JPH0380228A - Light control device - Google Patents

Light control device

Info

Publication number
JPH0380228A
JPH0380228A JP21791489A JP21791489A JPH0380228A JP H0380228 A JPH0380228 A JP H0380228A JP 21791489 A JP21791489 A JP 21791489A JP 21791489 A JP21791489 A JP 21791489A JP H0380228 A JPH0380228 A JP H0380228A
Authority
JP
Japan
Prior art keywords
control electrode
film
optical
mass
mass loading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21791489A
Other languages
Japanese (ja)
Inventor
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21791489A priority Critical patent/JPH0380228A/en
Publication of JPH0380228A publication Critical patent/JPH0380228A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Abstract

PURPOSE:To always stably obtain designed characteristics at a high yield by providing a film equal to or larger than the mass of control electrodes on the upper or lower layer or the same plane of the control electrodes. CONSTITUTION:The mass loading film 10 is equal to or larger than the mass of the control electrodes 5. For example, the specific gravities of aluminum and SiO2 are respectively 2.69, 2.22 and, therefore, the film of the SiO2 is formed to the thickness of about >=1.2 times the thickness of the aluminum when the SiO2 is used as the mass loading film 10. The mass loading film 10 is easily deposited by a sputtering method, vapor deposition method, etc. As a result, the concentration of strains near to the control electrodes 5 is decreased and the change in the refractive index of the dielectric crystal near optical waveguides 2, 3 is suppressed. The designed characteristic are always stably obtd. in this way at the good yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光波の変調、光切り替えなどを行う光制御デバ
イスに関し、特に基板中に設けた光導波路を用いて制御
を行う導波形の光制御デバイスに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an optical control device that performs modulation of light waves, optical switching, etc., and in particular, a waveguide type optical control device that performs control using an optical waveguide provided in a substrate. Regarding devices.

(従来の技術) 光通信システムの実用化が進むにつれ、さらに大容量や
多機能を持つ高度のシステムが求められており、より高
度の光信号の発生や光伝送路の切り替え、交換などの新
たな機能の付加が必要とされている。現在の実用システ
ムでは光信号は直接半導体レーザや発光ダイオードの注
入電流を変調することによって得られているが、直接変
調では緩和振動などの効果のため10GHz前後以上の
高速変調が難しいこと、波長変動が発生するためコヒー
レント光伝送方式には適用が難しいなどの欠点がある。
(Conventional technology) As the practical use of optical communication systems progresses, advanced systems with even higher capacity and multi-functions are required. It is necessary to add additional functions. In current practical systems, optical signals are obtained by directly modulating the injection current of semiconductor lasers or light emitting diodes, but with direct modulation, it is difficult to achieve high-speed modulation of around 10 GHz or higher due to effects such as relaxation oscillation, and wavelength fluctuations. The coherent optical transmission method has drawbacks such as difficulty in application due to the occurrence of

これを解決する手段としては、外部変調器を使用する方
法があり、特に基板中に形成した光導波路により構成し
た導波形の光変調器は、小型、高効率、高速という特長
がある。一方、光伝送路の切り替えやネットワークの交
換機能を得る手段としては光スィッチが使用される。現
在実用されている光スィッチは、プリズム、ミラーファ
イバーなどを機械的に移動させるものであり、低速であ
ること、信頼性が不十分、形状が大きくマトリクス化に
不適当の欠点がある。これを解決する手段として開発が
進められているものはやはり光導波路を用いた導波形の
光スィッチであり、高速、多素子の集積化が可能、高信
頼等の特長がある。特にニオブ酸リチウム(LINbO
a)結晶等の強誘電体材料を用いたものは、光吸収が小
さく低損失であること、大きな電気光学効果を有してい
るため高効率である等の特長があり、従来がらも方向性
結合器型光変調器・スイッチ、全反射型光スイッチ、マ
ツハツエンダ型光変調器等の種々の方式の光制御素子が
報告されている。このような導波形の光制御素子を実際
の光通信システムに適用する場合、低損失、高速性等の
基本的性能と同時に特に、動作特性の再現性、すなわち
デバイスの高歩留り化が実用上不可欠である。
As a means to solve this problem, there is a method of using an external modulator. In particular, a waveguide-type optical modulator constituted by an optical waveguide formed in a substrate has the advantage of being small, highly efficient, and fast. On the other hand, an optical switch is used as a means for switching optical transmission lines and obtaining network switching functions. Optical switches currently in practical use mechanically move prisms, mirror fibers, etc., and have the drawbacks of slow speed, insufficient reliability, and large size making them unsuitable for matrix formation. A waveguide type optical switch using an optical waveguide is currently being developed as a means to solve this problem, and has features such as high speed, ability to integrate multiple elements, and high reliability. Especially lithium niobate (LINbO)
a) Materials using ferroelectric materials such as crystals have features such as low light absorption and low loss, and high efficiency due to large electro-optic effect, and they have the advantage of being highly efficient even though they are conventional Various types of light control elements have been reported, such as a coupler type optical modulator/switch, a total reflection type optical switch, and a Matsuhatsu Enda type optical modulator. When applying such a waveguide-type optical control element to an actual optical communication system, in addition to basic performance such as low loss and high speed, reproducibility of operating characteristics, that is, high device yield, is essential for practical purposes. It is.

(発明が解決しようとする課題) しかし、従来の導波形の光制御デバイスでは、動作特性
の再現性に関しては十分な特性は得られていない。第6
図に従来の光制御デバイスの一例として方向性結合器型
光スイッチの平面図(a)及び断面図(b)を示す。第
5図(a)においてZ軸に垂直に切り出したニオブ酸リ
チウム結晶基板1の上にチタンを拡散して屈折率を基板
よりも大きくして形成した帯状の光導波路2及び3が形
成されており、光導波路2及び3は基板の中央部で互い
に数pm程度まで近接し、方向性結合器4を形成してい
る。また、方向性結合器4を構成する光導波路上には電
極による光吸収を防ぐためのバッファ層6を介して制御
電極5が形成されている。第6図(b)は方向性結合器
4の部分の光導波路2.3に垂直な断面図を示している
(Problems to be Solved by the Invention) However, with conventional waveguide type optical control devices, sufficient characteristics are not obtained in terms of reproducibility of operating characteristics. 6th
The figure shows a plan view (a) and a cross-sectional view (b) of a directional coupler type optical switch as an example of a conventional optical control device. In FIG. 5(a), band-shaped optical waveguides 2 and 3 are formed on a lithium niobate crystal substrate 1 cut perpendicularly to the Z-axis by diffusing titanium to make the refractive index larger than that of the substrate. The optical waveguides 2 and 3 are close to each other within a few pm at the center of the substrate, forming a directional coupler 4. Further, a control electrode 5 is formed on the optical waveguide constituting the directional coupler 4 via a buffer layer 6 for preventing light absorption by the electrode. FIG. 6(b) shows a sectional view of the directional coupler 4 perpendicular to the optical waveguide 2.3.

第6図において、光導波路2に入射した入射光7は方向
性結合器4の部分を伝搬するにしたがって近接した光導
波路3へ徐々に光りエネルギーが移り、方向性結合器4
を通過後は光導波路3にほぼ100%エネルギーが移っ
て出射光8となる。一方、制御電極5に電圧を印加した
場合、電気光学効果により制御電極下の光導波路の屈折
率が変化し、光導波路2と3を伝搬する導波モードの間
に位相速度の不整合が生じ、両者の間の結合状態は変化
する。
In FIG. 6, as the incident light 7 entering the optical waveguide 2 propagates through the directional coupler 4, the light energy gradually transfers to the adjacent optical waveguide 3, and the directional coupler 4
After passing through, almost 100% of the energy is transferred to the optical waveguide 3 and becomes the output light 8. On the other hand, when a voltage is applied to the control electrode 5, the refractive index of the optical waveguide under the control electrode changes due to the electro-optic effect, causing phase velocity mismatch between the waveguide modes propagating in the optical waveguides 2 and 3. , the coupling state between the two changes.

制御電極5は、制御電極膜用成膜後マスクを用いたりソ
グラフィ法などにより制御電極以外の制御電極用膜をエ
ツチングして形成する。バッファ層膜及び制御電極用膜
成膜時には各堆積膜と下地の物質の熱膨張係数の違い及
びポアソン比等の弾性定数の違いなどにより基板に対し
て歪が発生することが知られている。この状態では、一
般に成膜時に有していた歪量は均一に誘電体結晶基板全
体に分布するため、光導波路及び誘電体結晶基板の屈折
率の絶対値は変化しても、光導波路の誘電体結晶に対す
る屈折率差は成膜前後において変化しない。従って、光
導波路特性は光導波路を誘電体結晶基板に形成したとき
の特性を保持しており、方向性結合器の結合状態になん
ら変化を与えない。しかし、その後制御電極用膜をエツ
チングすることで形成された制御電極部は弾性的に不連
続であるため、制御電極形成時に変動する歪が制御電極
近傍に不均一に集中し局在する。この歪により強誘電体
結晶基板ではピエゾ効果及び光弾性効果などにより屈折
率の変化をもたらす。従って、この屈折率変動が制御電
極近傍に形成されている光導波路近傍にも影響を与え、
光導波路特性を変化させてしまう。その結果、方向性結
合器の結合状態は変化するため、設計通りの光導波結合
状態が再現性良く得られないという課題を有している。
The control electrode 5 is formed by etching the control electrode film other than the control electrode using a mask or by lithography after forming the control electrode film. It is known that during the formation of buffer layer films and control electrode films, distortion occurs in the substrate due to differences in thermal expansion coefficients between each deposited film and the underlying material, and differences in elastic constants such as Poisson's ratio. In this state, the amount of strain that was present during film formation is generally uniformly distributed over the entire dielectric crystal substrate, so even if the absolute value of the refractive index of the optical waveguide and dielectric crystal substrate changes, the dielectric strength of the optical waveguide The refractive index difference with respect to the body crystal does not change before and after film formation. Therefore, the optical waveguide characteristics retain the characteristics when the optical waveguide is formed on the dielectric crystal substrate, and the coupling state of the directional coupler is not changed in any way. However, since the control electrode portion formed by subsequently etching the control electrode film is elastically discontinuous, the strain that fluctuates at the time of forming the control electrode is unevenly concentrated and localized in the vicinity of the control electrode. This strain causes changes in the refractive index of the ferroelectric crystal substrate due to piezoelectric effects, photoelastic effects, and the like. Therefore, this refractive index fluctuation also affects the vicinity of the optical waveguide formed near the control electrode,
This will change the optical waveguide characteristics. As a result, the coupling state of the directional coupler changes, resulting in a problem that the optical waveguide coupling state as designed cannot be obtained with good reproducibility.

なお、この結合状態の変化量はバッファ層膜及び制御電
極用膜成膜のバッチ毎に変化に差がある。
Note that the amount of change in this bonding state varies from batch to batch of buffer layer film and control electrode film formation.

本発明の目的は上述の従来の光制御デバイスの欠点を除
き、設計通りの特性を高歩留りで、常に安定して得られ
る光制御デバイスを提供することにある。
An object of the present invention is to provide a light control device that eliminates the drawbacks of the conventional light control devices described above and can always stably obtain designed characteristics at a high yield.

(問題を解決するための手段) 本発明による光制御デバイスは、電気光学効果を有する
誘電体結晶基板に形成された光導波路と該光導波路の近
傍に設けられた制御電極と、該制御電極の上層または下
層または同一平面に設置された前記制御電極の質量と等
しいがまたは前記質量より大きい膜より構成される。
(Means for Solving the Problem) An optical control device according to the present invention includes an optical waveguide formed on a dielectric crystal substrate having an electro-optic effect, a control electrode provided near the optical waveguide, and a control electrode provided in the vicinity of the optical waveguide. It is composed of a film that is equal to or larger than the mass of the control electrode disposed on the upper layer or the lower layer or on the same plane.

(作用) 本発明の光制御デバイスは、制御電極の上層または下層
または同一平面に制御電極の質量と等しいかまたは前記
質量より重い膜をコーティング(今後、質量装荷膜と呼
ぶ)している。発明者の実験によると、このように制御
電極の上層または下層または同一平面に電極の質量と等
しいかまたは前記質量より重い膜を形成することにより
制御電極を形成した後に発生する方向性結合器の結合状
態の変化を抑制することが可能となる。これは、前述し
たように制御電極用膜及びバッファ層膜の堆積時に誘電
体結晶基板に与えていた歪が制御電極形成後に光導波路
近傍に形成された弾性的不連続領域となる制御電極近傍
に集中していたのを、制御電極の上層、または下層また
は同一平面に質量装荷膜をコーティングすることにより
、制御電極近傍が弾性不連続領域とならないようにする
からである。この結果、制御電極近傍への歪の集中が低
減されるため、光導波路近傍の誘電体結晶の屈折率変化
が抑圧される。従って、光導波路特性は光導波路を誘電
体結晶基板に形成したときの特性を保持しており、方向
性結合器の結合状態になんら変化を与えない。
(Function) In the optical control device of the present invention, a film that is equal to or heavier than the mass of the control electrode is coated on the upper layer, the lower layer, or the same plane of the control electrode (hereinafter referred to as a mass loading film). According to the inventor's experiments, the directional coupler generated after forming the control electrode by forming a film on the upper or lower layer or on the same plane as the control electrode, which has a mass equal to or heavier than the mass of the electrode, It becomes possible to suppress changes in the bonding state. This is because, as mentioned above, the strain applied to the dielectric crystal substrate during the deposition of the control electrode film and the buffer layer film causes the elastic discontinuous region formed near the optical waveguide after the control electrode is formed near the control electrode. This is because the area near the control electrode is prevented from becoming an elastic discontinuous region by coating the mass loading film on the upper layer, the lower layer, or on the same plane as the control electrode. As a result, the concentration of strain near the control electrode is reduced, so that changes in the refractive index of the dielectric crystal near the optical waveguide are suppressed. Therefore, the optical waveguide characteristics retain the characteristics when the optical waveguide is formed on the dielectric crystal substrate, and the coupling state of the directional coupler is not changed in any way.

以上のことより、本発明の光制御デバイスは、従来に比
べて設計通りの特性を歩留り良く、常に安定して得られ
る。
From the above, the optical control device of the present invention can always stably obtain the characteristics as designed with a higher yield than in the past.

(実施例) 第1図は本発明による光制御デバイスの一実施例である
質量装荷膜を制御電極の上層及び同一平面に形成した方
向性結合器型光スイッチの平面図(a)及び断面図(b
)を示す。第6図の例と同様に2板ニオブ酸リチウム結
晶基板1の上にチタンを900〜1100°C程度で数
時間熱拡散して形成された3〜10pm程度の光導波路
2及び3が形成されており、基板の中央部で画光導波路
は互いに数pmまで近接して方向性結合器4を構成して
いる。その上にバッファ層6を介して制御電極5が形成
されている。本実施例ではさらに質量装荷膜10を有し
ている。本実施例において制御電極5の材料としては、
金、アリミニラム、モリブデン、チタンなどの各種金属
の他、シリサイド、ITO,酸化亜鉛、酸化タンクルな
どの各種導伝性材料が用いられ、質量装荷膜10として
は、第1図に示すように質量装荷膜10が制御電極5に
直に接触している場合にはAl2O3,SiO2゜5i
ON、炭素、Si3N4.Si、Fe2032MgF2
など体積抵抗率が10Ω・0m以上のものが用いられ、
一方質量装荷膜10が制御電極5に直に接触しない場合
には前述した制御電極の材料も含めてどの様な材料でも
よい。
(Example) FIG. 1 is a plan view (a) and a cross-sectional view of a directional coupler type optical switch in which a mass loading film is formed on the upper layer and the same plane as the control electrode, which is an example of the optical control device according to the present invention. (b
) is shown. Similar to the example shown in FIG. 6, optical waveguides 2 and 3 with a thickness of about 3 to 10 pm are formed by thermally diffusing titanium at about 900 to 1100°C for several hours on a two-plate lithium niobate crystal substrate 1. In the center of the substrate, the optical waveguides are close to each other within several pm to form a directional coupler 4. A control electrode 5 is formed thereon with a buffer layer 6 interposed therebetween. This embodiment further includes a mass loading membrane 10. In this example, the material of the control electrode 5 is as follows:
In addition to various metals such as gold, aluminum, molybdenum, and titanium, various conductive materials such as silicide, ITO, zinc oxide, and tank oxide are used as the mass loading film 10, as shown in FIG. When the film 10 is in direct contact with the control electrode 5, Al2O3, SiO2゜5i
ON, carbon, Si3N4. Si, Fe2032MgF2
Those with a volume resistivity of 10Ω・0m or more are used, such as
On the other hand, if the mass loading membrane 10 does not directly contact the control electrode 5, any material may be used, including the material of the control electrode described above.

その上で質量装荷膜lOの質量が制御電極5の質量と等
しいかまたは大きくなるような厚さに設定される。例え
ば、制御電極5の材料としてアルミニウム、質量装荷膜
10としてSiO2を用いた場合にはアルミニウム及び
5102の比重はそれぞれ2.69.2.22であるた
めSiOの厚さとしてはアルミニウムの約1.2倍以上
とすればよい。なお、質量装荷膜10はスパッタ法、蒸
着法などで容易に堆積できる。
Furthermore, the thickness is set such that the mass of the mass loading film IO is equal to or greater than the mass of the control electrode 5. For example, when aluminum is used as the material for the control electrode 5 and SiO2 is used as the mass loading film 10, the specific gravity of aluminum and 5102 is 2.69.2.22, respectively, so the thickness of SiO is about 1.5 mm thick than that of aluminum. It may be twice or more. Note that the mass loading film 10 can be easily deposited by sputtering, vapor deposition, or the like.

第2図は本発明による光制御デバイスのもう一つの実施
例である質量装荷膜を制御電極の下層に形成し、制御電
極を質量装荷膜上に形成した方向性結合器型光スイッチ
の平面図(a)及び断面図(b)を示す。本実施例でも
質量装荷膜10が制御電極5と直に接触しており、第1
図に示した実施例と同一の効果が得られる。
FIG. 2 is a plan view of another embodiment of the optical control device according to the present invention, a directional coupler type optical switch in which a mass loading film is formed below the control electrode and the control electrode is formed on the mass loading film. (a) and a cross-sectional view (b) are shown. In this embodiment as well, the mass loading membrane 10 is in direct contact with the control electrode 5, and the first
The same effect as the embodiment shown in the figure can be obtained.

第3図は本発明による光制御デバイスのもう一つの実施
例である質量装荷膜を制御電極と同一の平面のみに形成
した方向性結合器型光スイッチの平面図(a)及び断面
図(b)を示す。本実施例では、質量装荷膜10と制御
電極5が直に接触しており、第1図に示した実施例と同
一の効果が得られる。
FIG. 3 is a plan view (a) and a cross-sectional view (b) of a directional coupler type optical switch in which a mass loading film is formed only on the same plane as the control electrode, which is another embodiment of the optical control device according to the present invention. ) is shown. In this embodiment, the mass loading membrane 10 and the control electrode 5 are in direct contact, and the same effect as the embodiment shown in FIG. 1 can be obtained.

第4図は本発明による光制御デバイスのもう一つの実施
例である質量装荷膜を制御電極の上層に形成した方向性
結合器型光スイッチの平面図(a)及び断面図(b)を
示す。本実施例では、質量層膜10と制御電極5の間に
電気的絶縁層11が形成されており、質量装荷膜10と
制御電極5とは直に接触していないが、第1図に示した
実施例と同一の効果が得られる。
FIG. 4 shows a plan view (a) and a cross-sectional view (b) of a directional coupler type optical switch in which a mass loading film is formed on the upper layer of the control electrode, which is another embodiment of the optical control device according to the present invention. . In this embodiment, an electrically insulating layer 11 is formed between the mass loading film 10 and the control electrode 5, and although the mass loading film 10 and the control electrode 5 are not in direct contact with each other, as shown in FIG. The same effect as the embodiment described above can be obtained.

次に、本実施例による制御電極形成前後の方向性結合器
の結合状態、すなわち方向性結合器の分岐比の変化と従
来の光制御デバイスにおける同一の結果を第5図に示す
。なお、本結果はTE偏光に関するものである。本実施
例の方向性結合器型光スイッチの基本的な動作は第6図
の従来例と同じであるが、第5図より本発明による光制
御デバイスでは制御電極形成前後における方向性結合器
の分岐比の変化が従来のデバイスに比べ著しく小さい。
Next, FIG. 5 shows the coupling state of the directional coupler before and after the formation of the control electrode according to this example, that is, the change in the branching ratio of the directional coupler and the same result in the conventional optical control device. Note that this result relates to TE polarized light. The basic operation of the directional coupler type optical switch of this example is the same as that of the conventional example shown in FIG. 6, but as shown in FIG. The change in branching ratio is significantly smaller than in conventional devices.

なお、本発明により効果が方向性結合器を用いた光制御
デバイスだけに限らずマツハツエンダ構造、交差導波路
構造など全ての光制御デバイスに有効であるのは明らか
なことである。
It is clear that the present invention is effective not only for optical control devices using directional couplers but also for all optical control devices such as Matsuhatsu Enda structure and crossed waveguide structure.

(発明の効果) 以上述べたように、本発明の光制御デバイスは、従来の
光制御デバイスに比べ、設計通りの特性を歩留り良く、
常に安定して得られる。
(Effects of the Invention) As described above, the optical control device of the present invention can achieve the designed characteristics with high yield compared to conventional optical control devices.
Always obtained stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)〜第4図(a)、(b)は本発
明による光制御デバイスの一例を示す平面図及び断面図
、第5図は本発明による効果を示す特性図、第6図(a
)、(b)は従来の光制御デバイスの一例を示す平面図
及び断面図である。 図において、1・・・ニオブ酸リチウム結晶基板、2゜
3・・・光導波路、4・・・方向性結合器、5・・・制
御電極、6・・・バッファ層、7・・・入射光、8,9
・・・出射光、10・・・制御電極の上層または下層ま
たは同一平面に装荷された制御電極の質量と等しいかま
たは制御電極の質量より大きい膜、11・・・電気的絶
縁層。
FIGS. 1(a), (b) to 4(a), (b) are a plan view and a sectional view showing an example of a light control device according to the present invention, and FIG. 5 is a characteristic diagram showing the effects of the present invention. , Figure 6 (a
) and (b) are a plan view and a sectional view showing an example of a conventional light control device. In the figure, 1... lithium niobate crystal substrate, 2° 3... optical waveguide, 4... directional coupler, 5... control electrode, 6... buffer layer, 7... incident light, 8,9
. . . Emitted light, 10 . . . A film that is equal to or larger than the mass of the control electrode and loaded on the upper or lower layer of the control electrode or on the same plane, 11 . . . Electrical insulating layer.

Claims (1)

【特許請求の範囲】[Claims]  電気光学効果を有する誘電体結晶基板に形成された光
導波路と該光導波路の近傍に設けられた制御電極とを含
んで構成される光制御デバイスにおいて、前記制御電極
の上層または下層または同一平面に前記制御電極の質量
と等しいかまたは前記質量より大きい膜を有することを
特徴とする光制御デバイス。
In an optical control device including an optical waveguide formed on a dielectric crystal substrate having an electro-optic effect and a control electrode provided in the vicinity of the optical waveguide, the control electrode may be formed in an upper layer, a lower layer, or on the same plane as the control electrode. A light control device comprising a film having a mass equal to or greater than the mass of the control electrode.
JP21791489A 1989-08-23 1989-08-23 Light control device Pending JPH0380228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21791489A JPH0380228A (en) 1989-08-23 1989-08-23 Light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21791489A JPH0380228A (en) 1989-08-23 1989-08-23 Light control device

Publications (1)

Publication Number Publication Date
JPH0380228A true JPH0380228A (en) 1991-04-05

Family

ID=16711724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21791489A Pending JPH0380228A (en) 1989-08-23 1989-08-23 Light control device

Country Status (1)

Country Link
JP (1) JPH0380228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867433B1 (en) * 2008-03-21 2008-11-10 율진이앤씨(주) Mounting apparatus to set up something

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867433B1 (en) * 2008-03-21 2008-11-10 율진이앤씨(주) Mounting apparatus to set up something

Similar Documents

Publication Publication Date Title
JP2825056B2 (en) Light control device
JPH08166565A (en) Optical control device
JP2932742B2 (en) Waveguide type optical device
JP2940141B2 (en) Waveguide type optical control device
JPH0380228A (en) Light control device
JP2717980B2 (en) Integrated optical waveguide device
JP3139712B2 (en) Light control device
JP2720654B2 (en) Light control device
JP2613942B2 (en) Waveguide type optical device
JPH0721597B2 (en) Optical switch
JPH0566428A (en) Optical control device
JPH02114243A (en) Optical control device and its manufacture
JP2903700B2 (en) Waveguide type optical device
JPH0381742A (en) Optical control device
JP2800297B2 (en) Light control device
JP3106710B2 (en) Light control device
JP2900569B2 (en) Optical waveguide device
JP2671586B2 (en) Light control device
JP2606552B2 (en) Light control device
JPH01252929A (en) Optical control device
JPH06347839A (en) Optical control device
JPH0351827A (en) Optical control device
JP2624199B2 (en) Light control device and manufacturing method thereof
JPS6370827A (en) Production of optical control device
JPH0351826A (en) Optical control device