JPH0720413A - Composite optical circuit - Google Patents

Composite optical circuit

Info

Publication number
JPH0720413A
JPH0720413A JP16352493A JP16352493A JPH0720413A JP H0720413 A JPH0720413 A JP H0720413A JP 16352493 A JP16352493 A JP 16352493A JP 16352493 A JP16352493 A JP 16352493A JP H0720413 A JPH0720413 A JP H0720413A
Authority
JP
Japan
Prior art keywords
optical
circuit
optical circuit
waveguides
fabry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16352493A
Other languages
Japanese (ja)
Inventor
Yoshihisa Sakai
義久 界
Tetsuo Yoshizawa
鉄夫 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16352493A priority Critical patent/JPH0720413A/en
Publication of JPH0720413A publication Critical patent/JPH0720413A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the composite optical circuit having high stability and high performance by adjacently coupling an optical circuit having waveguides for making modulation or filtering to an optical circuit having waveguides for branching or coupling light signals. CONSTITUTION:The light signal inputted through an optical fiber 11 is branched by the optical branching circuit 12 to 8 pieces of the waveguides and the branched signals are introduced to a Fabry-Perot resonator array 13. At this time, the multilayered films 14, 15 of high-reflectivity dielectrics are deposited by evaporation at both ends of the Fabry-Perot resonator array in such a manner that the refractive index of lithium niobate attains desired reflectivity with respect to the refractive index of quartz glass. The first circuit 12 and the second circuit 13 are joined by optical adhesives 17, 18. Impressed voltages are applied to electrodes 19 added in the Fabry-Perot resonator array to change the refractive indices of the waveguides by an electro-optical effect, by which the filtering is executed. The filtered light signals are taken out of a fiber array 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合光回路に関し、特
に、光通信または光計測用の変調器、スイッチ、フィル
タを二次元状に分布させた、小型の光部品を形成するた
めの複合光回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite optical circuit, and more particularly to a composite optical circuit in which modulators, switches and filters for optical communication or optical measurement are two-dimensionally distributed to form a small optical component. It relates to an optical circuit.

【0002】[0002]

【従来の技術】図3は、従来の単一構成からなる光回路
を説明するための図であって、例えば、石英基板1上
に、部分的に屈折率の高い導波路部を形成して光カップ
ラやリング干渉計あるいはそれらを組み合わせを形成し
て光回路としたものである。2,6は光ファイバ、3は
光分岐部、4は共振器部、5は電極である。
2. Description of the Related Art FIG. 3 is a diagram for explaining a conventional optical circuit having a single structure. For example, a waveguide portion having a high refractive index is partially formed on a quartz substrate 1. An optical circuit is formed by forming an optical coupler, a ring interferometer, or a combination thereof. Reference numerals 2 and 6 are optical fibers, 3 is an optical branching portion, 4 is a resonator portion, and 5 is an electrode.

【0003】光ファイバ2を伝搬してきた光信号は、光
分岐部3で分岐され、共振器部4でフィルタリングさ
れ、そのフィルタリングされた信号が光ファイバ6から
取り出されるものである。フィルタリングの調整は、電
極5を介して共振器部に加えられる電力によって見かけ
上の導波路長を微妙に変化させることによって実現して
いる。
The optical signal propagating through the optical fiber 2 is branched by the optical branching section 3, filtered by the resonator section 4, and the filtered signal is taken out from the optical fiber 6. The adjustment of the filtering is realized by subtly changing the apparent waveguide length by the electric power applied to the resonator section through the electrode 5.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来の光回路では、石英などのガラス系の材料が用いら
れているため、フィルタリング等の動作速度は、電極を
ヒーターとし、導波路の屈折率の温度変化を用いている
ため高々数十msに制限されている。
However, since such a conventional optical circuit uses a glass-based material such as quartz, the operating speed for filtering or the like is such that the electrode is used as a heater and the refractive index of the waveguide is changed. Since it uses temperature change, it is limited to several tens of ms at most.

【0005】一方、ニオブ酸リチウムやGaAsなどの
半導体材料を用いた光回路では応答速度は早くできる
が、導波路のまげが大きくなると導波損失が急激に大き
くなるため、まげの小さい2分岐回路程度までしか回路
を形成できないという問題があった。
On the other hand, in an optical circuit using a semiconductor material such as lithium niobate or GaAs, the response speed can be increased, but when the bend of the waveguide becomes large, the waveguide loss rapidly increases. There was a problem that circuits could only be formed to a certain degree.

【0006】また、利用できる基板の大きさも石英など
のガラス系に比べて小さいものしかなく、大きな回路を
形成できないという問題があった。したがって、通常の
Y分岐などの簡単な導波路構造を組み合わせた回路など
しか実現できていない。
Further, the size of the substrate that can be used is only smaller than that of glass such as quartz, and there is a problem that a large circuit cannot be formed. Therefore, only a circuit in which a simple waveguide structure such as a normal Y branch is combined can be realized.

【0007】本発明は、前記問題点を解決するためにな
されたものであり、本発明の目的は、高速動作ができ、
しかも、8本以上の複数の導波路を同時に取り扱える光
回路を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to enable high speed operation.
Moreover, it is to provide an optical circuit capable of simultaneously handling a plurality of eight or more waveguides.

【0008】本発明の前記ならびにその他の目的及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かにする。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明の複合光回路は、光信号を分岐あるいは結合
する導波路を有する第1の光回路に、前記光信号を高速
に変調あるいはフィルタリングする導波路を有する第2
の光回路を、屈折率調整領域を介して隣接して接合した
ことを最も主要な特徴とする。
In order to achieve the above object, the composite optical circuit of the present invention modulates the optical signal at high speed on a first optical circuit having a waveguide for branching or coupling the optical signal. Or a second having a filtering waveguide
The main feature is that the optical circuits of (1) and (2) are joined adjacently via the refractive index adjusting region.

【0010】前記複合光回路において、第1の光回路と
して、石英系導波路型光回路を用いたことを特徴とす
る。
In the composite optical circuit, a silica-based waveguide type optical circuit is used as the first optical circuit.

【0011】前記複合光回路において、第2の光回路と
して、ニオブ酸リチウム系導波路型光回路を用いたこと
を特徴とする。
In the above composite optical circuit, a lithium niobate waveguide type optical circuit is used as the second optical circuit.

【0012】[0012]

【作用】前述の手段によれば、光信号を分岐あるいは結
合する、曲げの大きい部分には石英系などの曲がり損失
の小さい第1の光回路を、光信号を高速に変調あるいは
フィルタリングする回路部にはニオブ酸リチウムやGa
As等の半導体材料で形成された第2の光回路を、接合
して一体化するので、これまでには到達できなかった、
極めて高安定で、高性能な複合光回路を得ることができ
る。
According to the above-mentioned means, the first optical circuit for branching or coupling the optical signals, which has a large bending, such as a quartz system, which has a small bending loss, is used for the circuit section for modulating or filtering the optical signals at a high speed. Lithium niobate and Ga
Since the second optical circuit formed of a semiconductor material such as As is joined and integrated, it has not been possible until now.
It is possible to obtain a highly stable and high-performance composite optical circuit.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0014】図1は、本発明の複合光回路の一実施例の
構成を示すブロック図である。この実施例は、図1に示
すように、光ファイバ11、第1の光回路として石英系
の材料で作られた光分岐回路12、第2の光回路として
ニオブ酸リチウムで作られたファブリペロ共振器アレイ
13、その両端に蒸着されている高反射誘電体多層膜1
4,15、光ファイバアレイ16、第1の光学回路と第
2の光学回路を接合するための光学接着剤17,18、
ファブリペロ共振器を動作させるための電極19で構成
されている。
FIG. 1 is a block diagram showing the configuration of an embodiment of the composite optical circuit of the present invention. In this embodiment, as shown in FIG. 1, an optical fiber 11, an optical branch circuit 12 made of a silica-based material as a first optical circuit, and a Fabry-Perot resonance made of lithium niobate as a second optical circuit. Device array 13, high-reflection dielectric multilayer film 1 deposited on both ends thereof
4, 15, optical fiber array 16, optical adhesives 17, 18 for joining the first optical circuit and the second optical circuit,
It is composed of electrodes 19 for operating the Fabry-Perot resonator.

【0015】図1に示す複合光回路の構成では、光ファ
イバ11を通して入力された光信号は、光分岐回路12
で8本の導波路に分波され、ファブリペロ共振器アレイ
13へと導かれる。このとき、ファブリペロ共振器の両
端には、石英ガラスの屈折率に対してニオブ酸リチウム
の屈折率が所望の反射率になるように、高反射誘電体多
層膜14,15が蒸着されている。変調器アレイ等をフ
ァブリペロ共振器の代わりに実装する場合は、石英ガラ
スに対してニオブ酸リチウムの屈折率で反射が無いよう
に無反射誘電体多層膜を蒸着する。
In the structure of the composite optical circuit shown in FIG. 1, the optical signal inputted through the optical fiber 11 is the optical branch circuit 12
Is demultiplexed into eight waveguides and guided to the Fabry-Perot resonator array 13. At this time, highly reflective dielectric multilayer films 14 and 15 are vapor-deposited on both ends of the Fabry-Perot resonator so that the refractive index of lithium niobate becomes a desired reflectance with respect to the refractive index of quartz glass. When a modulator array or the like is mounted instead of the Fabry-Perot resonator, a non-reflective dielectric multilayer film is vapor-deposited on silica glass so that there is no reflection due to the refractive index of lithium niobate.

【0016】第1の回路12と第2の回路13は光学接
着剤17,18で接合されている。光学接着剤17,1
8の屈折率は、石英ガラスの屈折率と同じものを用い
た。第1の回路12と第2の回路13の接合面の導波路
アレイの間隔は、250μmに統一されており、8本の
導波路の接続で2〜3dB以下のばらつきで接続されて
いる。
The first circuit 12 and the second circuit 13 are joined by optical adhesives 17 and 18. Optical adhesive 17,1
The refractive index of 8 was the same as that of quartz glass. The gap between the waveguide arrays on the joint surface between the first circuit 12 and the second circuit 13 is unified to 250 μm, and the eight waveguides are connected with a variation of 2-3 dB or less.

【0017】ファブリペロ共振器中に付加されている電
極19に印加電圧を加えることにより電気光学(EO)
効果によって導波路の屈折率を変化させフィルタリング
する。フィルタリングされた光信号は、ファイバアレイ
16から取り出された。
Electro-optic (EO) is performed by applying an applied voltage to the electrode 19 added in the Fabry-Perot resonator.
The effect changes the refractive index of the waveguide and filters. The filtered optical signal was extracted from the fiber array 16.

【0018】図2は、入力光信号の波長1.536μm
の半導体レーザの光周波数を掃引して個々の導波路の出
力光信号を観測したものである。各接続点の平均過剰損
失は1dB程度で、どの導波路もほぼ均一なファブリペ
ロ共振特性が得られた。
FIG. 2 shows that the wavelength of the input optical signal is 1.536 μm.
The optical frequency of the semiconductor laser is swept and the output optical signal of each waveguide is observed. The average excess loss at each connection point was about 1 dB, and almost uniform Fabry-Perot resonance characteristics were obtained for all the waveguides.

【0019】また、電極を通して、電界を加えることに
より共振ピークを可変できることを確認し、光フィルタ
としての動作も確認した。
It was also confirmed that the resonance peak can be varied by applying an electric field through the electrodes, and the operation as an optical filter was also confirmed.

【0020】なお、図1の回路をすべてニオブ酸リチウ
ムで作成した場合は、分岐部での損失が大きいため、出
力光信号が検出限界以下となり共振特性を、観測できな
かった。
In the case where the circuit of FIG. 1 is entirely made of lithium niobate, the output light signal is below the detection limit because the loss at the branch is large, and the resonance characteristic cannot be observed.

【0021】本実施例では、第1の光回路として石英ガ
ラス、第2の光回路としてニオブ酸リチウムを用いた例
を示したが、タンタル酸リチウム、ニオブ酸カリウム、
KDPなどの誘電体結晶や、GaAs、InGaAsな
どの半導体材料、POM、NPP、AANP、DAN、
DMNPなどの有機結晶材料、アゾ色素やスチルベン色
素を結合するPMMAなどを分極処理したEO(電気光
学)高分子材料でも同様の効果が得られる。
In this embodiment, an example using quartz glass as the first optical circuit and lithium niobate as the second optical circuit is shown. However, lithium tantalate, potassium niobate,
Dielectric crystals such as KDP, semiconductor materials such as GaAs and InGaAs, POM, NPP, AANP, DAN,
The same effect can be obtained by using an organic crystal material such as DMNP or an EO (electro-optical) polymer material obtained by polarization treatment of PMMA or the like which binds an azo dye or a stilbene dye.

【0022】以上、本発明を実施例に基づき具体的に説
明したが、本発明は、前記実施例に限定されるものでは
なく、その要旨を逸脱しない範囲において種々変更し得
ることはいうまでもない。
Although the present invention has been specifically described based on the embodiments, it is needless to say that the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention. Absent.

【0023】[0023]

【発明の効果】以上、説明したように、本発明によれ
ば、光信号を分岐あるいは結合する導波路に適している
石英系導波路を第1の光回路に、光信号を高速に変調あ
るいはフィルタリングに適したニオブ酸リチウムなどの
誘電体結晶やGaAs等の半導体あるいはEO高分子材
料で形成された導波路を第2の光回路とし、両者を屈折
率を調整した光学接着剤で接合し双方の長所を活かすこ
とにより、これまでには到達できなかった、極めて高安
定で、高性能な複合光回路を得ることができる。
As described above, according to the present invention, a silica-based waveguide suitable for a waveguide for branching or coupling an optical signal is used as the first optical circuit and the optical signal is modulated at high speed. A waveguide formed of a dielectric crystal such as lithium niobate suitable for filtering, a semiconductor such as GaAs, or an EO polymer material is used as a second optical circuit, and both are joined by an optical adhesive whose refractive index is adjusted. By taking advantage of the advantages of (1), it is possible to obtain an extremely high-stability, high-performance composite optical circuit that could not be achieved until now.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の複合光回路の一実施例の構成を示す
ブロック図、
FIG. 1 is a block diagram showing the configuration of an embodiment of a composite optical circuit of the present invention,

【図2】 本実施例の複合光回路として、1×8光カッ
プラとファブリペロ共振器を構成した場合の光学特性の
測定例を示すブロック図、
FIG. 2 is a block diagram showing an example of measurement of optical characteristics when a 1 × 8 optical coupler and a Fabry-Perot resonator are configured as the composite optical circuit of the present embodiment,

【図3】 従来の光回路を示す図。FIG. 3 is a diagram showing a conventional optical circuit.

【符号の説明】[Explanation of symbols]

1…光回路、2,6,11…光ファイバ、3,12…光
分岐回路、4…リング共振器、5…電極、13…ファブ
リペロ共振器アレイ、14,15…誘電体多層膜、16
…光ファイバアレイ、17,18…光学接着剤。
DESCRIPTION OF SYMBOLS 1 ... Optical circuit, 2, 6, 11 ... Optical fiber, 3, 12 ... Optical branch circuit, 4 ... Ring resonator, 5 ... Electrode, 13 ... Fabry-Perot resonator array, 14, 15 ... Dielectric multilayer film, 16
... optical fiber array, 17, 18 ... optical adhesive.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光信号を分岐あるいは結合する導波路を
有する第1の光回路に、前記光信号を高速に変調あるい
はフィルタリングする導波路を有する第2の光回路を、
屈折率調整領域を介して隣接して接合したことを特徴と
する複合光回路。
1. A first optical circuit having a waveguide for branching or coupling an optical signal, and a second optical circuit having a waveguide for modulating or filtering the optical signal at high speed,
A composite optical circuit characterized in that they are adjacently bonded to each other via a refractive index adjusting region.
【請求項2】 請求項1に記載の複合光回路において、
第1の光回路として、石英系導波路型光回路を用いたこ
とを特徴とする複合光回路。
2. The composite optical circuit according to claim 1,
A composite optical circuit, characterized in that a silica-based waveguide type optical circuit is used as the first optical circuit.
【請求項3】 請求項1または2に記載の複合光回路に
おいて、第2の光回路として、ニオブ酸リチウム系導波
路型光回路を用いたことを特徴とする複合光回路。
3. The composite optical circuit according to claim 1, wherein a lithium niobate waveguide type optical circuit is used as the second optical circuit.
JP16352493A 1993-07-01 1993-07-01 Composite optical circuit Pending JPH0720413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16352493A JPH0720413A (en) 1993-07-01 1993-07-01 Composite optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16352493A JPH0720413A (en) 1993-07-01 1993-07-01 Composite optical circuit

Publications (1)

Publication Number Publication Date
JPH0720413A true JPH0720413A (en) 1995-01-24

Family

ID=15775512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16352493A Pending JPH0720413A (en) 1993-07-01 1993-07-01 Composite optical circuit

Country Status (1)

Country Link
JP (1) JPH0720413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876782B2 (en) 2001-12-25 2005-04-05 Nec Corporation Integrated type optical waveguide device
JP2006292917A (en) * 2005-04-08 2006-10-26 Furukawa Electric Co Ltd:The Optical waveguide circuit device
JP2006330315A (en) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd Optical apparatus and method of wiring optical apparatus
JP2008250019A (en) * 2007-03-30 2008-10-16 Furukawa Electric Co Ltd:The Optical integrated circuit and optical integrated circuit module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876782B2 (en) 2001-12-25 2005-04-05 Nec Corporation Integrated type optical waveguide device
JP2006292917A (en) * 2005-04-08 2006-10-26 Furukawa Electric Co Ltd:The Optical waveguide circuit device
JP2006330315A (en) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd Optical apparatus and method of wiring optical apparatus
JP4682698B2 (en) * 2005-05-26 2011-05-11 住友電気工業株式会社 Optical device and optical device wiring method
JP2008250019A (en) * 2007-03-30 2008-10-16 Furukawa Electric Co Ltd:The Optical integrated circuit and optical integrated circuit module

Similar Documents

Publication Publication Date Title
US5002349A (en) Integrated acousto-optic filters and switches
Pan et al. Waveguide fabrication and high-speed in-line intensity modulation in 4-N, N-4′-dimethylamino-4′-N′-methyl-stilbazolium tosylate
JP4183716B2 (en) Optical waveguide device
EP3703202A1 (en) Tunable laser device and laser transmitter
JP2604328B2 (en) Wavelength selective optical switch
RU2043002C1 (en) Integral-optic reflecting transceiver
JP3250712B2 (en) Polarization independent light control element
JP2000261086A (en) Wavelength variable light source
JP2932742B2 (en) Waveguide type optical device
JP2765529B2 (en) Waveguide type optical device
JPH0720413A (en) Composite optical circuit
AU757486B2 (en) Electrostrictive fiber modulators
Kitoh et al. Novel broad-band optical switch using silica-based planar lightwave circuit
JPH04172316A (en) Wave guide type light control device
JP3031394B2 (en) Transmission wavelength control method
JPH0588123A (en) Variable wavelength filter
JP2000250081A (en) Wavelength conversion circuit
KR19980073463A (en) Integrated Optical Reflective Optical Modulator
JP2720654B2 (en) Light control device
JP2580088Y2 (en) Directional coupler type light control device
JP2903700B2 (en) Waveguide type optical device
KR100749871B1 (en) Wavelength conversion tunable device with optical waveguide and optical modulated electrode
JP2606552B2 (en) Light control device
JP2814967B2 (en) Waveguide type optical device
CN117638636A (en) Tunable semiconductor continuous laser integrated with isolator