JPH0361924B2 - - Google Patents

Info

Publication number
JPH0361924B2
JPH0361924B2 JP57094749A JP9474982A JPH0361924B2 JP H0361924 B2 JPH0361924 B2 JP H0361924B2 JP 57094749 A JP57094749 A JP 57094749A JP 9474982 A JP9474982 A JP 9474982A JP H0361924 B2 JPH0361924 B2 JP H0361924B2
Authority
JP
Japan
Prior art keywords
waveguide
planar
semi
planar waveguide
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57094749A
Other languages
Japanese (ja)
Other versions
JPS58211717A (en
Inventor
Minoru Kyono
Itsupei Sawaki
Hiroki Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9474982A priority Critical patent/JPS58211717A/en
Publication of JPS58211717A publication Critical patent/JPS58211717A/en
Publication of JPH0361924B2 publication Critical patent/JPH0361924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • G02B6/1245Geodesic lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は、複合光導波路に関し、特にプレーナ
型およびチヤネル型等の光導波路を複合して構成
することによつてこれら各種の光導波路の持つ利
点を活用した複合光導波路に関する。
[Detailed Description of the Invention] (1) Technical Field of the Invention The present invention relates to a composite optical waveguide, and in particular, the present invention relates to a composite optical waveguide, and in particular, by configuring a composite optical waveguide such as a planar type and a channel type, the characteristics of these various optical waveguides can be improved. This paper relates to a composite optical waveguide that takes advantage of the following advantages.

(2) 技術の背景 最近、ガラス等の基板上に光導波路および光ス
イツチ等の各種の光素子を構成した光集積回路が
注目されている。このような光集積回路において
は、光の伝達を行なう光導波路の特性が光集積回
路全体に与える影響が大きく、従つて光導波路の
持つ利点を充分に活用することが必要とされる。
(2) Background of the Technology Recently, optical integrated circuits in which various optical elements such as optical waveguides and optical switches are constructed on a substrate made of glass or the like have been attracting attention. In such an optical integrated circuit, the characteristics of the optical waveguide through which light is transmitted have a large influence on the entire optical integrated circuit, and therefore it is necessary to fully utilize the advantages of the optical waveguide.

(3) 従来技術と問題点 従来、光集積回路に使用される光導波路として
はガラス等の基板の上に平面的に形成されたプレ
ーナ型導波路と、ガラス等の基板の上に線状に形
成されたチヤネル型導波路とが用いられていた。
プレーナ型導波路は、広いビーム幅の光を伝達す
るのに適しておりブラツグ回折スイツチ等幅広い
ビーム径の光を必要とする光回路素子に適してい
る。またチヤネル型は光フアイバケーブルのよう
に低損失で光信号の伝送を行なうことができ、方
向性結合器等微細な構造を持つ光回路素子に用い
られる。
(3) Prior art and problems Conventionally, optical waveguides used in optical integrated circuits include planar waveguides formed flat on a substrate such as glass, and linear waveguides formed on a substrate such as glass. A formed channel waveguide was used.
Planar waveguides are suitable for transmitting light with a wide beam width and are suitable for optical circuit elements such as Bragg diffraction switches that require light with a wide beam diameter. In addition, the channel type can transmit optical signals with low loss like an optical fiber cable, and is used for optical circuit elements with fine structures such as directional couplers.

しかしながら、前記従来形の光集積回路におい
ては、プレーナ型およびチヤネル型の各光導波路
がそれぞれ別個に使用されていたため、例えば横
方向の幅の広い平行光線を得るような場合にはレ
ンズ等の機能部品を使用する必要があつた。即
ち、幅広い平行光線を得る場合には、チヤネル型
導波路からの光を一旦空中に拡散させこの拡散し
た光を凸レンズ等によつて広い断面積を有する平
行ビームに変換し、このような平行ビームをプレ
ーナ型導波路に入力することによつて平板状の平
行ビームを得ていた。したがつて凸レンズ等の機
能素子を別個に必要とするための装置の構成が複
雑になるとともに高価になるという不都合があつ
た。
However, in the conventional optical integrated circuit, each of the planar type and channel type optical waveguides is used separately, so when obtaining parallel light beams with a wide width in the lateral direction, for example, the functions of lenses, etc. I needed to use parts. In other words, in order to obtain a wide parallel beam, the light from the channel waveguide is first diffused into the air, and then this diffused light is converted into a parallel beam with a wide cross-sectional area using a convex lens, etc. A flat parallel beam was obtained by inputting the beam into a planar waveguide. Therefore, since a functional element such as a convex lens is separately required, the structure of the device becomes complicated and expensive.

(4) 発明の目的 本発明の目的は前述の従来形における問題点に
鑑み、光集積回路等に用いられる複合光導波路に
おいて、光導波路を複数種類の導波路の組合わせ
によつて構成し、少なくとも1種類の導波路が他
の種類の導波路に包含されるようにするという構
想に基づき、プレーナ型およびチヤネル型等の各
種の光導波路の持つ利点を充分に活用しかつ別個
の機能素子を用いることなく種々の光ビームを得
ることができるようにすることにある。
(4) Object of the Invention In view of the problems with the conventional type described above, the object of the present invention is to provide a composite optical waveguide for use in optical integrated circuits, etc., in which the optical waveguide is configured by a combination of multiple types of waveguides. Based on the concept that at least one type of waveguide is included in another type of waveguide, the advantages of various types of optical waveguides such as planar type and channel type are fully exploited and separate functional elements are integrated. The object of the present invention is to make it possible to obtain various light beams without using them.

(5) 発明の構成 そしてこの目的は、本発明によれば、ほぼ線状
のチヤネル型導波路と、光信号の広がり幅に比し
充分広幅のプレーナ型導波路と、これら2種類の
導波路の中間幅を有する半プレーナ型導波路とに
よつて構成され、これら3種の導波路は前記プレ
ーナ型導波路内に前記半プレーナ型導波路が包含
され、且つ該半プレーナ型導波路内に前記チヤネ
ル型導波路が包含されるように基板面上に同一平
面内に形成され、前記半プレーナ型導波路端部の
前記プレーナ型導波路との切断面が円弧状断面に
形成されており、前記基板、プレーナ型導波路、
半プレーナ型導波路、およびチヤネル型導波路の
光屈折率は、基板の屈折率を最小とし、チヤネル
型導波路の屈折率を最大とし、プレーナ型導波路
および半プレーナ型導波路の屈折率はその間の値
とし、その大小は前記切断面の円弧状断面の凸凹
に対応して決定されるようにし、前記チヤネル型
導波路と前記半プレーナ型導波路および前記プレ
ーナ型導波路を伝播する光ビームが前記切断面に
おいて所定のビーム幅になるよう調整されている
ことを特徴とする複合光導波路を提供することに
よつて達成される。
(5) Structure of the Invention According to the present invention, the present invention provides a substantially linear channel waveguide, a planar waveguide whose width is sufficiently wide compared to the spread width of an optical signal, and two types of waveguides. A semi-planar waveguide having an intermediate width of formed in the same plane on the substrate surface so as to include the channel waveguide, and a cut surface of the end portion of the semi-planar waveguide with the planar waveguide is formed in an arcuate cross section; the substrate, a planar waveguide,
The optical refractive index of the semi-planar waveguide and the channel waveguide is such that the refractive index of the substrate is the minimum, the refractive index of the channel waveguide is the maximum, and the refractive index of the planar waveguide and the semi-planar waveguide is The value is between these, and the magnitude thereof is determined in accordance with the unevenness of the arcuate cross section of the cut surface, and the light beam propagates through the channel waveguide, the semi-planar waveguide, and the planar waveguide. This is achieved by providing a composite optical waveguide characterized in that the beam width is adjusted to have a predetermined beam width at the cut plane.

(6) 発明の実施例 以下図面を用いて本発明の1実施例を説明す
る。第1図は、本発明の1実施例に係わる複合光
導波路の構成を示す概略的斜視図である。また、
第2図は第1図の複合光導波路の−線におけ
る断面図である。これらの図から明らかなよう
に、本発明の1実施例に係わる複合光導波路は、
ガラス等の基板1上に構成されたプレーナ型導波
路2、該プレーナ型導波路2内に包含されるよう
に構成された半プレーナ型導波路3および半プレ
ーナ型導波路3内に包含されるように構成された
チヤネル型導波路4を具備する。プレーナ型導波
路2は例えばニオブ酸リチウムLiNbO3等によつ
て構成され、半プレーナ型導波路3およびチヤネ
ル型導波路4は該プレーナ型導波路2内の所要領
域を例えばチタン等を熱拡散して屈折率を大きく
して構成される。また、プレーナ型導波路2は基
板1上に平面的に構成され、チヤネル型導波路4
はほぼ線状の狭い幅の導波路として構成されてい
る。半プレーナ型導波路3は、プレーナ型導波路
2およびチヤネル型導波路4の中間幅を有する導
波路として構成されている。チヤネル型導波路4
は、半プレーナ型導波路3の内部で除々に細くな
る形状に切断されている。半プレーナ型導波路3
はプレーナ型導波路2内で円弧型の断面に切断さ
れている。また、基板1、プレーナ型導波路2半
プレーナ型導波路3およびチヤネル型導波路4の
屈折率をそれぞれnS,n2,n3およびn4とするとこ
れらの各屈折率の間には次の関係が成立する。
(6) Embodiment of the invention An embodiment of the invention will be described below with reference to the drawings. FIG. 1 is a schematic perspective view showing the configuration of a composite optical waveguide according to an embodiment of the present invention. Also,
FIG. 2 is a cross-sectional view of the composite optical waveguide of FIG. 1 taken along the - line. As is clear from these figures, the composite optical waveguide according to one embodiment of the present invention is
A planar waveguide 2 configured on a substrate 1 such as glass, a semi-planar waveguide 3 configured to be included in the planar waveguide 2, and a semi-planar waveguide 3 included in the semi-planar waveguide 3. A channel type waveguide 4 configured as follows is provided. The planar waveguide 2 is made of, for example, lithium niobate LiNbO 3 , and the semi-planar waveguide 3 and channel waveguide 4 are made by thermally diffusing, for example, titanium, etc., in the required area within the planar waveguide 2. It is constructed by increasing the refractive index. Further, the planar waveguide 2 is configured in a plane on the substrate 1, and the channel waveguide 4
is constructed as a substantially linear narrow waveguide. The semi-planar waveguide 3 is configured as a waveguide having an intermediate width between the planar waveguide 2 and the channel waveguide 4. Channel waveguide 4
is cut into a shape that gradually becomes thinner inside the semi-planar waveguide 3. Semi-planar waveguide 3
is cut into an arc-shaped cross section within the planar waveguide 2. Furthermore, if the refractive indexes of the substrate 1, planar waveguide 2, semi-planar waveguide 3, and channel waveguide 4 are respectively n S , n 2 , n 3 and n 4 , then the relationship between these refractive indices is as follows. The relationship holds true.

n4>n3>n2>nS 上述の複合光導波路においては、チヤネル型導
波路4に矢印A方向から入力された光信号は、チ
ヤネル型導波路4内を通り該チヤネル型導波路4
の切断部4′から半プレーナ型導波路3内にビー
ム幅を広げながら入射される。この場合、チヤネ
ル型導波路4の切断部4′は前述のように徐々に
細くされているので不要反射が少なくなり効率的
に光ビームの拡散が行なわれる。このようにして
半プレーナ型導波路3内に広げられた光ビームは
該半プレーナ型導波路3の円弧状断面3′におい
て凸レンズとしての作用により所定のビーム幅に
なるよう調整され、プレーナ型導波路2内に幅広
の平行光線として伝達される。第1図の点線は光
ビームの伝達の様子を概略的に示すものである。
このようにして第1図および第2図に示される複
合光導波路によつて凸レンズ等を別個に設けるこ
となく広幅の平行ビームを得ることが可能とな
り、ブラツグ反射を用いたブラツグスイツチ等に
入力するのに適した光ビームを得ることができ
る。
n 4 > n 3 > n 2 > n S In the above-mentioned composite optical waveguide, the optical signal inputted into the channel waveguide 4 from the direction of arrow A passes through the channel waveguide 4 and exits the channel waveguide 4.
The beam enters into the semi-planar waveguide 3 from the cutting portion 4' while widening the beam width. In this case, since the cut portion 4' of the channel waveguide 4 is gradually tapered as described above, unnecessary reflections are reduced and the light beam is efficiently diffused. The light beam spread in the semi-planar waveguide 3 in this way is adjusted to a predetermined beam width by the action of a convex lens on the arc-shaped cross section 3' of the semi-planar waveguide 3, and It is transmitted in the wave path 2 as a wide parallel beam. The dotted line in FIG. 1 schematically shows how the light beam is transmitted.
In this way, by using the composite optical waveguide shown in Figures 1 and 2, it is possible to obtain a wide parallel beam without separately providing a convex lens, etc., and it is possible to obtain a wide parallel beam, which can be input to a bragg switch using bragg reflection. A suitable light beam can be obtained.

なお、基板1および各導波路2,3,4の屈折
率の関係は前述のものに限らず例えば n4>n2>n3>nS のようにしてもよく、この場合はプレーナ型導波
路2内における半プレーナ型導波路3の切断面
3′は第1図におけるような突出形状でなく、第
3図に示される凹型の円弧状断面とすることによ
つて第1図の複合光導波路と同様の機能を持たせ
ることができる。
The relationship between the refractive indexes of the substrate 1 and the waveguides 2, 3, and 4 is not limited to the above-mentioned relationship, but may be such that, for example, n 4 > n 2 > n 3 > n S , and in this case, a planar waveguide is used. The cut surface 3' of the semi-planar waveguide 3 in the wave path 2 does not have a protruding shape as in FIG. 1, but has a concave arc-shaped cross section as shown in FIG. It can have the same function as a wave path.

(7) 発明の効果 このように、本発明によれば、別個にレンズ等
を設けることなく簡単な構成によりプレーナ型お
よびチヤネル型導波路の持つ利点を活用し、種々
の光機能を実現するための複合光導波路を構成す
ることが可能となる。
(7) Effects of the Invention As described above, according to the present invention, various optical functions can be realized by utilizing the advantages of planar type and channel type waveguides with a simple configuration without providing a separate lens or the like. It becomes possible to construct a composite optical waveguide of.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の1実施例に係わる複合光導
波路の構成を示す斜視図、第2図は、第1図の複
合光導波路の−線から見た断面図、そして第
3図は、本発明の他の実施例に係わる複合光導波
路を示す概略的平面図である。 1……基板、2……プレーナ型導波路、3……
半プレーナ型導波路、3′,3″……円弧状断面、
4……チヤネル型導波路、4′……切断部。
FIG. 1 is a perspective view showing the configuration of a composite optical waveguide according to an embodiment of the present invention, FIG. 2 is a sectional view of the composite optical waveguide in FIG. 1 taken from the - line, and FIG. FIG. 3 is a schematic plan view showing a composite optical waveguide according to another embodiment of the present invention. 1...Substrate, 2...Planar waveguide, 3...
Semi-planar waveguide, 3', 3''...circular cross section,
4... Channel type waveguide, 4'... Cutting section.

Claims (1)

【特許請求の範囲】 1 ほぼ線状のチヤネル型導波路と、光信号の広
がり幅に比し充分広幅のプレーナ型導波路と、こ
れら2種類の導波路の中間幅を有する半プレーナ
型導波路とによつて構成され、 これら3種の導波路は前記プレーナ型導波路内
に前記半プレーナ型導波路が包含され、且つ該半
プレーナ型導波路内に前記チヤネル型導波路が包
含されるように基板面上に同一平面内に形成さ
れ、 前記半プレーナ型導波路端部の前記プレーナ型
導波路との切断面が円弧状断面に形成されてお
り、 前記基板、プレーナ型導波路、半プレーナ型導
波路、およびチヤネル型導波路の光屈折率は、基
板の屈折率を最小とし、チヤネル型導波路の屈折
率を最大とし、プレーナ型導波路および半プレー
ナ型導波路の屈折率はその間の値とし、その大小
は前記切断面の円弧状断面の凹凸に対応して決定
されるようにし、 前記チヤネル型導波路と前記半プレーナ型導波
路および前記プレーナ型導波路を伝播する光ビー
ムが前記切断面において所定のビーム幅になるよ
う調整されていることを特徴とする複合光導波
路。
[Claims] 1. A substantially linear channel waveguide, a planar waveguide whose width is sufficiently wide compared to the spread width of an optical signal, and a semi-planar waveguide having a width intermediate between these two types of waveguides. These three types of waveguides are configured such that the semi-planar waveguide is included in the planar waveguide, and the channel waveguide is included in the semi-planar waveguide. are formed in the same plane on a substrate surface, and a cut surface of an end of the semi-planar waveguide with the planar waveguide is formed in an arcuate cross section, and the substrate, the planar waveguide, and the semi-planar waveguide are formed in the same plane. The optical refractive index of the type waveguide and channel type waveguide is such that the refractive index of the substrate is the minimum, the refractive index of the channel type waveguide is the maximum, and the refractive index of the planar type waveguide and semi-planar type waveguide is the one between them. value, the magnitude of which is determined in accordance with the unevenness of the arc-shaped cross section of the cut surface, and the light beam propagating through the channel waveguide, the semi-planar waveguide, and the planar waveguide is A composite optical waveguide characterized by being adjusted to have a predetermined beam width at a cut surface.
JP9474982A 1982-06-04 1982-06-04 Composite optical waveguide Granted JPS58211717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9474982A JPS58211717A (en) 1982-06-04 1982-06-04 Composite optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9474982A JPS58211717A (en) 1982-06-04 1982-06-04 Composite optical waveguide

Publications (2)

Publication Number Publication Date
JPS58211717A JPS58211717A (en) 1983-12-09
JPH0361924B2 true JPH0361924B2 (en) 1991-09-24

Family

ID=14118770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9474982A Granted JPS58211717A (en) 1982-06-04 1982-06-04 Composite optical waveguide

Country Status (1)

Country Link
JP (1) JPS58211717A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200507A (en) * 1985-03-01 1986-09-05 Mitsubishi Electric Corp Optical waveguide lens
JPS6442606A (en) * 1987-08-10 1989-02-14 Hitachi Ltd Branch waveguide type optical multiplexer and demultiplexer
US5078516A (en) * 1990-11-06 1992-01-07 Bell Communications Research, Inc. Tapered rib waveguides
JP2002258081A (en) * 2001-02-28 2002-09-11 Fujitsu Ltd Optical wiring board, manufacturing method of the same, and multi-layer optical wiring

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149908A (en) * 1979-03-05 1980-11-21 Hughes Aircraft Co Light coupler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149908A (en) * 1979-03-05 1980-11-21 Hughes Aircraft Co Light coupler

Also Published As

Publication number Publication date
JPS58211717A (en) 1983-12-09

Similar Documents

Publication Publication Date Title
US4881791A (en) Optical device
US6243516B1 (en) Merging optical waveguides having branch angle within a specific range
US5361157A (en) Bidirectional light transmission system and optical device therefor
US4468085A (en) Hybrid optical junction and its use in a loop interferometer
WO2001038921A3 (en) An optical switch having a planar waveguide and a shutter actuator
KR19980043740A (en) An optical waveguide having a nonlinear thin film
JPH0361924B2 (en)
US4988156A (en) Bent waveguide for an optical integrated circuit
JPH02259610A (en) Waveguide type light wavelength multiplexer
JPH04333004A (en) Light guide device
JPH116931A (en) Optical multiplexer and demultiplexer
JP3379658B2 (en) Light switch
JPS5895715A (en) Optical switch
WO2001048532A3 (en) Integrated planar optical waveguide and shutter
JPS63279627A (en) Two-way optical communication module
JP2898066B2 (en) Optical device
JPS6237761B2 (en)
JPH0749430A (en) Optical circuit part
JPS5955407A (en) Optical demultiplexer
JPS6235657B2 (en)
JPH0740083B2 (en) Optical demultiplexer
JPS5810705A (en) Photocoupler
JPS61113024A (en) Waveguide type polarizing element
JPS5814104A (en) Optical waveguide
JPS5937770Y2 (en) Optical path switching device