving as an optical waveguide on a substrate made of a ferroelectric or semiconductor material, forms an electrode on or near the optical waveguide, and applies a voltage from the outside. Is an optical device that performs switching and optical modulation by applying a voltage.

第2図は従来のこの種の光デバイスの一例を示したも
のであって,電気光学効果を有する強誘電体であるLiNb
O3基板1に導波路パターンをTiで形成し,これを熱拡散
して光導波路2を形成した後,さらにこの光導波路2の
上部あるいは近傍に金属膜により電極4を設け,上記の
機能をもたせた導波路型光デバイスがすでに数多く研究
・開発されている。
FIG. 2 shows an example of a conventional optical device of this type, in which a ferroelectric LiNb having an electro-optical effect is used.
After forming a waveguide pattern on the O 3 substrate 1 with Ti and thermally diffusing the same to form an optical waveguide 2, an electrode 4 is further provided on or above the optical waveguide 2 with a metal film to provide the above function. Many waveguide optical devices have been researched and developed.

これらの導波路型光デバイスは光導波路の上部または
近傍に設けられた電極に電圧を印加し,光導波路に電界
を発生させ,基板のもつ電気光学効果により光導波路の
屈折率を変化させることにより,導波光の伝播定数や位
相を変化させ,所望のスイッチングや光変調機能を得る
ものである。このとき,一般には光導波路の屈折率変化
は基板の電気光学定数により定まり,これは基板の結晶
軸の方向と発生電界により異なる。
These waveguide-type optical devices apply a voltage to electrodes provided on or near the optical waveguide, generate an electric field in the optical waveguide, and change the refractive index of the optical waveguide by the electro-optic effect of the substrate. The desired switching and light modulation functions are obtained by changing the propagation constant and phase of the guided light. At this time, generally, the change in the refractive index of the optical waveguide is determined by the electro-optic constant of the substrate, which differs depending on the direction of the crystal axis of the substrate and the generated electric field.

このため,従来,導波路型光デバイスを設計する場
合,同じ電界強度に対して最も大きく屈折率が変化する
ように基板の結晶軸と電圧を印加したときの電界発生方
向を定め,これに合わせて導波光の偏波方向が所望の偏
光状態になるように半導体レーザからの直線偏光を定偏
波光ファイバなどを用いて保存して,これをそのまま光
導波路に入射し,導波路基板内でスイッチングや光変調
させていた。
Conventionally, when designing a waveguide-type optical device, the crystal axis of the substrate and the direction of electric field generation when a voltage is applied are determined so that the refractive index changes most for the same electric field strength. The linearly polarized light from the semiconductor laser is stored using a constant polarization optical fiber or the like so that the polarization direction of the guided light becomes the desired polarization state, and this is directly incident on the optical waveguide and switched within the waveguide substrate. And light modulation.

例えば,Z板LiNbO3を用いたTi拡散導波路型光スイッチ
では,基板表面(全反射面)に光の電界成分が垂直な導
波光(TMモード光)に対して基板表面に垂直な方向に電
界を発生させると,このときの電気光学定数はLiNbO3
晶がもつ最も大きい値となり(r33=2.7〜3.1),低電
圧でスイッチング動作をさせることができる。
For example, in a Ti-diffused waveguide optical switch using Z-plate LiNbO 3 , the electric field component of the light is perpendicular to the substrate surface (total reflection surface). When an electric field is generated, the electro-optic constant at this time becomes the largest value of the LiNbO 3 crystal (r 33 = 2.7 to 3.1), and the switching operation can be performed at a low voltage.

[発明が解決しようとする課題] 上述した従来の導波路型光デバイスは,光導波路の導
波光が所望の偏光状態となるように,半導体レーザから
の光を第2図に示すように定偏波光ファイバ7で偏波方
向を保存し,定偏波光ファイバ7の偏波保存方向を光導
波路2の偏波方向に合わせて光学的に結合させている。
[Problems to be Solved by the Invention] In the conventional waveguide type optical device described above, the light from the semiconductor laser is deflected as shown in FIG. 2 so that the guided light of the optical waveguide is in a desired polarization state. The polarization direction is preserved by the optical fiber 7, and the polarization maintaining direction of the constant polarization optical fiber 7 is optically coupled to the polarization direction of the optical waveguide 2.

ところが,こうした方法だけで光導波路の導波光の偏
光状態を定めようとすると,定偏波光ファイバの偏波消
光比(主軸を伝播する直線偏光と主軸と直交軸を伝播す
る光の割合)が低かったり,また,定偏波光ファイバの
偏波消光比が高くても,定偏波光ファイバの偏波保存方
向と光導波路の偏波方向との角度にずれが生じている
と,光導波路の導波光に所望の偏光と直交する偏光が保
存することになり,スイッチング特性や光変調特性が劣
化してしまうという欠点がある。
However, when trying to determine the polarization state of the guided light in the optical waveguide using only such a method, the polarization extinction ratio (the ratio of linearly polarized light propagating along the principal axis to light propagating along the principal axis and the orthogonal axis) of the constant polarization optical fiber is low. Even if the polarization extinction ratio of the polarization-maintaining optical fiber is high, if the angle between the polarization-preserving direction of the polarization-maintaining optical fiber and the polarization direction of the optical waveguide is deviated, the waveguided light of the optical waveguide is reduced. However, there is a disadvantage that the polarization orthogonal to the desired polarization is preserved, thereby deteriorating the switching characteristics and the light modulation characteristics.

すなわち,光スイッチにおいては所望の偏光状態をも
つ導波光は完全にスイッチングされるが,直交する偏光
は完全にスイッチングされないので,その分がクロスト
ークとなる。また,光変調器においては,所望の偏光状
態と直交する偏光は発生電界により完全には動作しない
ため,変調時の消光比が劣化してしまう。例えば,先述
のZ板LiNbO3を用いたTi拡散導波路型光スイッチでは,
基板表面に電界成分が水平な偏光状態の導波光(TEモー
ド光)に対しては,電気光学定数がr33=1.1〜1.4とな
り,TMモード光に対するスイッチング電圧では十分なス
イッチングがなされず,この分がクロストークとなる。
In other words, in the optical switch, the guided light having the desired polarization state is completely switched, but the orthogonal polarization is not completely switched, resulting in crosstalk. Further, in the optical modulator, the polarization orthogonal to the desired polarization state does not completely operate due to the generated electric field, so that the extinction ratio at the time of modulation deteriorates. For example, in the above-described Ti diffused waveguide optical switch using the Z-plate LiNbO 3 ,
For electric field component to the substrate surface is a horizontal polarization state of the guided light (TE mode light), sufficient switching is not performed in the switching voltage electrical optical constant becomes r 33 = 1.1 to 1.4, for the TM mode light, the Minutes become crosstalk.

本発明は従来のもののこのような課題を解決し,スト
ロークを低減し消光比を高めた導波路型光デバイスを提
供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and to provide a waveguide type optical device having a reduced stroke and an increased extinction ratio.

[課題を解決するための手段] 本発明の導波路型光デバイスは,光導波路の入力側に
は光導波路基板表面の光導波路端と電極が形成された部
分の間に光導波路よりも屈折率の低い第1層の薄膜が被
膜され、さらに第1層の薄膜の上面に光導波路よりも屈
折率の高い第2層の薄膜が光導波路の幅よりも広い幅で
形成されていることを特徴としている。
[Means for Solving the Problems] The waveguide type optical device of the present invention has a refractive index higher than that of the optical waveguide between the end of the optical waveguide substrate surface and the electrode at the input side of the optical waveguide. And a second layer thin film having a higher refractive index than the optical waveguide is formed on the upper surface of the first layer thin film with a width wider than the width of the optical waveguide. And

これは,定偏波光ファイバから光導波路に光を入射す
る際に,定偏波光ファイバの偏波消光比が低かったり,
あるいは定偏波光ファイバの偏波保存方向と光導波路の
全反射面の間に角度ずれが生じ,所望の偏光状態でない
光が光導波路に入射されても,光導波路と上記の第2層
の薄膜との間に第1層を介して位相整合による結合を不
要光に対してのみ起こさせ,この不要光を第2層に逃が
すことができる。ここで,第2層の薄膜の幅を光導波路
の幅よりも広くしておけば,いったん第2層の薄膜に結
合した光は薄膜内で横方向に広がり再び光導波路に結合
することはない。
This is because the polarization extinction ratio of the constant polarization optical fiber is low when light enters the optical waveguide from the constant polarization optical fiber,
Alternatively, even if an angle shift occurs between the polarization preserving direction of the polarization maintaining optical fiber and the total reflection surface of the optical waveguide, and light having a desired polarization state is not incident on the optical waveguide, the optical waveguide and the thin film of the second layer are formed. Between the first and second layers through the first layer, only the unnecessary light can be coupled to the unnecessary light, and the unnecessary light can escape to the second layer. Here, if the width of the thin film of the second layer is made wider than the width of the optical waveguide, the light once coupled to the thin film of the second layer spreads laterally in the thin film and does not couple to the optical waveguide again. .

位相整合による結合の条件は,光導波路,第1,2層の
それぞれの屈折率と第1,2各層の薄膜に依存し,導波光
の偏光状態によって異なるので,これらの条件を適当に
設定することにより,不要光のみを除去することができ
る。
The conditions for coupling by phase matching depend on the refractive index of the optical waveguide and the first and second layers and the thin films of the first and second layers, and differ depending on the polarization state of the guided light. Thereby, only unnecessary light can be removed.

[実施例] 次に,本発明について図面を参照して説明する。Next, the present invention will be described with reference to the drawings.

第1図は本発明を2×2導波路型光スイッチに適用し
たときの一実施例の斜視図で,1は強誘電体であるLiNbO3
のZ板であり,図に示すような方向性結合器のパターン
をTi膜により形成し,これを1050℃,8時間熱拡散し,光
導波路2を形成する。Z板LiNbO3基板を用いた光スイッ
チや光変調器では,光導波路への入射光の偏光状態を,
その電界成分が基板表面に対して垂直になるようにし,
(TMモード光)光導波路に外部から電界を発生させて動
作させたとき,最も基板のもつ電気光学効果が大きくな
り,低電圧でスイッチングや光変調などの動作を行うこ
とができる。
FIG. 1 is a perspective view of one embodiment when the present invention is applied to a 2 × 2 waveguide type optical switch, and 1 is a ferroelectric LiNbO 3.
A directional coupler pattern as shown in the figure is formed of a Ti film, and this is thermally diffused at 1050 ° C. for 8 hours to form an optical waveguide 2. In an optical switch or an optical modulator using a Z-plate LiNbO 3 substrate, the polarization state of the light incident on the optical waveguide is
So that the electric field component is perpendicular to the substrate surface,
(TM mode light) When an optical waveguide is operated by generating an electric field from the outside, the electro-optic effect of the substrate is maximized, and operations such as switching and light modulation can be performed at a low voltage.

このとき,光導波路に電界を発生させるための電極4
を直線光導波路上部に設けると電極を構成な金属膜によ
る吸収が起き,導波光の損失が大きくなるので,これを
防ぐため,通常導波路基板1の表面にLiNbO3より屈折率
の低いSiO2膜をバッファ層3として,該バッファ層3を
介して電極4を形成する。ここでは,導波路基板1の表
面にTMモード光の電極への吸収損失をなくし,かつ低電
圧動作させるため,3000ÅのSiO2からなるバッファ層3
を被覆し,その上面にCrAuにより電極4を形成してい
る。
At this time, an electrode 4 for generating an electric field in the optical waveguide is used.
Is provided above the linear optical waveguide, absorption by the metal film constituting the electrode occurs, and the loss of guided light increases. To prevent this, the surface of the waveguide substrate 1 is usually provided with SiO 2 having a lower refractive index than LiNbO 3 on the surface of the waveguide substrate 1. Using the film as the buffer layer 3, the electrode 4 is formed via the buffer layer 3. Here, in order to eliminate the absorption loss of the TM mode light to the electrodes and operate at a low voltage on the surface of the waveguide substrate 1, a buffer layer 3 made of SiO 2 of 3000 ° is used.
, And an electrode 4 is formed on the upper surface with CrAu.

一方,導波路基板1の端面は研磨されており,光導波
路2の入出力端面には,光ファイバが光学的に光導波路
2と結合,固着されている。ここで,光スイッチの入力
側(光源側)は半導体レーザからの偏光状態を保持し,
光導波路2の導波光の偏光状態をTMモード光とするため
定偏波光ファイバ7が用いられており,光導波路2との
結合の際も偏波保存方向が導波路基板1の表面と垂直に
なるように角度調整されている。以上述べた光スイッチ
の構成は従来の光スイッチの構成と共通している。
On the other hand, the end face of the waveguide substrate 1 is polished, and an optical fiber is optically coupled to and fixed to the optical waveguide 2 on the input / output end face of the optical waveguide 2. Here, the input side (light source side) of the optical switch holds the polarization state from the semiconductor laser,
A constant polarization optical fiber 7 is used to change the polarization state of the guided light of the optical waveguide 2 to TM mode light, and the polarization preserving direction is perpendicular to the surface of the waveguide substrate 1 even when coupling with the optical waveguide 2. The angle is adjusted so that The configuration of the optical switch described above is common to the configuration of the conventional optical switch.

本発明の光スイッチでは,上述の導波路基板1の定偏
波光ファイバ7が固着された入力側端面と,電極4が形
成されている部分の間の基板表面の領域全体(約5mm
長)に,光導波路よりも屈折率の低いSiO2薄膜5と,光
導波路よりも屈折率の高いSi薄膜6を被膜している。こ
こでこのSiO2とSiの薄膜を被膜した領域で,本実施例で
は,光導波路2を伝播する導波光(TMモード)と直交す
る偏光状態をもつTEモード光(電界成分が基板表面に平
行な導波光)を減衰させる必要がある。SiO2とSiの薄膜
のそれぞれの膜厚とTEモードの減衰量との関係は第3図
に示されるとおりである。ここではTEモードのみを十分
減衰させ,TMモードに対しては減衰しない膜厚を設定す
る必要があり,SiO2薄膜,Si薄膜はそれぞれ2000Å,900
Åとした。
In the optical switch of the present invention, the entire area of the substrate surface (about 5 mm) between the input side end face of the waveguide substrate 1 to which the polarization maintaining optical fiber 7 is fixed and the electrode 4 is formed.
Long), a SiO 2 thin film 5 having a lower refractive index than the optical waveguide and a Si thin film 6 having a higher refractive index than the optical waveguide are coated. In this embodiment, in the region coated with the SiO 2 and Si thin films, in this embodiment, TE mode light having a polarization state orthogonal to the guided light (TM mode) propagating through the optical waveguide 2 (the electric field component is parallel to the substrate surface) Need to be attenuated. The relationship between the respective thicknesses of the SiO 2 and Si thin films and the attenuation in the TE mode is as shown in FIG. Here is sufficiently attenuated only TE mode, it is necessary to set the film thickness which does not decay for the TM mode, SiO 2 thin film, Si film respectively 2000 Å, 900
Å

次に,従来の光スイッチと本発明の構成を用いた光ス
イッチのスイッチング特性評価結果について説明する。
第4図(a)(b)はそれぞれ従来の光スイッチと本発
明による光スイッチのスイッチング特性を示している。
第4図からわかるように,従来の光スイッチでは入力側
の定偏波光ファイバ7のもつ偏波消光比が約15〜20dBで
あり,また光導波路2と定偏波光ファイバ7の結合や固
着時の偏波方向の角度合わせのずれ(約1度)から,光
導波路2を伝播する導波光のTM/TE偏波消光比は10〜15d
B程度となり,電極4に電圧を印加しスイッチングさせ
たとて,TMモード光は約5.5Vの電圧印加時でも約20dB程
度しかクロストークを低下させることができない。これ
は約5.5V電圧印加時でもTEモードに対する電気光学的効
果が小さいため(r33(1/3)・r33),TEモードがほと
んどスイッチング動作しておらず,しかも導波光の偏波
消光比が約10〜15dBと低いために十分なスイッチングを
していない。TEモードの影響を受けこれがクロストーク
分となるからである。
Next, the evaluation results of the switching characteristics of the conventional optical switch and the optical switch using the configuration of the present invention will be described.
FIGS. 4A and 4B show the switching characteristics of the conventional optical switch and the optical switch according to the present invention, respectively.
As can be seen from FIG. 4, in the conventional optical switch, the polarization extinction ratio of the input side constant polarization optical fiber 7 is about 15 to 20 dB, and when the optical waveguide 2 and the constant polarization optical fiber 7 are coupled or fixed. The TM / TE polarization extinction ratio of the guided light propagating through the optical waveguide 2 is 10 to 15 d due to the misalignment (about 1 degree) in the polarization direction of
When the voltage is applied to the electrode 4 and switching is performed, the TM mode light can reduce the crosstalk by only about 20 dB even when a voltage of about 5.5 V is applied. This is because the electro-optical effect on the TE mode is small even when a voltage of about 5.5 V is applied (r 33 (1/3) · r 33 ), so that the TE mode hardly performs a switching operation and the polarization quenching of the guided light The switching is not enough because the ratio is as low as about 10-15dB. This is because it is affected by the TE mode and this is the amount of crosstalk.

一方本発明の構成の光スイッチでは,SiO2,Si薄膜を
被膜した5mmの長さの領域でTEモードが約10dBの減衰を
しているため,5.5V電圧印加時にTEモードが十分スイッ
チングしていなくても,導波光の偏波消光比が20〜25dB
と改善されているため,スイッチング動作時のクロスト
ークは30dBと大幅に低下している。
On the other hand, in the optical switch having the configuration of the present invention, the TE mode is attenuated by about 10 dB in the region of 5 mm in length covered with the SiO 2 or Si thin film, so that the TE mode is sufficiently switched when the 5.5 V voltage is applied. Even if it is not, the polarization extinction ratio of guided light is 20 to 25 dB
Therefore, the crosstalk during switching operation has been significantly reduced to 30 dB.

[発明の効果] 以上説明したように本発明は,導波路型光デバイスの
基板表面の入力側端面と電極が形成されている部分との
間に,光導波路よりも屈折率の低い第1層の薄膜とその
上面に光導波路よりも屈折率が高くかつ光導波路の幅よ
りも広い範囲にわたって第2層の薄膜を被膜することに
より,実際に光導波路基板内でスイッチングや光変調を
行う所望の偏光状態をもつ導波光以外の導波光を減衰さ
せ,クロストークを低減したり消光比を高めたりできる
効果がある。
[Effects of the Invention] As described above, the present invention provides the first layer having a lower refractive index than the optical waveguide between the input side end face of the substrate surface of the waveguide type optical device and the portion where the electrode is formed. By coating a thin film of the second layer on the upper surface of the thin film and the upper surface thereof over a range having a higher refractive index than the optical waveguide and wider than the width of the optical waveguide, it is possible to actually perform switching and light modulation within the optical waveguide substrate. There is an effect that the guided light other than the guided light having the polarization state is attenuated to reduce crosstalk and increase the extinction ratio.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の導波路型光デバイスの一実施例の斜視
図,第2図は従来の導波路型光デバイスの一例の斜視
図,第3図は導波路基板上に被膜した2層の薄膜にSiO2
とSiを用いた場合の膜厚と導波光の減衰との関係を示す
図,第4図(a)(b)は従来の導波路型デバイスと本
発明による光スイッチのスイッチング特性を示す図であ
る。 記号の説明:1……導波路基板,2……光導波路,3……バッ
ファ層,4……電極,5……SiO2薄膜,6……Si薄膜,7……定
偏波光ファイバ、8……シングルモード光ファイバ。
FIG. 1 is a perspective view of one embodiment of a waveguide type optical device according to the present invention, FIG. 2 is a perspective view of one example of a conventional waveguide type optical device, and FIG. 3 is a two-layer coating on a waveguide substrate. SiO 2 for thin film
4 (a) and 4 (b) are diagrams showing the switching characteristics of a conventional waveguide device and an optical switch according to the present invention, showing the relationship between the film thickness and the attenuation of the guided light when Si and Si are used. is there. Explanation of symbols: 1… waveguide substrate, 2… optical waveguide, 3… buffer layer, 4… electrode, 5… SiO 2 thin film, 6… Si thin film, 7… constant polarization optical fiber, 8 …… Single mode optical fiber.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板表面に光導波路が形成され、 前記光導波路に電界を生じさせるための電圧印加用電極
と、 前記光導波路の光導波路端で前記光導波路と光学的に結
合する光ファイバとを備えた導波路型光デバイスであっ
て、 前記光導波路端と前記電極との間の、前記光導波路を含
む前記基板表面の領域に、前記光導波路よりも屈折率の
低い第1層の薄膜が被膜され、 さらに前記第1層の薄膜の上面に前記光導波路よりも屈
折率の高い第2層の薄膜が、前記光導波路の幅よりも広
い幅で形成され、 前記光導波路と前記第2層の薄膜との間の位相整合によ
る結合により前記光導波路を導波する光のうち、不要と
なる偏光方向の光を除去することを特徴とする導波路型
光デバイス。
An optical waveguide is formed on a surface of a substrate, a voltage application electrode for generating an electric field in the optical waveguide, and an optical fiber optically coupled to the optical waveguide at an optical waveguide end of the optical waveguide. A waveguide type optical device comprising: a first layer thin film having a lower refractive index than the optical waveguide in a region of the substrate surface including the optical waveguide between the optical waveguide end and the electrode; A thin film of a second layer having a higher refractive index than the optical waveguide is formed on the upper surface of the thin film of the first layer with a width wider than the width of the optical waveguide. A waveguide-type optical device, wherein unnecessary light in a polarization direction is removed from light guided in the optical waveguide by coupling by phase matching with a thin film of the layer.
JP1192679A 1989-07-27 1989-07-27 Waveguide type optical device Expired - Lifetime JP2613942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192679A JP2613942B2 (en) 1989-07-27 1989-07-27 Waveguide type optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192679A JP2613942B2 (en) 1989-07-27 1989-07-27 Waveguide type optical device

Publications (2)

Publication Number Publication Date
JPH0358033A JPH0358033A (en) 1991-03-13
JP2613942B2 true JP2613942B2 (en) 1997-05-28

Family

ID=16295244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192679A Expired - Lifetime JP2613942B2 (en) 1989-07-27 1989-07-27 Waveguide type optical device

Country Status (1)

Country Link
JP (1) JP2613942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213797A (en) * 2010-03-30 2011-10-12 住友大阪水泥股份有限公司 Waveguide-type polarizer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932742B2 (en) * 1991-04-30 1999-08-09 日本電気株式会社 Waveguide type optical device
JPH0728007A (en) * 1993-07-09 1995-01-31 Nec Corp Waveguide type optical device
JPH0980364A (en) * 1995-09-13 1997-03-28 Nec Corp Waveguide type optical device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632601A (en) * 1979-08-24 1981-04-02 Matsushita Electric Works Ltd Method of illuminating stair and illuminator
JPS62133428A (en) * 1985-12-05 1987-06-16 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213797A (en) * 2010-03-30 2011-10-12 住友大阪水泥股份有限公司 Waveguide-type polarizer
US8306372B2 (en) 2010-03-30 2012-11-06 Sumitomo Osaka Cement Co., Ltd. Waveguide-type polarizer
CN102213797B (en) * 2010-03-30 2014-07-23 住友大阪水泥股份有限公司 Waveguide-type polarizer

Also Published As

Publication number Publication date
JPH0358033A (en) 1991-03-13

Similar Documents

Publication Publication Date Title
US4983006A (en) Polarization-independent optical waveguide switch
US4561718A (en) Photoelastic effect optical waveguides
JPH0764126A (en) Optical control device
JPH0728007A (en) Waveguide type optical device
JPH08166565A (en) Optical control device
JPH07318986A (en) Waveguide type optical switch
JP3250712B2 (en) Polarization independent light control element
JP2613942B2 (en) Waveguide type optical device
JPH0667130A (en) Light control element
JP2932742B2 (en) Waveguide type optical device
JPH06186451A (en) Optical waveguide device
JPH07325276A (en) Polarization-independent optical control element
JP2635986B2 (en) Optical waveguide switch
JP2739405B2 (en) Electric field sensor
JPH0756199A (en) Polarization-independent waveguide type optical switch
US5815609A (en) Waveguide type optical external modulator
JPH0553157A (en) Optical control device
JPH04156423A (en) Light waveguide path type polarizer, light waveguide path device provided with such polarizer and manufacture of such device
JP3164124B2 (en) Light switch
JP2720654B2 (en) Light control device
JP2903700B2 (en) Waveguide type optical device
JP3418391B2 (en) Method for manufacturing waveguide type optical device
JP2900569B2 (en) Optical waveguide device
JPH06250131A (en) Optical control element
JPH0795173B2 (en) Light control device