JPS61113024A - Waveguide type polarizing element - Google Patents

Waveguide type polarizing element

Info

Publication number
JPS61113024A
JPS61113024A JP23453484A JP23453484A JPS61113024A JP S61113024 A JPS61113024 A JP S61113024A JP 23453484 A JP23453484 A JP 23453484A JP 23453484 A JP23453484 A JP 23453484A JP S61113024 A JPS61113024 A JP S61113024A
Authority
JP
Japan
Prior art keywords
light beam
light
irradiated
core
mode optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23453484A
Other languages
Japanese (ja)
Inventor
Hiroshi Honmo
本望 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23453484A priority Critical patent/JPS61113024A/en
Publication of JPS61113024A publication Critical patent/JPS61113024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To obtain a waveguide type polarizing element which has low loss and high reliability by irradiating the core part of a single-mode optical waveguide with a light beam in a direction different from the light propagation direction of the single-mode optical waveguide. CONSTITUTION:A projection beam from an eximer laser 3 is converted by a lens system 5 into a light beam 4 which is flat in a sectional shape of about 5X500mum on the center axis of a core to illuminate the optical axis of the core 2. The energy of the irradiated partial light beam 4 is absorbed to generate heat. Parts at both sides along the optical axis which are not irradiated with the light beam 4 generate no heat. Consequently, only the part which is irradiated with the light beam and generates heat increase in refractive index by the thermooptic effect of a quartz glass optical fiber 1, and consequently the part irradiated with the light beam and parts at both sides of the irradiated part and different in the propagation constant of light propagating in the core of the optical fiber 1, thereby varying the polarization state of the propagation light.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低損失で、信頼性の高い単一モード光導波路
型の偏光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a single mode optical waveguide type polarizing element that has low loss and high reliability.

(従来技術とその問題点) 単一モード光フアイバ出力いた光ヘテロダイン通信シス
テムや光フアイバセンサシステムなどにおいては、光フ
アイバ出力の偏光状態全制御することが重要になる。こ
の偏光状態を制御する方法として電気光学効果を持つL
iNb0a 結晶に光ファイバからの出力光を伝播させ
、このLiNbO3結晶に電圧を印加してその屈折率を
制御することにエリ、光の偏光状態を制御する方法があ
る。このような偏光制御方法は、たとえばキト等により
、[アイ・イーイーイー・ジャーナル・オン・カンタム
・エレクトロニクスJ QE−17,No 、 16.
1981年6月号の991ページから994ページに「
ボラリゼイシ、ン・コントロール・オン・アウトブ、ト
・オン・シングルモード・オプティカル・ファイバズ」
と題して発表されている。しかし、この工うな構成にお
ける偏光素子は、光ファイバとLiNb0a 結晶との
接続損失が大きく、低損失化が困難であり、また光ファ
イバとLiNb0a 結晶との接続をしているので信頼
性が低いとhう欠点があった。
(Prior Art and its Problems) In optical heterodyne communication systems and optical fiber sensor systems that use a single mode optical fiber output, it is important to fully control the polarization state of the optical fiber output. As a method to control this polarization state, L
One way to control the polarization state of light is to propagate the output light from an optical fiber through an iNb0a crystal and apply a voltage to the LiNbO3 crystal to control its refractive index. Such a polarization control method is described, for example, by Kito et al. [IEE Journal on Quantum Electronics JQE-17, No. 16.
From pages 991 to 994 of the June 1981 issue, “
Volatility, Control on Output, and Single-Mode Optical Fibers
It is published under the title. However, the polarizing element with this unconventional configuration has a large connection loss between the optical fiber and the LiNb0a crystal, making it difficult to reduce the loss, and also has low reliability because the optical fiber and the LiNb0a crystal are connected. There were some drawbacks.

(発明の目的) 本発明の目的は、上述の欠点全除去し、低損失で信頼性
の高い導波路型偏光素子を提供することにある。
(Objective of the Invention) An object of the present invention is to eliminate all of the above-mentioned drawbacks and to provide a waveguide type polarizing element with low loss and high reliability.

(発明の構成) 本発明によれば、コアを有する単一モード光導波路と、
発光素子と金含んで構成され、発光素子から出射した光
ビーム全単一モード光導波路の光伝播方向と異なる方向
から単一モード光導波路のコア部分に照射することを特
徴とする導波路型偏光素子が得られる。
(Structure of the Invention) According to the present invention, a single mode optical waveguide having a core;
Waveguide-type polarized light comprising a light-emitting element and gold, and characterized in that the light beam emitted from the light-emitting element is irradiated onto the core portion of the single-mode optical waveguide from a direction different from the light propagation direction of the single-mode optical waveguide. An element is obtained.

(発明の作用・原理) 本発明は、上述の構成をとることにより、従来の問題点
を解決した。すなわち、単一モード光導波路の光伝播方
向と異なる方向から、その光軸線上のコア部分に光ビー
ムを照射すると、光ビームが照射された部分は、光ビー
ムのエネルギーを吸収し熱を発生する。特に、光ビーム
の照射すれた部分がその光ビームの波長において光吸収
係数が大きいと、より効果的に熱を発生する。一方、光
ビームが照射されない部分、すなわちその照射された部
分の光軸に沿う両側の部分は熱を発生しない。その結果
、熱光学効果にエリ、コア内の光ビームを照射された部
分の屈折率が変化し、それにより、単一モード光導波路
中の伝播定数がコア内の光ビーム全照射された部分と、
その両側の照射されない部分とで異なり、単一モード光
導波路中全伝播する光の偏光状態金変えることができる
(Operation/Principle of the Invention) The present invention solves the conventional problems by adopting the above-described configuration. In other words, when a light beam is irradiated onto the core portion on the optical axis of a single mode optical waveguide from a direction different from the light propagation direction, the portion irradiated with the light beam absorbs the energy of the light beam and generates heat. . In particular, if the portion irradiated by the light beam has a large light absorption coefficient at the wavelength of the light beam, heat will be generated more effectively. On the other hand, the portions that are not irradiated with the light beam, that is, the portions on both sides of the irradiated portion along the optical axis, do not generate heat. As a result, due to the thermo-optic effect, the refractive index of the part of the core that is irradiated with the light beam changes, which causes the propagation constant in the single mode optical waveguide to be different from the part of the core that is irradiated with the light beam. ,
The polarization state of the light propagating all through the single-mode optical waveguide can change depending on the non-illuminated parts on its sides.

従って、上述のように熱光学効果を利用して、単一モー
ド光導波路中のコア部分に照射する光ビームの出力全変
化させることにエリ、照射された部分の熱の発生量を変
化させ、屈折率を変えることにLり単一モード光導波路
中を伝播する光の偏光状態を制御することができる。
Therefore, as mentioned above, it is possible to use the thermo-optic effect to change the total output of the light beam irradiated to the core part of the single mode optical waveguide, and change the amount of heat generated in the irradiated part. By changing the refractive index, the polarization state of light propagating in a single mode optical waveguide can be controlled.

本発明は、上述のように偏光状態を変化させるのに、光
ビームを用いるので従来技術のように光ファイバと偏光
素子との接続全必要としないため、低損失で、信頼性の
高い偏光素子が得られる。
Since the present invention uses a light beam to change the polarization state as described above, it does not require any connection between the optical fiber and the polarizing element as in the conventional technology. is obtained.

(実施例) 以下、本発明について図面を参照して詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図及び第2図は、それぞれ本発明の一実施例を示す
平面図、及び正面図である1図において、単一モード光
導波路である外径125μmの石英ガラス系光ファイバ
1の中心軸上にコア径10μmのコア2が形成されてお
り、その石英ガラス系光ファイバ1の側面側にレンズ系
5を備えたエキシマレーザ3が設けられている。このレ
ンズ系5を備えたエキシマレーザ3は、波長0.3μm
の光ビーム4を出射し、この光ビーム4が石英ガラス系
光ファイバ1のコア2の光軸を横断して進行するような
位置に設けられている。
1 and 2 are a plan view and a front view, respectively, showing an embodiment of the present invention, and in FIG. A core 2 having a core diameter of 10 μm is formed on the top, and an excimer laser 3 equipped with a lens system 5 is provided on the side surface of the silica glass optical fiber 1 . The excimer laser 3 equipped with this lens system 5 has a wavelength of 0.3 μm.
It emits a light beam 4, and is provided at a position such that the light beam 4 travels across the optical axis of the core 2 of the silica glass optical fiber 1.

さて、このような構成でエキシマレーザ3からの出射ビ
ーム全レンズ系5を用いてコア2の中心軸上で断面形状
が5μmX 500μm程度の偏平な形状をした光ビー
ム4に変換し、第1図および第2図に示したように、コ
ア2の光軸線上に照射する。
Now, with this configuration, the beam emitted from the excimer laser 3 is converted into a flat light beam 4 with a cross-sectional shape of about 5 μm x 500 μm on the central axis of the core 2 using the full lens system 5, as shown in FIG. And as shown in FIG. 2, the light is irradiated onto the optical axis of the core 2.

この時、石英ガラス系光ファイバ1の外径部分において
光ビーム4のビーム幅は5.2μm程度と、はとんど広
がらない。そして、その照射された部分は光ビーム4の
エネルギー全吸収し、熱全発生する。また光ビーム4が
照射されなかった光軸に沿う両側の部分、すなわち第2
図において光ビーム4が通過する点線の上下の部分は、
熱全発生しない。そこで石英ガラス系光ファイバ1の熱
光学効果により、光ビームを照射され熱を発生した部分
の屈折率だけが上昇し、その結果、光ビーム全照射され
た部分と、その両側部分で光ファイバ1のコア内を伝播
する光の伝播定数が異なり、伝搬する光の偏光状態を変
えることができる。たとえば、上述のような構成で、出
カフ00(mJ)程度の光ビーム4を照射すれば、屈折
率が1×10 程度変化し、伝播する光の位相差にして
π(r a d)程度変化させることができる。このと
きの挿入損失は0.1dB以下と低損失であった。また
、上述の構成で、6一 さらに光ビームの出力を変化させて屈折率を変えてやる
ことにエリ、伝播する光の偏光状態を任意に制御するこ
とができる。
At this time, the beam width of the light beam 4 at the outer diameter portion of the silica glass optical fiber 1 is approximately 5.2 μm, which does not widen at all. The irradiated portion absorbs all the energy of the light beam 4 and generates all heat. Also, the parts on both sides along the optical axis that were not irradiated with the light beam 4, that is, the second
In the figure, the parts above and below the dotted line through which the light beam 4 passes are:
No heat is generated. Therefore, due to the thermo-optic effect of the silica glass optical fiber 1, the refractive index of only the part that is irradiated with the light beam and generates heat increases, and as a result, the optical fiber 1 is The propagation constant of the light propagating inside the core is different, and the polarization state of the propagating light can be changed. For example, if the configuration described above is irradiated with a light beam 4 with an output of about 00 (mJ), the refractive index will change by about 1 × 10, and the phase difference of the propagating light will change by about π (r a d). It can be changed. The insertion loss at this time was as low as 0.1 dB or less. Further, with the above configuration, by further changing the output of the light beam and changing the refractive index, the polarization state of the propagating light can be arbitrarily controlled.

なお、本実施例では、単一モード光導波路として石英ガ
ラス系光ファイバを用いたがこれに限定されず、光ビー
ムで熱を発生する材料で構成された単一モード光導波路
であれば工い。また、単一モード光導波路として偏光保
存光ファイバ等金用いても良い。また、本実施例では、
エキシマレーザを用いたがこれに限定されず、単一モー
ド光導波路が吸収する波長帯を持つ発光素子であればよ
い。
In this example, a silica glass optical fiber was used as the single mode optical waveguide, but the invention is not limited to this, and any single mode optical waveguide made of a material that generates heat with a light beam can be used. . Furthermore, a polarization maintaining optical fiber or the like may be made of gold as a single mode optical waveguide. In addition, in this example,
Although an excimer laser is used, the present invention is not limited to this, and any light emitting element may be used as long as it has a wavelength band that is absorbed by a single mode optical waveguide.

(発明の効果) 以上述べた工9に、本発明によれば、偏光状態を変える
のに光ビームを用いるので、低損失で信頼性の高論導波
路型偏光素子を得ることができる。
(Effects of the Invention) According to the above-mentioned feature 9, according to the present invention, since a light beam is used to change the polarization state, it is possible to obtain a highly reliable waveguide type polarizing element with low loss and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の一実施例金示す平面図及
び正面図である。 図中、1は石英ガラス系光ファイバ、2はコア、3はエ
キシマレーザ、4は光ビーム、5はレンズ系である。
1 and 2 are a plan view and a front view showing one embodiment of the present invention. In the figure, 1 is a silica glass optical fiber, 2 is a core, 3 is an excimer laser, 4 is a light beam, and 5 is a lens system.

Claims (3)

【特許請求の範囲】[Claims] (1)コアを有する単一モード光導波路と、発光素子と
を有し、前記発光素子から出射した光ビームを前記単一
モード光導波路の光伝播方向と異なる方向から、前記単
一モード光導波路のコア部分に照射することを特徴とす
る導波路型偏光素子。
(1) It has a single mode optical waveguide having a core and a light emitting element, and the light beam emitted from the light emitting element is transmitted to the single mode optical waveguide from a direction different from the light propagation direction of the single mode optical waveguide. A waveguide-type polarizing element characterized by irradiating light onto the core portion of.
(2)単一モード光導波路が発光素子から出射される光
に対し吸収係数の大きい材質で形成されていることを特
徴とする特許請求の範囲第(1)項記載の導波路型偏光
素子。
(2) The waveguide type polarizing element according to claim (1), wherein the single mode optical waveguide is formed of a material having a large absorption coefficient for light emitted from the light emitting element.
(3)照射する光ビームの断面形状が偏平な形状を有す
ることを特徴とする特許請求の範囲第(1)項記載の導
波路型偏光素子。
(3) The waveguide type polarizing element according to claim (1), wherein the irradiated light beam has a flat cross-sectional shape.
JP23453484A 1984-11-07 1984-11-07 Waveguide type polarizing element Pending JPS61113024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23453484A JPS61113024A (en) 1984-11-07 1984-11-07 Waveguide type polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23453484A JPS61113024A (en) 1984-11-07 1984-11-07 Waveguide type polarizing element

Publications (1)

Publication Number Publication Date
JPS61113024A true JPS61113024A (en) 1986-05-30

Family

ID=16972532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23453484A Pending JPS61113024A (en) 1984-11-07 1984-11-07 Waveguide type polarizing element

Country Status (1)

Country Link
JP (1) JPS61113024A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1109049A1 (en) * 1999-12-16 2001-06-20 Corning Incorporated Photothermal optical switch and variable attenuator
KR100488558B1 (en) * 2002-06-17 2005-05-11 현대자동차주식회사 Apparatus of fuel leveling pipe
WO2013071481A1 (en) * 2011-11-15 2013-05-23 中科中涵激光设备(福建)股份有限公司 System and method for writing waveguide polarizer into quartz or optical fibers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1109049A1 (en) * 1999-12-16 2001-06-20 Corning Incorporated Photothermal optical switch and variable attenuator
WO2001044864A1 (en) * 1999-12-16 2001-06-21 Corning Incorporated Photothermal optical switch and variable attenuator
US6493478B1 (en) 1999-12-16 2002-12-10 Corning Incorporated Photothermal optical switch and variable attenuator
KR100488558B1 (en) * 2002-06-17 2005-05-11 현대자동차주식회사 Apparatus of fuel leveling pipe
WO2013071481A1 (en) * 2011-11-15 2013-05-23 中科中涵激光设备(福建)股份有限公司 System and method for writing waveguide polarizer into quartz or optical fibers

Similar Documents

Publication Publication Date Title
US4795233A (en) Fiber optic polarizer
EP0686867B1 (en) All fiber in-line optical isolator
JP3199402B2 (en) Mach-Zehnder optical waveguide device
US5483609A (en) Optical device with mode absorbing films deposited on both sides of a waveguide
JPS61198122A (en) Modulator and improvement thereof
ATE97503T1 (en) OPTICAL WAVEGUIDE DEVICES.
AU611739B2 (en) Optical isolator
JPH07318986A (en) Waveguide type optical switch
JPH1184434A (en) Light control circuit and its operation method
JPS61113024A (en) Waveguide type polarizing element
JPH05224044A (en) Waveguide type optical device with monitor
JP2936792B2 (en) Waveguide type optical device
JP2613942B2 (en) Waveguide type optical device
JPH0530127Y2 (en)
US5815609A (en) Waveguide type optical external modulator
JPH0361924B2 (en)
JPS57111512A (en) Coupling device of semiconductor laser to optical fiber
JPH0718965B2 (en) Optical communication device and manufacturing method thereof
JPH04333829A (en) Waveguide type optical device
JPS6424482A (en) Semiconductor laser
JP2903700B2 (en) Waveguide type optical device
JPH07281213A (en) Optical switch
JP2898066B2 (en) Optical device
JP2991261B2 (en) Optical waveguide type optical frequency converter
Kersten Integrated Optical Sensors