JPH06186451A - Optical waveguide device - Google Patents

Optical waveguide device

Info

Publication number
JPH06186451A
JPH06186451A JP33589092A JP33589092A JPH06186451A JP H06186451 A JPH06186451 A JP H06186451A JP 33589092 A JP33589092 A JP 33589092A JP 33589092 A JP33589092 A JP 33589092A JP H06186451 A JPH06186451 A JP H06186451A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
waveguide device
optical
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33589092A
Other languages
Japanese (ja)
Inventor
Akira Ishikawa
朗 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP33589092A priority Critical patent/JPH06186451A/en
Publication of JPH06186451A publication Critical patent/JPH06186451A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain the large attenuation rate of crosstalks by providing means, etc., for removing the radiation mode and scattered light propagating in a substrate near the end faces of optical waveguides. CONSTITUTION:The first optical waveguide 11 and second optical waveguide 12 constituted by diffusion of Ti are provided with bends to form proximity parts in the LnNbO3 substrate 10. Electrodes 13, 14 are provided on the optical waveguides in these proximity parts. Grooves 20 of 100mum depth are formed near the end faces of the substrate 10 of these two optical waveguides 11, 12. The radiation mode which is generated in the bend parts of the two optical waveguides 11, 12 and leaking from the two optical waveguide and the scattered light in the substrate are irregularly reflected by these grooves and are not made incident on optical fibers 15, 16 respectively connected to the two optical waveguides and, therefore, the large attenuation rate of the crosstalks is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信や光センサ等に
用いられる特性を改善した光導波路デバイスに関し、特
に漏話減衰量を改善した光導波路デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide device having improved characteristics used in optical communication and optical sensors, and more particularly to an optical waveguide device having improved crosstalk attenuation.

【0002】[0002]

【従来の技術】従来この種の光導波路デバイスとして、
図3に示すようにLiNbO3 基板上のTi拡散による
第1光導波路11と第2光導波路12をそれぞれ2つの
曲がり部を設けて近傍部を形成した光方向性結合器型の
光スイッチがある。
2. Description of the Related Art Conventionally, as an optical waveguide device of this type,
As shown in FIG. 3, there is an optical directional coupler type optical switch in which a first optical waveguide 11 and a second optical waveguide 12 by Ti diffusion on a LiNbO 3 substrate are provided with two bent portions and a neighboring portion is formed. .

【0003】[0003]

【発明が解決しようとする課題】上述した従来の光導波
路デバイスとしての光スイッチでは、特に曲がり部で発
生した放射モードや基板や光導波路での散乱により、例
えばポート1−2間で大きい漏話減衰量が得られないと
いう欠点を有していた。
In the above-mentioned conventional optical switch as an optical waveguide device, a large crosstalk attenuation is caused, for example, between the ports 1-2 due to the radiation mode generated in the bending portion and the scattering in the substrate and the optical waveguide. It had the drawback that no quantity was available.

【0004】そこで、本発明は、従来の技術の上記欠点
を改良して、大きい漏話減衰量を得ようとするものであ
る。
Therefore, the present invention aims to improve the above-mentioned drawbacks of the prior art to obtain a large crosstalk attenuation amount.

【0005】[0005]

【課題を解決するための手段】本発明の光導波路デバイ
スでは、基板に形成された光導波路の端面近傍に基板内
を伝搬する放射モードや散乱光を除去する手段や、光導
波路デバイスの端面に光導波路部を除き吸収層を設けて
ある。
In the optical waveguide device of the present invention, means for removing the radiation mode and scattered light propagating in the substrate near the end face of the optical waveguide formed on the substrate, and the end face of the optical waveguide device An absorption layer is provided except for the optical waveguide portion.

【0006】[0006]

【実施例】次に、本発明の実施例について、図面を参照
して説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0007】図1は本発明の第1実施例を示すための概
略図である。zカットのLiNbO3 基板10にTi拡
散による第1光導波路11および第2光導波路12が曲
がり部を設けて近傍部を形成している。この近傍部の導
波路上には電極13,14が設けてある。第1および第
2光導波路11,12のLiNbO3 基板端面近傍に
は、深さ100μmの溝20が形成されている。第1お
よび第2光導波路11,12の曲がり部で発生して第1
および第2光導波路11,12から漏れた放射モードや
基板での散乱光は、この溝20で乱反射され、第1およ
び第2光導波路11,12にそれぞれ接続されている光
ファイバ15,16には入射されず、大きい漏話減衰量
が実現できる。溝20は切削加工で形成したが、このほ
か化学エッチングによっても形成できる。
FIG. 1 is a schematic view showing a first embodiment of the present invention. The first optical waveguide 11 and the second optical waveguide 12 formed by Ti diffusion are provided on the z-cut LiNbO 3 substrate 10 to form a curved portion and a neighboring portion. Electrodes 13 and 14 are provided on the waveguide in this vicinity. A groove 20 having a depth of 100 μm is formed near the end surface of the LiNbO 3 substrate of the first and second optical waveguides 11 and 12. The first and second optical waveguides 11 and 12 are generated at the bent portions and
The radiation mode leaked from the second optical waveguides 11 and 12 and the scattered light on the substrate are diffusely reflected by the groove 20 and are transmitted to the optical fibers 15 and 16 connected to the first and second optical waveguides 11 and 12, respectively. Is not incident, and a large amount of crosstalk attenuation can be realized. Although the groove 20 is formed by cutting, it may be formed by chemical etching.

【0008】またV溝を形成する代わりに、基板表面ま
たは裏面の少なくともいずれか一方に金属膜等の吸収膜
を設けてもよいし、基板よりも高い屈折率をもつ材料を
設けてもよい。さらに、吸収膜と基板よりも高い屈折率
をもつ材料を同時に設けてもよい。この吸収層は、光導
波路11,12を形成した後、フォトリソグラフィー技
術を用いてNi,Cr等の金属膜を形成すればよい。高
屈折率層は、光導波路11,12を形成するときと同じ
ようにTiを成膜し熱拡散させればよいし、光導波路1
1,12を形成した後、プロトン交換法で形成してもよ
い。さらに、高屈折率層が吸収層を兼ね備えるようにし
てもよい。
Instead of forming the V groove, an absorption film such as a metal film may be provided on at least one of the front surface and the back surface of the substrate, or a material having a higher refractive index than the substrate may be provided. Further, a material having a higher refractive index than the absorption film and the substrate may be provided at the same time. The absorption layer may be formed by forming a metal film of Ni, Cr or the like by using a photolithography technique after forming the optical waveguides 11 and 12. The high refractive index layer may be formed by depositing Ti and thermally diffusing the same as when forming the optical waveguides 11 and 12.
After forming 1, 12, they may be formed by a proton exchange method. Further, the high refractive index layer may also serve as the absorption layer.

【0009】なお、溝20は基板の光導波路が形成され
た側に設けたが、基板の裏面に形成しても良いし、基板
の両面に設けてもよい。吸収層や高屈折率層の場合も同
じである。
Although the groove 20 is provided on the side of the substrate on which the optical waveguide is formed, it may be formed on the back surface of the substrate or on both sides of the substrate. The same applies to the absorption layer and the high refractive index layer.

【0010】図2は本発明の第2実施例を示すための概
略図で、第1および第2光導波路11,12のLiNb
3 基板端面を示してある。第1および第2光導波路1
1,12のコア端面を残して端面に吸収膜21が設けら
れてある。
FIG. 2 is a schematic view showing a second embodiment of the present invention, in which LiNb of the first and second optical waveguides 11 and 12 is used.
The end surface of the O 3 substrate is shown. First and second optical waveguides 1
An absorption film 21 is provided on the end surfaces of the cores 1 and 12 except the core end surfaces.

【0011】以上基板にLiNbO3 を用いた場合につ
いて説明してきたが、石英を基板に用いてもよい。
Although the case of using LiNbO 3 for the substrate has been described above, quartz may be used for the substrate.

【0012】[0012]

【発明の効果】以上説明したように本発明の光導波路デ
バイスでは、基板に形成された光導波路の端面近傍に基
板内を伝搬する放射モードや散乱光を除去する手段等を
設けることによって、大きい漏話減衰量が得られるとい
う効果がある。
As described above, in the optical waveguide device of the present invention, by providing the radiation mode propagating in the substrate and means for removing scattered light in the vicinity of the end face of the optical waveguide formed in the substrate, There is an effect that the crosstalk attenuation amount can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光導波路デバイスの第1実施例であ
る。
FIG. 1 is a first embodiment of an optical waveguide device of the present invention.

【図2】本発明の光導波路デバイスの第2実施例であ
る。
FIG. 2 is a second embodiment of the optical waveguide device of the present invention.

【図3】従来の技術の光導波路デバイスとしての光スイ
ッチの例である。
FIG. 3 is an example of an optical switch as a conventional optical waveguide device.

【符号の説明】[Explanation of symbols]

10 LiNbO3 基板 11 第1光導波路 12 第2光導波路 13,14 電極 15,16 光ファイバ 20 溝 21 吸収膜10 LiNbO 3 substrate 11 First optical waveguide 12 Second optical waveguide 13,14 Electrode 15,16 Optical fiber 20 Groove 21 Absorption film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板に形成された光導波路の端面近傍
に、基板内を伝搬する放射モードや散乱光を除去する手
段を設けたことを特徴とする光導波路デバイス。
1. An optical waveguide device, characterized in that a means for eliminating a radiation mode propagating in the substrate and scattered light is provided in the vicinity of an end face of the optical waveguide formed on the substrate.
【請求項2】 前記基板がニオブ酸リチウム(LiNb
3 )結晶であることを特徴とする請求項1記載の光導
波路デバイス。
2. The substrate is lithium niobate (LiNb)
The optical waveguide device according to claim 1, wherein the optical waveguide device is o 3 ) crystal.
【請求項3】 前記基板内を伝搬する放射モードや散乱
光を除去する手段が、基板に形成された溝であることを
特徴とする請求項1記載の光導波路デバイス。
3. The optical waveguide device according to claim 1, wherein the means for removing the radiation mode and scattered light propagating in the substrate is a groove formed in the substrate.
【請求項4】 前記基板内を伝搬する放射モードや散乱
光を除去する手段が、基板に形成された吸収層であるこ
とを特徴とする請求項1記載の光導波路デバイス。
4. The optical waveguide device according to claim 1, wherein the means for removing a radiation mode propagating in the substrate and scattered light is an absorption layer formed on the substrate.
【請求項5】 前記基板内を伝搬する放射モードや散乱
光を除去する手段が、基板に形成された高屈折率層であ
ることを特徴とする請求項1記載の光導波路デバイス。
5. The optical waveguide device according to claim 1, wherein the means for removing a radiation mode propagating in the substrate and scattered light is a high refractive index layer formed on the substrate.
【請求項6】 前記高屈折率層が、吸収層を兼ね備えて
いることを特徴とする請求項5記載の光導波路デバイ
ス。
6. The optical waveguide device according to claim 5, wherein the high refractive index layer also serves as an absorption layer.
【請求項7】 基板に形成された光導波路の端面に、光
導波路のコア径よりわずかに大きな径を除き吸収層を設
けたことを特徴とする光導波路デバイス。
7. An optical waveguide device, characterized in that an absorption layer is provided on an end face of an optical waveguide formed on a substrate except a diameter slightly larger than a core diameter of the optical waveguide.
JP33589092A 1992-12-16 1992-12-16 Optical waveguide device Withdrawn JPH06186451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33589092A JPH06186451A (en) 1992-12-16 1992-12-16 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33589092A JPH06186451A (en) 1992-12-16 1992-12-16 Optical waveguide device

Publications (1)

Publication Number Publication Date
JPH06186451A true JPH06186451A (en) 1994-07-08

Family

ID=18293521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33589092A Withdrawn JPH06186451A (en) 1992-12-16 1992-12-16 Optical waveguide device

Country Status (1)

Country Link
JP (1) JPH06186451A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905536A2 (en) * 1997-09-26 1999-03-31 Nippon Telegraph and Telephone Corporation Optical module
US5974216A (en) * 1997-02-13 1999-10-26 Nec Corporation Optical waveguide electrically controlled variable attenuator
EP1111413A1 (en) * 1999-12-23 2001-06-27 Litton Systems, Inc. Multifunction integrated optics chip having improved polarization extinction ratio
KR100339393B1 (en) * 1999-07-02 2002-05-31 구자홍 variable optical attenuator
KR100350413B1 (en) * 2000-10-02 2002-08-28 (주)젠포토닉스 Externally controllable waveguide type higher order mode generator
WO2004021075A1 (en) * 2002-08-30 2004-03-11 Sumitomo Osaka Cement Co., Ltd Optical modulator
KR100606697B1 (en) * 1999-03-08 2006-07-31 엘지전자 주식회사 variable optical attenuator using the optical fiber coupler
US7474812B2 (en) 2004-06-15 2009-01-06 Anritsu Corporation Monitor photodetector equipped optical modulator
KR100878022B1 (en) * 2002-09-27 2009-01-13 주식회사 케이티 Optical patch cord
CN102096154A (en) * 2010-12-31 2011-06-15 北京交通大学 Coupling device for double core optical fiber and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974216A (en) * 1997-02-13 1999-10-26 Nec Corporation Optical waveguide electrically controlled variable attenuator
EP0905536A2 (en) * 1997-09-26 1999-03-31 Nippon Telegraph and Telephone Corporation Optical module
EP0905536A3 (en) * 1997-09-26 2002-11-13 Nippon Telegraph and Telephone Corporation Optical module
KR100606697B1 (en) * 1999-03-08 2006-07-31 엘지전자 주식회사 variable optical attenuator using the optical fiber coupler
KR100339393B1 (en) * 1999-07-02 2002-05-31 구자홍 variable optical attenuator
EP1111413A1 (en) * 1999-12-23 2001-06-27 Litton Systems, Inc. Multifunction integrated optics chip having improved polarization extinction ratio
KR100350413B1 (en) * 2000-10-02 2002-08-28 (주)젠포토닉스 Externally controllable waveguide type higher order mode generator
WO2004021075A1 (en) * 2002-08-30 2004-03-11 Sumitomo Osaka Cement Co., Ltd Optical modulator
US7310453B2 (en) 2002-08-30 2007-12-18 Sumitomo Osaka Cement Co., Ltd. Optical modulator
KR100878022B1 (en) * 2002-09-27 2009-01-13 주식회사 케이티 Optical patch cord
US7474812B2 (en) 2004-06-15 2009-01-06 Anritsu Corporation Monitor photodetector equipped optical modulator
CN102096154A (en) * 2010-12-31 2011-06-15 北京交通大学 Coupling device for double core optical fiber and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4983006A (en) Polarization-independent optical waveguide switch
JPH06289241A (en) Polarized light separating element
US3923373A (en) Coupling to graded index waveguide
JPH06186451A (en) Optical waveguide device
JP3836950B2 (en) Acousto-optic device
JPH09218317A (en) Tapered waveguide and optical waveguide element using the same
JPH08286160A (en) Acoustooptic filter
JP2613942B2 (en) Waveguide type optical device
JP2679760B2 (en) Optical waveguide
JPH04333004A (en) Light guide device
JPH0434505A (en) Optical waveguide type device and production thereof
JPH10160951A (en) Optical multiplexing and demultiplexing circuit
JPH0815656A (en) Optical waveguide type optical modulator
JPH06300933A (en) Thin film waveguide type polarizing filter
JP2641238B2 (en) Polarizer
JPS62103604A (en) Optical circuit and its production
JP2788762B2 (en) Optical circuit
JP2900569B2 (en) Optical waveguide device
JPH0886990A (en) Waveguide type optical controlling element
JPH0667131A (en) Optical filter
JPH03188423A (en) Optical directional coupler and production thereof
Gehler et al. ARROW's in KTiOPO 4
JPH0820651B2 (en) Optical waveguide switch
JPH10325911A (en) Optical waveguide element
JPH04282602A (en) Optical waveguide element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307