JPH0456818A - Optical brancher/coupler and its production - Google Patents

Optical brancher/coupler and its production

Info

Publication number
JPH0456818A
JPH0456818A JP16402390A JP16402390A JPH0456818A JP H0456818 A JPH0456818 A JP H0456818A JP 16402390 A JP16402390 A JP 16402390A JP 16402390 A JP16402390 A JP 16402390A JP H0456818 A JPH0456818 A JP H0456818A
Authority
JP
Japan
Prior art keywords
optical
light
light control
groove
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16402390A
Other languages
Japanese (ja)
Inventor
Taisuke Oguchi
泰介 小口
Juichi Noda
野田 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16402390A priority Critical patent/JPH0456818A/en
Publication of JPH0456818A publication Critical patent/JPH0456818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a branch loss and to obtain parts to be used for optical branching and coupling without especially determining an I/O direction by setting up a light control member to be arranged on a branch part on an optimum position. CONSTITUTION:A light control layer 14 is formed on the light control member 13 to be moved in a groove 16 formed on an intersecting pat between both optical guides 9, 10. The groove 16 is formed in a direction inclined from a direction vertical to a center bisector between the optical axes of both the optical waveguides 9, 11 i.e. the same direction of the layer 14, only by theta. Thereby, the layer 14 is moved in parallel with its thickness direction due to the movement of the member 13 and the layer 14 and an intersecting point between the center lines of both the waveguides 9, 10 coincides with the layer 14. Consequently, the optical brancher/coupler capable of executing optical branching and coupling of low loss can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用公費〉 本発明は、光通信や光信号処理等の分計で用いられる、
光分岐、光結合を行う光分岐結合器に関するものである
[Detailed Description of the Invention] <Industrial Utilization Public Expenses> The present invention is applicable to optical communication, optical signal processing, etc.
This invention relates to an optical branching coupler that performs optical branching and optical coupling.

〈従来の技術〉 入力光を2つに分ける光分岐器の簡易な構成法として、
第6図に示すようなものがある(tl、Yanagaw
a、et、m!、、 ’Filter−Embedde
dDssign and Tts Applicati
ons to PassiveComponents’
、IEEE  J、Light*ave  Tecbn
ol、、vol。
<Conventional technology> As a simple configuration method for an optical splitter that divides input light into two,
There is something like the one shown in Figure 6 (tl, Yanagaw
a, et, m! ,, 'Filter-Embedde
dDssign and Tts Application
ons to Passive Components'
, IEEE J, Light*ave Tecbn
ol,, vol.

LT−7,pp、 1846−1653.1989参照
)。
(See LT-7, pp. 1846-1653.1989).

第6図において、第6図(a)は平面図、第6図(b)
はその断面であって、1,2.3は光ファイバ、4はフ
ァイバ1の伝搬光を透過光と反射光に分ける薄片状の波
長フィルタで、5は光フィルタを配設する溝、6はファ
イバと光フィルタを固定するための基板を各々示してい
る。この構成によって、例えば波長フィルタ4として波
長λ1の光を透過させ、波長〜の光を反射させろものを
用いれば、光フアイバ1中を伝搬する2つの波長成分^
□、^2のうち透過する波長成分λ、は出力光ファイバ
2に、反射する波長成分λ2は出力光ファイバ3に導か
れる。
In Fig. 6, Fig. 6(a) is a plan view, Fig. 6(b)
is its cross section, 1, 2, 3 are optical fibers, 4 is a thin wavelength filter that divides the propagating light of fiber 1 into transmitted light and reflected light, 5 is a groove for arranging the optical filter, and 6 is a groove. A substrate for fixing a fiber and an optical filter is shown, respectively. With this configuration, for example, if a wavelength filter 4 that transmits light with wavelength λ1 and reflects light with wavelength ~ is used, two wavelength components propagating through optical fiber 1 can be used.
Among □ and ^2, the transmitted wavelength component λ is guided to the output optical fiber 2, and the reflected wavelength component λ2 is guided to the output optical fiber 3.

この光分岐器は、基板6に予め設けられたファイバガイ
ド溝中に光ファイバ1と2 (この状態で両光ファイバ
は切断されていない)、および光ファイバ3を接着剤等
で固定した後、分岐部を横断するように溝5を形成する
。この溝5中に波長フィルタ4を配設し、接着剤で固定
する。
This optical splitter is constructed by fixing optical fibers 1 and 2 (in this state, both optical fibers are not cut) and optical fiber 3 into fiber guide grooves previously provided on a substrate 6 with adhesive or the like. A groove 5 is formed across the branch. A wavelength filter 4 is placed in this groove 5 and fixed with adhesive.

この工程かられかるように、光ファイバ1と光ファイバ
2はもともと同一のファイバであり、また固定された状
態で切断されたのであるから、両者の光軸は一致してい
る。また、フィルタを配設するための溝を数十μm以下
にすることによって、光ファイバ1から出射した光は、
波長フィルタを透過後、さほど大きな損失を受けること
なく光ファイバ2に結合する。
As can be seen from this process, optical fiber 1 and optical fiber 2 are originally the same fiber, and since they were cut while being fixed, their optical axes coincide. Furthermore, by making the groove for arranging the filter several tens of μm or less, the light emitted from the optical fiber 1 can be
After passing through the wavelength filter, it is coupled to the optical fiber 2 without suffering much loss.

〈発明が解決しようとする課題〉 ところが、反射された光を光ファイバ3に低損失で結合
させるのは簡単ではない。この事情を第7図の分岐部の
詳細図で説明する。
<Problems to be Solved by the Invention> However, it is not easy to couple the reflected light to the optical fiber 3 with low loss. This situation will be explained with reference to a detailed diagram of the branch section in FIG.

第7図において第7図(a)は低損失で結合する場合、
第7図(blは損失が大きくなる場合である。同図中7
は波長フィルタの誘電体多層膜部分、8は透明な基板部
であり、その他は第6図と同じである。第7図(a)の
場合には光ファイバ1と光ファイバ3の光軸の交点即ち
分岐点と誘電体多層膜7の膜面が一致しているが、第7
図(b)では一致していない。
In Fig. 7, Fig. 7(a) shows when coupling with low loss,
Figure 7 (bl is the case where the loss becomes large. 7 in the figure)
8 is a dielectric multilayer film portion of the wavelength filter, 8 is a transparent substrate portion, and the other parts are the same as in FIG. In the case of FIG. 7(a), the intersection of the optical axes of the optical fibers 1 and 3, that is, the branch point, coincides with the film surface of the dielectric multilayer film 7.
In figure (b), they do not match.

このため、第7図(blに示す場合では、反射した光は
光ファイバ3のコア中心からずれた場所で光ファイバ3
に入射する。このような場合、例えば、ファイバ1と3
に比屈折率差0.3%、コア径10μm前後の単一モー
ドファイバを用いると、反射点の位置が5μmずれるだ
けで2 dB以上の損失が生じる。従って、損失を2 
dB以下にするには波長フィルタ4の反射点を決める溝
5の位置精度を5μm以下にする必要があるが、機械的
な加工ではこのような精度を再現良く得るのは困難であ
る。
Therefore, in the case shown in FIG.
incident on . In such a case, for example, fibers 1 and 3
If a single mode fiber with a relative refractive index difference of 0.3% and a core diameter of around 10 μm is used, a loss of 2 dB or more will occur if the position of the reflection point shifts by just 5 μm. Therefore, the loss is 2
In order to achieve a value of dB or less, the positional accuracy of the groove 5 that determines the reflection point of the wavelength filter 4 must be 5 μm or less, but it is difficult to obtain such accuracy with good reproducibility by mechanical processing.

この問題を回避するため、光ファイバ3としてコア径と
開口(NA)の大きいファイバを使用すれば、反射光を
低損失で光ファイバ3に結合させることができることが
提案されている。上記文献によると、光ファイバ1とし
てコア径10μm、比屈折率差0.3%の単一モードフ
ァイバを、光ファイバ3としてコア径50μm、比屈折
率差1%の多モードファイバを用いれば反射光の結合損
失は0.3dB程度となる。この場合、反射点の位置は
±20μm程度ばらついても良いので、波長フィルタ4
を固定する溝の加工精度はかなり緩いものとなる。
In order to avoid this problem, it has been proposed that if a fiber with a large core diameter and aperture (NA) is used as the optical fiber 3, the reflected light can be coupled to the optical fiber 3 with low loss. According to the above literature, if a single mode fiber with a core diameter of 10 μm and a relative refractive index difference of 0.3% is used as the optical fiber 1, and a multimode fiber with a core diameter of 50 μm and a relative refractive index difference of 1% as the optical fiber 3, the reflection will be reflected. The optical coupling loss is about 0.3 dB. In this case, the position of the reflection point may vary by about ±20 μm, so the wavelength filter 4
The machining accuracy of the groove that fixes it is quite loose.

しかしながら、この方法を用いたものでは、光ファイバ
3を伝搬中にモードが変わってしまうこと、光の方向を
逆にすると光ファイバ3から光ファイバ1への光は殆ど
結合しないから光結合器としては機能しない欠点がある
However, with this method, the mode changes while propagating through the optical fiber 3, and if the direction of the light is reversed, almost no light is coupled from the optical fiber 3 to the optical fiber 1, so it cannot be used as an optical coupler. has the disadvantage that it does not work.

す上のことは、第6図において光ファイバ金光導波路に
置き換えた光導波路型分岐器でもあてはまる。
The above also applies to the optical waveguide type splitter in which the optical fiber gold optical waveguide is replaced in FIG.

本発明は、上記の事情に鑑みてなされたもので、低損失
な光分岐及び光結合をなし得る光分岐結合器およびその
製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an optical branching/coupling device capable of performing low-loss optical branching and coupling, and a method for manufacturing the same.

く課題を解決するための手段〉 前記目的を達成するための本発明に係る光分岐結合器の
構成は、光導波路の交差部に入力光を分岐結合させろ光
制御層を有する光分岐結合・器において、上記光制御層
は、先導波路の交差部に形成された溝内を移動可能な光
制御部材に設けられており、該光制御部材の移動方向が
光制御層と交差する方向で且つ光制御部材の移動により
光制御層がその厚さ方向に平行移動することを特徴とす
る。
Means for Solving the Problems> The configuration of the optical branching coupler according to the present invention for achieving the above object is an optical branching coupler/device having an optical control layer for branching and coupling input light to the intersection of optical waveguides. In the above, the light control layer is provided in a light control member movable within a groove formed at the intersection of the guiding waveguide, and the moving direction of the light control member is a direction intersecting the light control layer and the light control layer is It is characterized in that the light control layer moves in parallel in its thickness direction due to movement of the control member.

また本発明に係る光分岐結合器の製造方法は、交差する
光導波路の交差部に溝を形成する工程と、該溝に光制御
部材を配設し、前記溝に沿って光制御部材を移動して光
導波路の中心線が交差する点と該光制御部材の光制御層
とが一致する位置で該光制御部材を固定する工程とを備
えたことを特徴とする。
Further, the method for manufacturing an optical branching coupler according to the present invention includes a step of forming a groove at the intersection of intersecting optical waveguides, disposing a light control member in the groove, and moving the light control member along the groove. and fixing the light control member at a position where the point where the center lines of the optical waveguides intersect and the light control layer of the light control member match.

更に、上記の構成の光分岐結合器において、上記光導波
路の代わりに光ファイバを用いることを特徴とし、上記
の構成の光分岐結合器の製造方法において、上記導波路
の代わりに光ファイバを用いることを特徴とする。
Further, in the optical branching coupler having the above configuration, an optical fiber is used instead of the optical waveguide, and in the method for manufacturing the optical branching coupler having the above configuration, an optical fiber is used instead of the waveguide. It is characterized by

く作   用〉 本発明においては、光制御素子を溝に配設する場合、該
光制御素子を構成する上記光制御層は、先導波路の交差
部に形成された溝内を移動可能な光制御部材に設けられ
ており、該光制御部材の移動方向が光制御層と交差する
方向で且つ光制御部材の移動により光11卯層がその厚
さ方向に平行移動することで、結果として光制御層が溝
に対して傾いているため、光制御素子を溝に沿って移動
させることにより、交差する光導波路もしくは光ファイ
バの交点に当該光制御層を一致させることができる。従
って、反射光を低損失で光導波路もしくは光ファイバに
結合させることができる。
Function> In the present invention, when the light control element is disposed in a groove, the light control layer constituting the light control element is a light control layer that is movable in the groove formed at the intersection of the guiding waveguides. The light control member is provided in the member, and when the moving direction of the light control member intersects the light control layer and the movement of the light control member causes the light layer to move in parallel in its thickness direction, light control is performed as a result. Since the layer is inclined with respect to the groove, by moving the light control element along the groove, the light control layer can be aligned with the intersection of the intersecting optical waveguides or optical fibers. Therefore, reflected light can be coupled to an optical waveguide or optical fiber with low loss.

く実 施 例〉 以下、本発明の好適な一実施例を説明する。Example of implementation A preferred embodiment of the present invention will be described below.

第1図は、本発明の光分岐結合器の第1の実施例を示し
、異なる波長を分岐または結合するもので、いわゆる光
分岐器または光合波器への適用例である。図中9,10
.11は先導波路のコア、12は光導波路のクラッド、
13は光制御部材としての波長フィルタ、16は溝であ
る。波長フィルタ13は第2図の斜視図で示すように、
入射光を透過光と反射光に分ける光制御層としての多層
膜部14とこれを挾むくさび状のガラス部分15.15
から成り、多層膜部14の膜面ばガラスの互いに平行な
2つの面17,18に対して所定角度θ煩いており、全
体として厚さtを有している。
FIG. 1 shows a first embodiment of an optical branching/coupling device of the present invention, which branches or couples different wavelengths, and is an example of application to a so-called optical branching device or optical multiplexer. 9 and 10 in the figure
.. 11 is the core of the guiding waveguide, 12 is the cladding of the optical waveguide,
13 is a wavelength filter as a light control member, and 16 is a groove. As shown in the perspective view of FIG. 2, the wavelength filter 13 is
A multilayer film part 14 as a light control layer that divides incident light into transmitted light and reflected light, and a wedge-shaped glass part 15.15 that sandwiches the multilayer film part 14.
The film surface of the multilayer film portion 14 is at a predetermined angle θ with respect to the two mutually parallel surfaces 17 and 18 of the glass, and has an overall thickness of t.

この光分岐器の製造法を第1図を用いて説明する。先ず
光導波119と11の光軸の交点、即ち分岐点を含むよ
うな溝16を形成する。
A method of manufacturing this optical splitter will be explained using FIG. First, the groove 16 is formed so as to include the intersection point of the optical axes of the optical waveguides 119 and 11, that is, the branch point.

この溝16の形成は、光導波路9と11の光軸の中心2
等分線と垂直な方向よりθだけ傾いた方向に形成する。
This groove 16 is formed at the center 2 of the optical axis of the optical waveguides 9 and 11.
It is formed in a direction inclined by θ from the direction perpendicular to the equal dividing line.

θだけ傾けるのは、波長フィルタ13を溝に挿入した状
態で多層膜部14の膜面と光導波路9と11の光軸の中
心2等分線と垂直な方向を一致させるためである。溝1
6の幅は波長フィルタ13の厚さよりやや広めに設定す
る。しかる後に、波長フィルタ13を溝16に挿入する
とともに、光導波路9より光を導入し光導波路11の光
出力強度をモニタしながら、波長フィルタ13を溝16
に沿って移動させる。モニタ光量が最大の位置で波長フ
ィルタ13を固定する。
The purpose of tilting by θ is to align the film surface of the multilayer film portion 14 with the direction perpendicular to the central bisector of the optical axes of the optical waveguides 9 and 11 when the wavelength filter 13 is inserted into the groove. Groove 1
The width of 6 is set to be slightly wider than the thickness of the wavelength filter 13. After that, the wavelength filter 13 is inserted into the groove 16, and while the light is introduced from the optical waveguide 9 and the optical output intensity of the optical waveguide 11 is monitored, the wavelength filter 13 is inserted into the groove 16.
move it along. The wavelength filter 13 is fixed at a position where the amount of monitored light is maximum.

なお、光波長フィルタ13を透過して光導波路10から
出力する光強度は波長フィルタ13の位置に依らず一定
である。
Note that the intensity of light transmitted through the optical wavelength filter 13 and output from the optical waveguide 10 is constant regardless of the position of the wavelength filter 13.

このように、光導波路9と光導波路11との交差部に入
力光λ1.λ2を分岐結合させろ光制御層14を有する
光分岐結合器において、上記光制御層14が、光導波@
9,10の交差部に形成された溝内16を移動可能な光
制御部材13に設けられていると共に、溝16は、光導
波路9と光導波路11との光軸の中心2等分線と垂直な
方向すなわち光制御層14と同方向よりθだけ傾けた方
向に形成されてなるので、該光制御部材13の移動方向
が光制御層と交差する方向で且つ光制御部材13の移動
により光制御層14がその厚さ方向に平行移動すること
となり、光導波路9,10の中心線が交差する点と該光
制御層14とが一致することとなる。
In this way, the input light λ1. In an optical branching/coupling device having a light control layer 14 for branching and coupling λ2, the light control layer 14 is an optical waveguide @
The optical control member 13 is provided so as to be movable in a groove 16 formed at the intersection of the optical waveguides 9 and 10, and the groove 16 is located at the center bisector of the optical axis of the optical waveguide 9 and the optical waveguide 11. Since it is formed in a direction tilted by θ from the vertical direction, that is, the same direction as the light control layer 14, the movement direction of the light control member 13 is a direction that intersects the light control layer, and the movement of the light control member 13 causes the light to change. The control layer 14 will move in parallel in its thickness direction, and the point where the center lines of the optical waveguides 9 and 10 intersect will coincide with the optical control layer 14.

上記の方法で光分岐器を作製した。光制御部材としての
波長フィルタ13には1.3μmの波長を透過し1.5
μmの波長を反射するように設計された光制御層として
の誘電体多層膜14(二酸化チタンと二酸化シリコンの
交互膜)がガラスで挾まれた構造のものを用い、その厚
さt1大きさは、それぞれ45μm12x4m2である
。先導波路9〜11は、基板厚0.7論、コア径8×8
μゴ、比屈折率差0.25%の石英系ガラス導波路であ
る。石英ガラス光導波路は、通常、Si基板の上にスー
ト堆積、ガラス化処理、ドライエツチングによるパター
ン化によって作製される(湾内: 「導波路型光回路素
子」、オプトロニクス、vol、 80. p、 85
 (1989,9)参照)。
An optical splitter was manufactured using the method described above. The wavelength filter 13 as a light control member transmits a wavelength of 1.3 μm and has a wavelength of 1.5 μm.
A dielectric multilayer film 14 (alternating films of titanium dioxide and silicon dioxide) as a light control layer designed to reflect wavelengths of μm is sandwiched between glasses, and its thickness t1 is , each 45μm12x4m2. The leading waveguides 9 to 11 have a substrate thickness of 0.7 mm and a core diameter of 8 x 8.
It is a silica-based glass waveguide with a relative refractive index difference of 0.25%. A silica glass optical waveguide is usually fabricated on a Si substrate by soot deposition, vitrification treatment, and patterning by dry etching (Wanai: "Waveguide type optical circuit element", Optronics, vol. 80. p. 85)
(1989, 9)).

また、溝16は市販のダイシングソーを用いて幅50μ
m、深さ250μmのものを形成した。分岐角(光導波
路9と光導波路11とのなす角度)は、誘電体多層膜の
偏光依存性の影響を受けないように30度に選んだ。作
製した光分岐器の光導波路9から波長1.3μmの光を
入力するとその出力は光導波路10から、また光導波I
I9から波長1.5μmの光を入力するとその出力は先
導波路11から出射された。この時入力光量と出力光量
の比から、波長フィルタを透過する1、3μmの光に対
しては損失0.5dBが、波長フィルタ 13に反射さ
れた1、5μmの光に対しては損失0.7dBが得られ
た。また、光の入出力を逆にしても同じ損失であった。
Furthermore, the groove 16 was formed with a width of 50 μm using a commercially available dicing saw.
250 μm in depth. The branching angle (the angle between the optical waveguide 9 and the optical waveguide 11) was selected to be 30 degrees so as not to be affected by the polarization dependence of the dielectric multilayer film. When light with a wavelength of 1.3 μm is input from the optical waveguide 9 of the fabricated optical splitter, its output is transmitted from the optical waveguide 10 and from the optical waveguide I.
When light with a wavelength of 1.5 μm was input from I9, its output was emitted from the leading waveguide 11. At this time, from the ratio of the input light amount to the output light amount, the loss is 0.5 dB for the 1.3 μm light transmitted through the wavelength filter, and the loss is 0.5 dB for the 1.5 μm light reflected by the wavelength filter 13. 7dB was obtained. Furthermore, the loss was the same even if the input and output of light were reversed.

このことから、波長フィルタの位置精度は±2μm以内
と換算され、本発明の有効性が確認された。
From this, the positional accuracy of the wavelength filter was calculated to be within ±2 μm, confirming the effectiveness of the present invention.

第3図は、本発明の光分岐結合器の第2の実施例を示す
もので、第1の実施例とは光導波路の代わりに光ファイ
バを用いた点が異なる。同図中19.20.21は光フ
ァイバ、22は光制御部材としての波長フィルタ、22
aは波長フィルタに設けられた光制御層としての多層膜
部、23は波長フィルタが配設される溝、24は光ファ
イバを固定する基板である。この光ファイバを用いる場
合には、光ファイバ19〜21を固定するための溝26
が各々形成された基板24を予め用意する必要がある。
FIG. 3 shows a second embodiment of the optical branching coupler of the present invention, which differs from the first embodiment in that an optical fiber is used instead of an optical waveguide. In the figure, 19, 20, 21 are optical fibers, 22 is a wavelength filter as a light control member, 22
Reference numeral a indicates a multilayer film part as a light control layer provided in the wavelength filter, 23 indicates a groove in which the wavelength filter is disposed, and 24 indicates a substrate for fixing the optical fiber. When using this optical fiber, grooves 26 for fixing the optical fibers 19 to 21
It is necessary to prepare in advance a substrate 24 on which are respectively formed.

光ファイバ19,20,21として、外径125μm1
コア径10μm1比屈折率差0.3%の単一モードファ
イバを、波長フィルタ22には第1の実施例と同じもの
を用いて作製したものでは、透過光の損失は上記第1の
実施例とほぼ同じであったが、反射光の損失はやや大き
かった。これは、反射した光は光ファイバ19のクラッ
ド中を伝搬する際に増加したものである。
The optical fibers 19, 20, 21 have an outer diameter of 125 μm1
When a single mode fiber with a core diameter of 10 μm and a relative refractive index difference of 0.3% was fabricated using the same wavelength filter 22 as in the first embodiment, the loss of transmitted light was the same as that in the first embodiment. However, the loss of reflected light was slightly larger. This is because the reflected light increases when propagating through the cladding of the optical fiber 19.

第4図は、本発明の光分岐結合器の第3の実施例を示す
もので、光制御部材としては偏光分離膜を用いろ場合で
ある。第4図において、25,26,27は光導波路の
コア、28はクラッド、29は偏光分離フィルタ、30
は溝である。光導波路のコア25と光導波路のコア27
との分岐角は90度の場合を示しているが、この角度に
限定されるものではない(通常使用される偏光分離プリ
ズムはこの角度のものが多い)。この構成によって、光
導波路のコア25の伝搬光は基板に平行な偏光成分と基
板に垂直な偏光成分に分離されて出力導波路のコア26
.27から出力される。
FIG. 4 shows a third embodiment of the optical branching coupler of the present invention, in which a polarization separation film is used as the light control member. In FIG. 4, 25, 26, 27 are the cores of the optical waveguides, 28 are the claddings, 29 are the polarization separation filters, and 30
is a groove. Optical waveguide core 25 and optical waveguide core 27
Although the case where the branching angle with respect to the light beam is 90 degrees is shown, it is not limited to this angle (many commonly used polarization separation prisms have this angle). With this configuration, the light propagating through the core 25 of the optical waveguide is separated into a polarization component parallel to the substrate and a polarization component perpendicular to the substrate.
.. It is output from 27.

光導波路の場合には構造の非対称性に起因する偏波保持
性を有するので、分離後の偏光方向は出力導波路内にお
いて一定方向に保持される点で好都合である。
In the case of an optical waveguide, since it has polarization maintaining property due to the asymmetry of its structure, it is advantageous in that the polarization direction after separation is maintained in a constant direction within the output waveguide.

第1の実施例と同じパラメータで、分岐角が90度の光
導波路を用いて偏光分離器を作製した。偏光フィルタ2
9も第2図のものと同じ寸法とした。但し、多層膜29
aには偏光分離用に設計されたものである(構成として
は波長フィルタの場合と同じ二酸化チタンと二酸化シリ
コンの交互膜)。偏光フィルタ29を最適点で固定する
ことによって、第1の実施例と同じ0.5〜0.7dB
程度の低損失な特性が得られた。入出力を入れ換えても
この損失は同じであった。
A polarization separator was manufactured using an optical waveguide with a branching angle of 90 degrees using the same parameters as in the first example. polarizing filter 2
9 also had the same dimensions as those in FIG. However, multilayer film 29
A is designed for polarization separation (the structure is the same alternating films of titanium dioxide and silicon dioxide as in the wavelength filter). By fixing the polarizing filter 29 at the optimum point, the same 0.5 to 0.7 dB as in the first embodiment
A relatively low loss characteristic was obtained. This loss remained the same even if the input and output were swapped.

本発明の第4の実施例は、第4図に示す第3の実施例に
おいて、光導波路25〜27に代えて光ファイバを用い
たものである。用いる光ファイバとしては、偏光方向を
保持するために、偏波保持光ファイバが望ましい。
A fourth embodiment of the present invention uses optical fibers in place of the optical waveguides 25 to 27 in the third embodiment shown in FIG. The optical fiber used is preferably a polarization-maintaining optical fiber in order to maintain the polarization direction.

第5図は、本発明の光分岐結合器の第5の実施例を示す
もので、光分岐器を同じ基板上に複数個作製したもので
ある。第5図において、31,32,33はアレイ状の
光導波路コア部分、34は光導波路のクラッド部分、3
5は光制御部材、36は光制御部材の多層膜部分、37
は溝である。図では、光制御部材35を溝37に沿って
移動させた後、多層膜36の膜面と点線で示した4対の
光導波路の分岐点が一致した様子を描いている。
FIG. 5 shows a fifth embodiment of the optical branching/coupling device of the present invention, in which a plurality of optical branching devices are fabricated on the same substrate. In FIG. 5, 31, 32, 33 are array-shaped optical waveguide core parts, 34 is a cladding part of the optical waveguide, 3
5 is a light control member, 36 is a multilayer film portion of the light control member, 37
is a groove. In the figure, after the light control member 35 is moved along the groove 37, the film surface of the multilayer film 36 and the branching points of the four pairs of optical waveguides shown by dotted lines are drawn to coincide with each other.

本発明の第6の実施例では、光制御層として例えばAj
、Cr、Au等の金属膜を用いる場合である。この場合
、入射光を特定の比率で反射光と透過光に分ける光分岐
器もしくは光結合器を得ることができる。
In the sixth embodiment of the present invention, for example, Aj
, Cr, Au, or other metal films are used. In this case, it is possible to obtain an optical splitter or optical coupler that separates incident light into reflected light and transmitted light at a specific ratio.

尚、上述した方法においては、座標のX−Y軸面に導波
路及び溝を設けるようにしているが、本発明はこれに限
定されず座標のX −Y軸面に導波路又は光ファイバを
、Z軸方向に溝を設けるようにしてもよい。
In the method described above, the waveguide and the groove are provided on the X-Y axis plane of the coordinates, but the present invention is not limited to this, and the waveguide or optical fiber is provided on the X-Y axis plane of the coordinates. , grooves may be provided in the Z-axis direction.

〈発明の効果〉 以上説明したように本発明による光分岐器では、分岐部
に配設する光制御部材を最適な位置に設定できるので、
分岐損失を小さくできろ効果がある。また、本発明によ
る光分岐器では入力光導波路もしくは光ファイバと分岐
出力用の光導波路もしくは光ファイバを同一のパラメー
タで構成できるので、入出力の方向を特にきめる必要が
なく、光分岐、光結合兼用の部品を提供できる。
<Effects of the Invention> As explained above, in the optical branching device according to the present invention, the light control member disposed at the branching part can be set at an optimal position.
It has the effect of reducing branch loss. In addition, in the optical splitter according to the present invention, the input optical waveguide or optical fiber and the optical waveguide or optical fiber for branch output can be configured with the same parameters, so there is no need to specifically determine the direction of input and output, and optical branching and optical coupling We can provide parts that can be used for both purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る光分岐結合器の概略
図、第2図は本実施例の光制御部材の斜視図、第3図は
第2実施例に係る光分岐結合器の概略図、第4図は第3
実施例に係る光分岐結合器の概略図、第5図は第5実施
例に係る光分岐結合器の概略図、第6図は従来例に係る
光分岐器の概略図、第7図はその部分拡大図である。 図面中、 1、2.3. 19.20. 21は光ファイバ、4.
13.22は波長フィルタ、 5.16,23,30は溝、 6は光フアイバ固定用基板、 7.14は波長フィルタの誘電体多層膜部、8.15は
波長フィルタの基板部、 9.10,11,25,26,27,31゜32.33
は光導波路のコア、 12.28,34は光導波路のクラッド、24は基板、 29は偏光分離フィルタである。
FIG. 1 is a schematic diagram of an optical branching coupler according to a first embodiment of the present invention, FIG. 2 is a perspective view of a light control member of this embodiment, and FIG. 3 is an optical branching coupler according to a second embodiment. Schematic diagram of , Figure 4 is the 3rd
A schematic diagram of an optical branching coupler according to an embodiment, FIG. 5 is a schematic diagram of an optical branching coupler according to a fifth embodiment, FIG. 6 is a schematic diagram of an optical branching coupler according to a conventional example, and FIG. It is a partially enlarged view. In the drawings: 1, 2.3. 19.20. 21 is an optical fiber; 4.
13.22 is a wavelength filter; 5.16, 23, and 30 are grooves; 6 is a substrate for fixing an optical fiber; 7.14 is a dielectric multilayer film portion of the wavelength filter; 8.15 is a substrate portion of the wavelength filter; 9. 10, 11, 25, 26, 27, 31° 32.33
is the core of the optical waveguide, 12, 28 and 34 are the claddings of the optical waveguide, 24 is the substrate, and 29 is a polarization separation filter.

Claims (1)

【特許請求の範囲】 1)光導波路の交差部に入力光を分岐結合させる光制御
層を有する光分岐結合器において、上記光制御層は、光
導波路の交差部に形成 された溝内を移動可能な光制御部材に設けられており、
該光制御部材の移動方向が光制御層と交差する方向で且
つ光制御部材の移動により光制御層がその厚さ方向に平
行移動することを特徴とする光分岐結合器。 2)交差する光導波路の交差部に溝を形成する工程と、
該溝に光制御部材を配設し、前記溝に沿って光制御部材
を移動して光導波路の中心線が交差する点と該光制御部
材の光制御層とが一致する位置で該光制御部材を固定す
る工程とを備えた光分岐結合器の製造方法。3)請求項
1記載の光分岐結合器において、上記光導波路の代わり
に光ファイバを用い ることを特徴とする光分岐結合器。 4)請求項2記載の光分岐結合器の製造方法において、 上記光導波路の代わりに光ファイバを用い ることを特徴とする光分岐結合器の製造方法。 5)請求項1又は3記載の光分岐結合器において、 上記光制御層が誘電体多層膜もしくは金属 膜であることを特徴とする光分岐結合器。
[Claims] 1) In an optical branching/coupling device having an optical control layer for branching and coupling input light at the intersection of optical waveguides, the optical control layer moves within a groove formed at the intersection of the optical waveguides. is provided on a possible light control member,
An optical branching/coupling device characterized in that the moving direction of the light controlling member is a direction intersecting the light controlling layer, and the moving direction of the light controlling member causes the light controlling layer to move in parallel in its thickness direction. 2) forming a groove at the intersection of the intersecting optical waveguides;
A light control member is disposed in the groove, and the light control member is moved along the groove to control the light at a position where the point where the center line of the optical waveguide intersects with the light control layer of the light control member. A method for manufacturing an optical branching coupler, comprising a step of fixing members. 3) The optical branching coupler according to claim 1, wherein an optical fiber is used in place of the optical waveguide. 4) The method of manufacturing an optical branching coupler according to claim 2, wherein an optical fiber is used in place of the optical waveguide. 5) The optical branching coupler according to claim 1 or 3, wherein the optical control layer is a dielectric multilayer film or a metal film.
JP16402390A 1990-06-25 1990-06-25 Optical brancher/coupler and its production Pending JPH0456818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16402390A JPH0456818A (en) 1990-06-25 1990-06-25 Optical brancher/coupler and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16402390A JPH0456818A (en) 1990-06-25 1990-06-25 Optical brancher/coupler and its production

Publications (1)

Publication Number Publication Date
JPH0456818A true JPH0456818A (en) 1992-02-24

Family

ID=15785327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16402390A Pending JPH0456818A (en) 1990-06-25 1990-06-25 Optical brancher/coupler and its production

Country Status (1)

Country Link
JP (1) JPH0456818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493150B2 (en) 1997-06-02 2002-12-10 Olympus Optical Co., Ltd. Real image mode variable magnification finder
US7313297B2 (en) 2003-09-12 2007-12-25 Nippon Telegraph And Telephone Corporation Wavelength multi/demultiplexer
WO2013136393A1 (en) * 2012-03-16 2013-09-19 日本電気株式会社 Polarization combiner and separator, polarization combining and separating structure, light mixer, optical modulator module, and method for manufacturing polarization combiner and separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493150B2 (en) 1997-06-02 2002-12-10 Olympus Optical Co., Ltd. Real image mode variable magnification finder
US7313297B2 (en) 2003-09-12 2007-12-25 Nippon Telegraph And Telephone Corporation Wavelength multi/demultiplexer
WO2013136393A1 (en) * 2012-03-16 2013-09-19 日本電気株式会社 Polarization combiner and separator, polarization combining and separating structure, light mixer, optical modulator module, and method for manufacturing polarization combiner and separator
CN104169762A (en) * 2012-03-16 2014-11-26 日本电气株式会社 Polarization combiner and separator, polarization combining and separating structure, light mixer, optical modulator module, and method for manufacturing polarization combiner and separator
JPWO2013136393A1 (en) * 2012-03-16 2015-07-30 日本電気株式会社 Polarization combiner / separator, polarization combiner / separator, optical mixer, optical modulator module, and polarization combiner / separator manufacturing method
US9442248B2 (en) 2012-03-16 2016-09-13 Nec Corporation Polarization beam combiner/splitter, polarization beam combining/splitting structure, light mixer, optical modulator module, and method for manufacturing polarization beam combiner/splitter

Similar Documents

Publication Publication Date Title
US4693544A (en) Optical branching device with internal waveguide
US4765702A (en) Glass integrated optical component
US4431260A (en) Method of fabrication of fiber optic coupler
EP0557713A1 (en) Planar optical waveguides with planar optical elements
JPH10319262A (en) Optical waveguide structure and planar optical waveguide device
EP0289332A1 (en) Optical device
KR20050074290A (en) Method and apparatus for compactly coupling an optical fiber and a planar optical wave guide
US10598857B2 (en) Techniques for reducing polarization, wavelength and temperature dependent loss, and wavelength passband width in fiberoptic components
JP2002122750A (en) Structure for connecting optical waveguide
JP2988515B2 (en) Optical waveguide
JP2871893B2 (en) Branch coupler with filter
KR20010076354A (en) Fiberoptic polarizer and method of making the same
JPH08313744A (en) Optical circuit parts
US6845197B2 (en) Optical tap
JPH0456818A (en) Optical brancher/coupler and its production
JPH09159865A (en) Connection structure of optical waveguide
JPH0234806A (en) Demultiplexer/multiplexer and its manufacture
JPH0627334A (en) Optical waveguide
JPS6360410A (en) Optical device
JP2730901B2 (en) Optical function device
JP2752848B2 (en) Manufacturing method of optical waveguide with interference filter
US5883991A (en) Optical waveguide circulator
JPS63106606A (en) Optical multiplexer and demultiplexer
JP3088822B2 (en) Branch coupler with filter
JPH0618734A (en) Waveguide type optical branch coupler