JPH04333004A - Light guide device - Google Patents
Light guide deviceInfo
- Publication number
- JPH04333004A JPH04333004A JP10269891A JP10269891A JPH04333004A JP H04333004 A JPH04333004 A JP H04333004A JP 10269891 A JP10269891 A JP 10269891A JP 10269891 A JP10269891 A JP 10269891A JP H04333004 A JPH04333004 A JP H04333004A
- Authority
- JP
- Japan
- Prior art keywords
- light
- substrate
- optical waveguide
- face
- light guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 5
- 230000003287 optical effect Effects 0.000 claims description 37
- 239000011521 glass Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000000644 propagated effect Effects 0.000 abstract description 3
- 230000001902 propagating effect Effects 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910003327 LiNbO3 Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は光導波装置に関し、特に
基板面に対し光を垂直に取り出す構成の光導波装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide device, and more particularly to an optical waveguide device configured to extract light perpendicularly to a substrate surface.
【0002】0002
【従来の技術】従来、光導波路から光を取り出す場合、
図4に示すように、プリズム11を光導波路2上に置く
ことにより、プリズム11と光導波路2とを結合させ、
プリズム11より光(出射光)12を取り出す光導波装
置がある。また、図5に示すように、光導波路2の表面
部分に回折格子13を形成し、光導波路2から特定の角
度で光(出射光)12を取り出す光導波装置がある。な
お、図4及び図5において、1は基板、8は入射光、及
び10は透過光である。[Prior Art] Conventionally, when extracting light from an optical waveguide,
As shown in FIG. 4, by placing the prism 11 on the optical waveguide 2, the prism 11 and the optical waveguide 2 are coupled,
There is an optical waveguide device that extracts light (outgoing light) 12 from a prism 11. Furthermore, as shown in FIG. 5, there is an optical waveguide device in which a diffraction grating 13 is formed on the surface of the optical waveguide 2 and light (output light) 12 is extracted from the optical waveguide 2 at a specific angle. In addition, in FIGS. 4 and 5, 1 is a substrate, 8 is incident light, and 10 is transmitted light.
【0003】0003
【発明が解決しようとする課題】しかしながら、従来の
技術では、以下に示す問題がある。[Problems to be Solved by the Invention] However, the conventional technology has the following problems.
【0004】(1)図4に示すプリズム結合では、光導
波路とプリズムとの間の結合により光を取り出すため、
光を光導波路表面に対し垂直に取り出すことができない
。(1) In the prism coupling shown in FIG. 4, light is extracted by coupling between the optical waveguide and the prism.
Light cannot be extracted perpendicularly to the optical waveguide surface.
【0005】(2)図5に示す回折格子によると、光導
波路の表面に対して垂直に光を取り出すためには、放射
損失が大きくなる。(2) According to the diffraction grating shown in FIG. 5, radiation loss increases in order to extract light perpendicularly to the surface of the optical waveguide.
【0006】(3)図5に示す回折格子によると、回折
格子の作成にあたり1μm以下の精度が必要であり、作
成が非常に困難である。(3) According to the diffraction grating shown in FIG. 5, an accuracy of 1 μm or less is required to create the diffraction grating, which is extremely difficult to create.
【0007】[0007]
【課題を解決するための手段】本発明の光導波装置は、
光を透過する物質より成る基板と、この基板上に屈折率
を僅かに高くすることにより光導波路と、前記基板の表
面に対して直角でありかつ光の進行方向に対して直角で
あり光学的に研磨された端面と前記端面に対して45°
の角度を有し光学的に研磨された反射面とから成るV字
状溝とを備える。[Means for Solving the Problems] The optical waveguide device of the present invention includes:
A substrate made of a material that transmits light, an optical waveguide formed by slightly increasing the refractive index on this substrate, and an optical waveguide that is perpendicular to the surface of the substrate and perpendicular to the direction of propagation of light. 45° to the polished end face and said end face.
and an optically polished reflective surface having an angle of .
【0008】また、本発明の光導波装置は、光を透過す
る物質より成る基板と、この基板上に屈折率を僅かに高
くすることにより形成された光導波路と、前記基板の表
面に対して直角でありかつ光の進行方向に対して直角で
あり光学的に研磨された端面と前記端面に対して45°
の角度を有し金属層及びガラス層を堆積させた鏡面とか
ら成るV字状溝とを備える。Further, the optical waveguide device of the present invention includes a substrate made of a material that transmits light, an optical waveguide formed on the substrate by slightly increasing the refractive index, and a an optically polished end face that is perpendicular to the direction of propagation of the light and 45° to said end face;
a V-shaped groove having an angle of , and a mirror surface on which a metal layer and a glass layer are deposited.
【0009】[0009]
【実施例】次に、本発明について図面を参照して説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.
【0010】本発明の第1の実施例を示す図1を参照す
ると、LiNbO3基板1の表面にホトリソグラフィ技
術を用いてチタンを希望の光導波路形状にパターンニン
グし、さらにこのチタンを熱拡散することによって光導
波路2を作成する。次に、光導波路2の一部に機械的に
切削を行い、V字状溝3を形成する。V字状溝3の一方
の面は光の進行方向に垂直で、かつ光学的に研磨された
端面4であり、光導波路2を伝搬してくる入射光8を損
失なく空間に伝搬させる。空間伝搬した光は、端面4に
対して45°の角度を有し、かつ光学的に研磨された反
射面5において、基板1と垂直に反射する反射光9と反
射面5を透過して再び光導波路2を伝搬する透過光10
とに二分割される。この構成により、光導波路2を伝搬
している光を基板1に対して垂直に取り出すことができ
る。また、入射光8を反射光9と透過光10とに少ない
損失で分割できる。さらに、V字状溝3の深さは20μ
m程度であり、回折格子を光導波路2上に作成するほど
の精度は必要としない。Referring to FIG. 1 showing a first embodiment of the present invention, titanium is patterned into a desired optical waveguide shape on the surface of a LiNbO3 substrate 1 using photolithography, and the titanium is further thermally diffused. The optical waveguide 2 is created by this. Next, a part of the optical waveguide 2 is mechanically cut to form a V-shaped groove 3. One surface of the V-shaped groove 3 is an optically polished end surface 4 that is perpendicular to the direction in which the light travels, allowing the incident light 8 propagating through the optical waveguide 2 to propagate into space without loss. The spatially propagated light passes through the reflected light 9 that is reflected perpendicularly to the substrate 1 on the optically polished reflective surface 5 that has an angle of 45° with respect to the end surface 4, and is reflected again. Transmitted light 10 propagating through the optical waveguide 2
It is divided into two parts. With this configuration, the light propagating through the optical waveguide 2 can be extracted perpendicularly to the substrate 1. Furthermore, the incident light 8 can be divided into reflected light 9 and transmitted light 10 with less loss. Furthermore, the depth of the V-shaped groove 3 is 20μ.
m, and does not require the precision required to create a diffraction grating on the optical waveguide 2.
【0011】本発明の第2の実施例を示す図2及び図3
を参照すると、LiNbO3 基板1の表面にホトリソ
グラフィ技術を用いてチタンを希望の光導波路形状にパ
ターンニングし、さらにこのチタンを熱拡散することに
よって光導波路2を作成する。次に、光導波路の一部に
機械的に切削を行い、V字状溝3を形成する。V字状溝
の一方の面は、光の進行方向に垂直で、かつ光学的に研
磨された端面4であり、光導波路2を伝搬してくる入射
光8を損失なく空間に伝搬させる。空間伝搬した光は、
端面4に対して45°の角度を有する鏡面(反射面)5
0において、損失なく基板1と垂直に反射する反射光9
となる。V字状溝3の拡大構成を示す図3から明らかな
ように、端面4に対して45°の角度を有する鏡面50
は、スパッタ技術を用いて堆積された金属層51とガラ
ス層52とから成る。この構成においては、光導波路2
を伝搬している光を基板1に対して垂直に損失なく取り
出すことができる。また、V字状溝3の深さは第1の実
施例と同様に20μm程度であり、回折格子を光導波路
2上に作成するほどの精度は必要としない。2 and 3 showing a second embodiment of the present invention
Referring to , an optical waveguide 2 is created by patterning titanium into a desired optical waveguide shape on the surface of a LiNbO3 substrate 1 using photolithography technology, and then thermally diffusing the titanium. Next, a part of the optical waveguide is mechanically cut to form a V-shaped groove 3. One surface of the V-shaped groove is an optically polished end surface 4 that is perpendicular to the traveling direction of the light, and allows the incident light 8 propagating through the optical waveguide 2 to propagate into space without loss. The light that propagated in space is
A mirror surface (reflection surface) 5 having an angle of 45° with respect to the end surface 4
0, the reflected light 9 is reflected perpendicularly to the substrate 1 without loss.
becomes. As is clear from FIG. 3 showing an enlarged configuration of the V-shaped groove 3, the mirror surface 50 has an angle of 45° with respect to the end surface 4.
consists of a metal layer 51 and a glass layer 52 deposited using sputtering techniques. In this configuration, the optical waveguide 2
The light propagating through the substrate 1 can be taken out perpendicularly to the substrate 1 without any loss. Further, the depth of the V-shaped groove 3 is about 20 μm as in the first embodiment, and the precision required to form a diffraction grating on the optical waveguide 2 is not required.
【0012】0012
【発明の効果】以上説明したように本発明によれば、光
導波路中にV字状溝を設けることにより、光導波路を伝
搬している光を基板に対して垂直にかつ損失なく取り出
すことができる。また、回折格子を光導波路上に作成す
るほどの精度は必要としない。[Effects of the Invention] As explained above, according to the present invention, by providing a V-shaped groove in the optical waveguide, the light propagating in the optical waveguide can be extracted perpendicularly to the substrate without loss. can. Furthermore, the precision required to create a diffraction grating on an optical waveguide is not required.
【図1】本発明の第1の実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.
【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the invention.
【図3】本発明の第2の実施例を示す断面図である。FIG. 3 is a sectional view showing a second embodiment of the invention.
【図4】従来例を示す断面図である。FIG. 4 is a sectional view showing a conventional example.
【図5】従来例を示す断面図である。FIG. 5 is a sectional view showing a conventional example.
1 基板 2 光導波路 3 V字状溝 4 端面 5 反射面 8 入射光 9 反射光 10 透過光 50 鏡面 51 金属層 52 ガラス層 1 Substrate 2 Optical waveguide 3 V-shaped groove 4 End face 5 Reflective surface 8 Incident light 9 Reflected light 10 Transmitted light 50 Mirror surface 51 Metal layer 52 Glass layer
Claims (2)
の基板上に屈折率を僅かに高くすることにより形成され
た光導波路と、前記基板の表面に対して直角でありかつ
光の進行方向に対して直角であり光学的に研磨された端
面と前記端面に対して45°の角度を有し光学的に研磨
された反射面とから成るV字状溝とを備えることを特徴
とする光導波装置。1. A substrate made of a material that transmits light, an optical waveguide formed on this substrate by slightly increasing the refractive index, and a direction perpendicular to the surface of the substrate and in which light travels. a V-shaped groove comprising an optically polished end face perpendicular to said end face and an optically polished reflective face at an angle of 45° to said end face. wave device.
の基板上に屈折率を僅かに高くすることにより形成され
た光導波路と、前記基板の表面に対して直角でありかつ
光の進行方向に対して直角であり光学的に研磨された端
面と前記端面に対して45°の角度を有し金属層及びガ
ラス層を堆積させた鏡面とから成るV字状溝とを備える
ことを特徴とする光導波装置。2. A substrate made of a material that transmits light, an optical waveguide formed on this substrate by slightly increasing the refractive index, and a direction perpendicular to the surface of the substrate and in which light travels. a V-shaped groove comprising an optically polished end face perpendicular to said end face and a mirror face having a metal layer and a glass layer deposited thereon and at an angle of 45° to said end face. optical waveguide device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10269891A JPH04333004A (en) | 1991-05-08 | 1991-05-08 | Light guide device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10269891A JPH04333004A (en) | 1991-05-08 | 1991-05-08 | Light guide device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04333004A true JPH04333004A (en) | 1992-11-20 |
Family
ID=14334481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10269891A Pending JPH04333004A (en) | 1991-05-08 | 1991-05-08 | Light guide device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04333004A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5446814A (en) * | 1993-11-05 | 1995-08-29 | Motorola | Molded reflective optical waveguide |
JPH11326662A (en) * | 1998-05-18 | 1999-11-26 | Nec Corp | Optical planar circuit |
US6670208B2 (en) | 2000-06-23 | 2003-12-30 | Nec Corporation | Optical circuit in which fabrication is easy |
US6829079B2 (en) | 2000-12-22 | 2004-12-07 | Nec Corporation | Optical path control apparatus with mirror section, and manufacturing method for the same |
WO2009098834A1 (en) * | 2008-02-08 | 2009-08-13 | Hitachi Chemical Company, Ltd. | Manufacturing method of optical wiring printed board and optical wiring printed circuit board |
JP2011096349A (en) * | 2009-09-30 | 2011-05-12 | Seiko Instruments Inc | Head gimbal assembly |
-
1991
- 1991-05-08 JP JP10269891A patent/JPH04333004A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5446814A (en) * | 1993-11-05 | 1995-08-29 | Motorola | Molded reflective optical waveguide |
JPH11326662A (en) * | 1998-05-18 | 1999-11-26 | Nec Corp | Optical planar circuit |
US6670208B2 (en) | 2000-06-23 | 2003-12-30 | Nec Corporation | Optical circuit in which fabrication is easy |
US7242828B2 (en) | 2000-06-23 | 2007-07-10 | Nec Corporation | Optical circuit in which fabrication is easy |
US6829079B2 (en) | 2000-12-22 | 2004-12-07 | Nec Corporation | Optical path control apparatus with mirror section, and manufacturing method for the same |
WO2009098834A1 (en) * | 2008-02-08 | 2009-08-13 | Hitachi Chemical Company, Ltd. | Manufacturing method of optical wiring printed board and optical wiring printed circuit board |
TWI396874B (en) * | 2008-02-08 | 2013-05-21 | Hitachi Chemical Co Ltd | Optical wiring printing board manufacturing method and optical wiring printed circuit board |
US8639067B2 (en) | 2008-02-08 | 2014-01-28 | Hitachi Chemical Company, Ltd. | Fabrication method of optical wiring board and optical printed circuit board |
JP5532929B2 (en) * | 2008-02-08 | 2014-06-25 | 日立化成株式会社 | Optical wiring printed circuit board manufacturing method |
JP2011096349A (en) * | 2009-09-30 | 2011-05-12 | Seiko Instruments Inc | Head gimbal assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4262995A (en) | Planar star coupler device for fiber optics | |
US4881791A (en) | Optical device | |
JP3522117B2 (en) | Self-guided optical circuit | |
US3967877A (en) | Coupler for coupling optical energy transmitted by optical fiber to optical waveguide and method of manufacture | |
JPS63191111A (en) | Optical coupler | |
JP2891856B2 (en) | Optical path conversion circuit | |
JPH04333004A (en) | Light guide device | |
WO2003075062A8 (en) | Optical switch with 3d waveguides | |
JPH06186451A (en) | Optical waveguide device | |
JP3032647B2 (en) | Optical waveguide device | |
JP2679760B2 (en) | Optical waveguide | |
JPH04330406A (en) | Optical jumper | |
JPH0361924B2 (en) | ||
JPH10325910A (en) | Optical branching device | |
JPH07134220A (en) | Structure of juncture of optical fiber and optical waveguide and its connecting method | |
JPS5521011A (en) | Thin fllm spectral module | |
JPS5955407A (en) | Optical demultiplexer | |
SU1633370A1 (en) | Optical demultiplexor | |
JPS63279627A (en) | Two-way optical communication module | |
JPH03291603A (en) | Optical multiplexer/demultiplexer | |
JPH0414762B2 (en) | ||
JPH0456818A (en) | Optical brancher/coupler and its production | |
JPS63147140A (en) | Acoustooptic element | |
JPH06508940A (en) | Optical waveguide connecting member | |
JPS60173502A (en) | Waveguide type optical branching circuit |