JPS60182424A - Optical control circuit - Google Patents

Optical control circuit

Info

Publication number
JPS60182424A
JPS60182424A JP3802584A JP3802584A JPS60182424A JP S60182424 A JPS60182424 A JP S60182424A JP 3802584 A JP3802584 A JP 3802584A JP 3802584 A JP3802584 A JP 3802584A JP S60182424 A JPS60182424 A JP S60182424A
Authority
JP
Japan
Prior art keywords
optical
refractive index
optical waveguide
waveguide
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3802584A
Other languages
Japanese (ja)
Inventor
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3802584A priority Critical patent/JPS60182424A/en
Publication of JPS60182424A publication Critical patent/JPS60182424A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Abstract

PURPOSE:To enable coupling to an optical fiber with a low loss and to enable low-voltage operation by making the refractive index of the optical waveguides constituting an optical control element larger than the refractive index of input and output optical waveguides. CONSTITUTION:Optical waveguides 2, 3 are installed on an LiNbO3 substrate and a pair of electrodes 4 are formed thereon to constitute a directional coupler. An input optical waveguide 7 having incident ends 15, 16 and optical waveguide 8 having exit ends 17, 18 are manufactured at the end faces of the substrate 1 by thermal diffusion of a thin Ti film pattern. The refractive index in the parts of the waveguides 2, 3 has a distribution in the depth direction and the max. refractive index thereof is made n1. The waveguides 5-8 have the max. refractive index n2. The refractive indices are made n1>n2 and the depth of the distribution is about the same. The connecting part of both optical waveguides is so formed that the refractive indices change gradually in order to decrease the loss by the mode conversion of the propagated light.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光波の変調、光路切換え等を行なう光制御素子
に関し、特に基板中に設けた光導波路を用いて制御を行
なう導波形の光制御回路に関する0(従来技術とその問
題点) 光通信システムの実用化が進むにつれ、さらに大容量や
多機能をもつ高度のシステムがめられている。よシ高速
の光信号の発生や光伝送路の切換え、交換等の新たな機
能の付加が必要とされている。現在の実用システムでは
光信号は直接半導体レーザや発光ダイオードの注入電流
を変調することによって得られているが、直接変調では
緩和振動等の効果のため数GHz以上の高速変調が難し
いこと、波長変動が発生するためコヒーレント光伝送方
式には適用が難しいこと等の欠点がある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a light control element that modulates light waves, switches light paths, etc., and particularly relates to a waveguide type light control device that performs control using an optical waveguide provided in a substrate. 0 Regarding Circuits (Prior Art and Its Problems) As the practical use of optical communication systems progresses, advanced systems with even higher capacity and multiple functions are being sought. There is a need to add new functions such as generation of high-speed optical signals and switching and exchanging optical transmission lines. In current practical systems, optical signals are obtained by directly modulating the injection current of semiconductor lasers or light emitting diodes, but with direct modulation, high-speed modulation of several GHz or more is difficult due to effects such as relaxation oscillation, and wavelength fluctuations Since this occurs, the coherent optical transmission method has drawbacks such as difficulty in application.

これを解決する手段としては、外部光変調器を使用する
方法があり、特に基板中に形成した光導波路によシ構成
した導波形の光変調器は、小形、高効率、高速という特
長がある〇一方、光伝送路の切換えやネットワークの交
換機能を得る手段としては光スィッチが使用される。現
在実用されている光スィッチは、プリズム、ミラー、フ
ァイバー等を機械的に移動させるものであシ、低速であ
ること、信頼性が不十分、形状が大きくマ) IJクス
化に不適等の欠点がある。これを解決する手段として開
発が進められているものはやはり先導波路を用いた導波
形の光スィッチであり、高速・多素子の集積化が可能、
高信頼等の特長がある。特にLrNb0B結晶等の強誘
電体材料を用いたものは、光吸収が小さく低損失である
こと、大きな電気光学効果を有しているため高効率であ
る等の特長があり、従来からも方向性結合形光変調器ま
たはスイッチ、全反射形光スイッチ等の種々の方式の光
制御素子が報告されている。このような導波形の光制御
素子を実際の光通信システムに適用する場合、低損失で
あることと同時に高速性が必要とされる0LiNbO,
結晶中にTt を拡散して形成した光導波路では、波長
1.3μmに対して、0.1〜0.2d−という小さな
伝搬損失が得られている。実際の光フアイバ系へ適用す
る場合には、光ファイバとの結合損失を十分に小さくす
る必要があり、このため光導波路の伝搬モードの光エネ
ルギー分布を元ファイバの伝搬モードの光エネルギー分
布になるべく近づけるように光導波路を作成することが
行われている。上記の手段により元ファイバ間に光導波
路を挿入したときの損失値として1〜2dBの値が得ら
れている。一方、前述のような電気光学効果を利用した
光制御素子を実際のシステムで使用する場合、通常その
動作速度は駆動回路の性能で決定される。駆動回路の高
速化及び消費電力の低減、小形化のために、光制御素子
の動作電圧を出来るだけ小さくすることが実用上非常に
重要となる。しかし、光制御素子の電圧を低減するため
には、印加′電界の強度が大きい電極近傍に伝搬モード
の光エネルギーを集中させる必要があり、この低電圧化
の条件は一般に前述の光ファイバとの結合損失を低減す
るための条件とは異なっている。
One way to solve this problem is to use an external optical modulator. In particular, a waveguide type optical modulator constructed using an optical waveguide formed in a substrate has the features of being small, highly efficient, and fast. On the other hand, optical switches are used to switch optical transmission lines and provide network switching functions. Optical switches currently in use mechanically move prisms, mirrors, fibers, etc., and have drawbacks such as slow speed, insufficient reliability, and large size. There is. What is currently being developed as a means to solve this problem is a waveguide-type optical switch that uses a leading waveguide, which is capable of high speed and multi-element integration.
It has features such as high reliability. In particular, materials using ferroelectric materials such as LrNb0B crystals have features such as low light absorption, low loss, and high efficiency due to large electro-optic effects. Various types of optical control elements such as coupled optical modulators or switches and total internal reflection optical switches have been reported. When applying such a waveguide type optical control element to an actual optical communication system, 0LiNbO, which requires low loss and high speed at the same time.
An optical waveguide formed by diffusing Tt into a crystal has a small propagation loss of 0.1 to 0.2 d- for a wavelength of 1.3 μm. When applied to an actual optical fiber system, it is necessary to sufficiently reduce the coupling loss with the optical fiber, and for this reason, the optical energy distribution of the propagation mode of the optical waveguide should be as similar to the optical energy distribution of the propagation mode of the original fiber. Optical waveguides are being created to bring them closer together. By the above means, a loss value of 1 to 2 dB has been obtained when an optical waveguide is inserted between original fibers. On the other hand, when a light control element using the electro-optic effect as described above is used in an actual system, its operating speed is usually determined by the performance of the drive circuit. In order to increase the speed, reduce power consumption, and downsize the drive circuit, it is practically important to reduce the operating voltage of the light control element as much as possible. However, in order to reduce the voltage of the optical control element, it is necessary to concentrate the optical energy of the propagation mode near the electrode where the applied electric field is strong, and the conditions for this voltage reduction are generally the same as those of the optical fiber mentioned above. This is different from the conditions for reducing coupling loss.

通常用いられる単一モード光ファイバの光エネルギー分
布は強度が14となる幅が6〜8μm程度であるので低
損失結合を目的とする場合、光導波路の光エネルギー分
布も上記値程度となるよう選ばれる。この条件は例えば
、ブイ・ラマスワーミイ(V 、Rama sw am
y )、アール・’/ −−アルファーネX (R,C
,Alferness)1.Z A−デビノ(M、Di
vln4によりエレクトロニクス・レターズ誌(El 
eat ronicsLetters )第18巻、1
号、30ページから31ページに述べられている。一方
、低電圧化のためには光導波路の伝搬モードの光エネル
ギー分布の幅を上記の光ファイバとの低損失結合に適し
た幅よりも小さくなるように選ぶ必要がある。この低電
圧化条件と光ファイバとの結合損失の低減条件とのトレ
ードオフについてはエル・リビエール(L、Rivie
ra)らによシ第4回集積光学と光フアイバ通信国際会
議(4th International Confe
renceon Integrated 0ptics
 and 0ptical FilterCommu 
n i co t i on ) のテクニカル・ダイ
ジェスト29C4−4番(ページ362〜363)に述
べられている0上述のように従来の光制御素子では低損
失結合と低電圧動作の両方は同時に得られないという欠
点があった。
The optical energy distribution of a commonly used single mode optical fiber has a width of about 6 to 8 μm at which the intensity is 14, so if low-loss coupling is intended, the optical energy distribution of the optical waveguide should also be selected to be about the above value. It will be done. This condition is, for example, V Ramaswamy (V, Rama swam
y ), R・'/ --Alfane X (R,C
, Alferness) 1. Z A-Devino (M, Di
Electronics Letters (El
eatronicsLetters) Volume 18, 1
Issue, pages 30 to 31. On the other hand, in order to reduce the voltage, it is necessary to select the width of the optical energy distribution of the propagation mode of the optical waveguide to be smaller than the width suitable for low-loss coupling with the optical fiber. Regarding the trade-off between this low voltage condition and the condition to reduce the coupling loss with the optical fiber, see El Riviere (L, Rivie).
4th International Conference on Integrated Optics and Optical Fiber Communications
renceon Integrated 0ptics
and 0ptical FilterCommu
As stated in Technical Digest No. 29C4-4 (pages 362-363) of National Institute of Technology (Ni Co., Ltd.), as mentioned above, with conventional optical control devices, both low-loss coupling and low-voltage operation cannot be obtained at the same time. There was a drawback that there was no

(本発明の目的) 本発明の目的は上述の従来の光制御素子の欠点を除き、
低損失に光ファイバに結合でき、かつ低電圧動作が可能
な光制御回路を提供することにある0 (本発明の構成) 本発明による光制御回路は基板上に設置された光導波路
と該光導波路近傍に設けた電極とによりて構成される少
くとも1つの光制御素子と上記光制御素子と前記基板端
面に設けられた光入出力端を接続する入出力光導波路よ
りなシ、かつ、前記光制御素子を構成する光導波路を伝
わる光波モードの等価屈折率が前記入出力光導波路を伝
わる光波モードの等価屈折率よりも大きくなるように構
成されている0 (構成の詳細な説明) 本発明では、上述のように光制御素子を構成する光導波
路と入出力光導波路との間で両者を伝わる光波モードの
等価屈折率を異ならしめることによシ、入出力光導波路
部分では光ファイバの光エネルギー分布に近い伝搬光エ
ネルギー分布を与えるように等価屈折率を設定し、かつ
、それとは独立に光制御素子を構成する光導波路を伝わ
る光波モードの等価屈折率をその光波モードのエネルギ
ー分布が電極近傍に十分閉込められるように設定するこ
とによシ、低損失結合が可能でかつ低電圧動作が可能な
光制御回路が得られる。
(Objective of the present invention) The object of the present invention is to eliminate the drawbacks of the conventional light control element described above,
An object of the present invention is to provide an optical control circuit that can be coupled to an optical fiber with low loss and that can operate at low voltage. an input/output optical waveguide connecting the optical control element and an optical input/output end provided on the end surface of the substrate; The light control element is configured such that the equivalent refractive index of the light wave mode propagating through the optical waveguide is larger than the equivalent refractive index of the light wave mode propagating through the input/output optical waveguide. (Detailed description of the configuration) The present invention As described above, by making the equivalent refractive index of the light wave mode propagating between the optical waveguide and the input/output optical waveguide that constitute the optical control element different, the optical waveguide of the optical fiber can be The equivalent refractive index is set to give a propagation light energy distribution close to the energy distribution, and independently of this, the equivalent refractive index of the light wave mode propagating through the optical waveguide that constitutes the light control element is set so that the energy distribution of the light wave mode is the same as the electrode. By setting it so that it is sufficiently confined in the vicinity, an optical control circuit that is capable of low-loss coupling and low-voltage operation can be obtained.

上述のように2つの先導波路の等価屈折率を異ならしめ
る手段としては、例えばill光導波路自体の屈折率を
異ならしめること、(2)光導波路の形状、例えば幅や
深さを異ならしめること、(3)先導波路に接する領域
の屈折率を異ならしめること等が可能であるOF記方法
のうち(11の方法は、後の実施例に述べるように特に
LiNbO3結晶等の強誘電体結晶に不純物を拡散させ
て光導波路を作成する場合には製作が比較的容易で実用
的方法である。また(2)の方法は通常用いられるリン
グラフィ技術によって光導波路を作成する場合には適用
し易く、かなり広範囲な基材、先導波路材料に対して適
用可能である0〔3)の実現手段として、例えば2つの
うちの一方の光導波路上にだけ光導波路とは屈折率の異
なる他の物質をコーティングする等の方法がある。この
場合には、本発明の目的を達するためには光制御素子を
構成する先導波路上に他の物質をコーティングして等価
屈折率を上げる必要がある。このように本発明において
は、どのような構造であっても、等価屈折率が異なって
いfさえすれば、本発明の目的は充分に達成できる。
As mentioned above, means for making the equivalent refractive indexes of the two leading waveguides different include, for example, making the refractive index of the ill optical waveguide itself different; (2) making the shapes of the optical waveguides, such as width and depth, different; (3) Of the OF notation methods that can vary the refractive index of the region in contact with the leading waveguide (method 11 is particularly suitable for adding impurities to ferroelectric crystals such as LiNbO3 crystals, as described in later examples). When creating an optical waveguide by diffusing phosphor, it is a relatively easy and practical method to manufacture.Method (2) is also easy to apply when creating an optical waveguide using the commonly used phosphorography technique. As a means of realizing 0 [3), which is applicable to a fairly wide range of base materials and guiding waveguide materials, for example, coating only one of the two optical waveguides with another substance with a different refractive index from that of the optical waveguide. There are ways to do this. In this case, in order to achieve the object of the present invention, it is necessary to increase the equivalent refractive index by coating the leading waveguide constituting the light control element with another substance. As described above, in the present invention, the object of the present invention can be fully achieved regardless of the structure as long as the equivalent refractive index is different f.

(実施例) 以下図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明による光制御回路の一実施例を示す斜視
図である。第1図において%L i N b Os基板
lの上に、互いに数μmの間隔で近接した幅数〜数十μ
m、長さ数〜数士調の光導波路2,3が設置され、その
上に光吸収を防ぐために設けたSiO□膜(図では省略
)を介して1対の電極4が形成され、これらの光導波路
2,3と電極4により方向性結合形光制御素子が構成さ
れている。また、基板lの端面にそれぞれ入射端15.
16をもつ入力光導波路5,6が光導波路2,3の入力
側にそれ路2,3の出力側にそれぞれ接続されている0
ことで光導波路2,3,5,6,7.8はすべて基板1
の表面に形成したTi薄膜バタ=ンを基板l中に熱拡散
して形成したものである。光導波路2,3の部分の屈折
率は深さ方向に第2図(alに示すような分布をもって
おシ最大屈折率はn、でちる。一方、光導波路5,6.
.7,8 の屈折率は深さ方向に第2図(b)の分布を
もっており最大屈折率はn、であり% ”l > n!
(nl、 n2は10〜3〜]O″2程度)となってい
る。また(al 、 (blの分布の深さは同程度であ
る。
FIG. 1 is a perspective view showing an embodiment of a light control circuit according to the present invention. In Figure 1, on the %L i N b Os substrate l, there are several to several tens of micrometers of width adjacent to each other at intervals of several micrometers.
Optical waveguides 2 and 3 with a length of several meters to several orders of magnitude are installed, and a pair of electrodes 4 are formed on them via a SiO□ film (not shown in the figure) provided to prevent light absorption. The optical waveguides 2 and 3 and the electrode 4 constitute a directional coupling type optical control element. In addition, an incident end 15.
Input optical waveguides 5, 6 with 16 are connected to the input sides of optical waveguides 2, 3 and to the output sides of optical waveguides 2, 3, respectively.
Therefore, the optical waveguides 2, 3, 5, 6, 7.8 are all connected to the substrate 1.
The Ti thin film baton formed on the surface of the substrate is thermally diffused into the substrate. The refractive index of the optical waveguides 2, 3 has a distribution as shown in FIG. 2 (al) in the depth direction, and the maximum refractive index is n.
.. The refractive index of 7,8 has the distribution in the depth direction as shown in Fig. 2(b), and the maximum refractive index is n, and %"l > n!
(nl and n2 are about 10-3 to]O''2). Also, the depth of the distribution of (al and (bl) is about the same.

光導波路2,3と5.6,7.8 の接続部分9.10
は伝搬光のモード変換による損失を小さくするために屈
折率が第2図ratの分布から(b)の分布へと数令た 百μmから数編にわたってl々に変化するように形成さ
れている。
Connection part 9.10 between optical waveguides 2, 3 and 5.6, 7.8
In order to reduce loss due to mode conversion of propagating light, the refractive index is formed so that it gradually changes from the distribution of rat in Figure 2 to the distribution of (b) over several orders of 100 μm. .

上述の実施例は一例として以下のような作製方法によシ
得られる。先ず、L+NbO,基板上に通常のフすトリ
ソグラフィ技術を用いて光導波路のパターンを作成する
。すなわち、 LINbO,基板上にフォトレジストを
一様に塗布し、第1図の光導波路部分と同形のフォトマ
スクを通して上記フォトレジストを露光し、現象するこ
とによって、フォトレジスト膜に導波路形状の溝を形成
する1、この1 上からTi 膜を500〜700A程度全面に蒸着する
The above-mentioned embodiments can be obtained by, for example, the following manufacturing method. First, an optical waveguide pattern is created on an L+NbO substrate using a normal film lithography technique. That is, a photoresist is uniformly applied onto the LINbO substrate, and the photoresist is exposed through a photomask having the same shape as the optical waveguide portion shown in FIG. 1. To form 1, a Ti film is deposited over the entire surface with a thickness of about 500 to 700 Å.

次に入出力光導波路5,6,7.8 K相当する部分を
遮へい板でおおってさらに200〜400λ程度TI膜
を蒸着する。この後フォトレジス)Illを溶解するこ
とによって第3図に示すような光制御素子の部分でtl
、入出力光導波路の部分で’z(但し1、 >1. )
の膜厚をもつTi膜の光導波路パター、・′310が形
成される。膜厚t、とt、の境界の部分は前記遮へい板
と基板との間隔を飼整することにょ槍 って、または遮へい板を蒸着時に除々に移動することに
よって任意のテーパ形状にすることができる。第3図の
ようにTi膜のパターンを設置した基板は1000 S
−1100℃、5〜10時間程時間数炉中で加熱される
ことによシ前述の第1図に示したような光導波路が形成
される。この製造方法では、光導波路の屈折率が拡散前
のT i膜厚に依存することを利用している。光制御素
子の部分には透明で絶縁性の高いSin、等のバッフγ
膜が形成され、その上にフォトリングラフィ技術によっ
て電極パターンが形成される。
Next, portions corresponding to the input/output optical waveguides 5, 6, and 7.8 K are covered with a shielding plate, and a TI film of about 200 to 400 λ is further deposited. After this, by dissolving the photoresist (Ill), the light control element part as shown in FIG.
,'z at the input/output optical waveguide (however, 1, >1.)
An optical waveguide pattern of Ti film having a film thickness of .'310 is formed. The boundary between the film thicknesses t and t can be formed into an arbitrary tapered shape by adjusting the distance between the shielding plate and the substrate, or by gradually moving the shielding plate during vapor deposition. can. The substrate on which the Ti film pattern is installed as shown in Figure 3 is 1000 S.
By heating in a furnace at -1100 DEG C. for about 5 to 10 hours, an optical waveguide as shown in FIG. 1 is formed. This manufacturing method utilizes the fact that the refractive index of the optical waveguide depends on the thickness of the Ti film before diffusion. A transparent and highly insulating buffer γ such as Sin is used in the light control element.
A film is formed, and an electrode pattern is formed thereon by photolithography techniques.

次に第1図に示した光制御回路の動作を説明する。入射
端15への入射光11は入力光導波路5を通過して方向
性結合形光制御素子の光導波路2へ導かれる0光導波路
2と3は互いに近接して方向性結合器をなしておシ、光
導波路2の伝搬光は休 そのエネルギーが4々に光導波路3に移行する。
Next, the operation of the optical control circuit shown in FIG. 1 will be explained. The incident light 11 to the input end 15 passes through the input optical waveguide 5 and is guided to the optical waveguide 2 of the directional coupling type optical control element.The optical waveguides 2 and 3 are close to each other and form a directional coupler. The energy of the propagating light in the optical waveguide 2 is transferred to the optical waveguide 3 in four stages.

ここで光導波路2及び3の長さは、電極4に電圧を印加
しない状態では入射光のエネルギーがほぼ100%光導
波路3に移行するような長さ、すなわち、完全結合長に
等しくなるように選ばれている0そこで印加電圧Oの状
態では入射光11は光導波路3、出刃先導波路8を通っ
て出射端18から出射する。一方、電極4に電圧を印加
した場合には電気光学効果による屈折率変化によって光
導波路2と3の伝搬光の位相定数の整合がくずれ、ある
電圧値では入射光の光導波路3への結合がOとなり光導
波路2、出力光導波路7を通って出射端17から出射す
る。上記のように印加電圧の有無によって入射光は光路
が切替えられる。また、出射端18からの出射光12だ
けに注目すれば出射光12は電極4への印加電圧波形に
よって変調されることになる。上記の光路切換えに必要
な電圧又は100%変調に必要な電圧は、電極下に伝搬
光のエネルギーが小さく閉込められているほど小さい。
Here, the lengths of the optical waveguides 2 and 3 are such that when no voltage is applied to the electrode 4, almost 100% of the energy of the incident light is transferred to the optical waveguide 3, that is, equal to the complete coupling length. In the state where the applied voltage is O, the incident light 11 passes through the optical waveguide 3 and the leading waveguide 8 and is emitted from the output end 18. On the other hand, when a voltage is applied to the electrode 4, the matching of the phase constants of the propagating lights in the optical waveguides 2 and 3 is lost due to the refractive index change due to the electro-optic effect, and at a certain voltage value, the coupling of the incident light to the optical waveguide 3 is lost. The light becomes O, passes through the optical waveguide 2 and the output optical waveguide 7, and is emitted from the output end 17. As described above, the optical path of the incident light is switched depending on the presence or absence of the applied voltage. Further, if attention is focused only on the emitted light 12 from the emitting end 18, the emitted light 12 will be modulated by the voltage waveform applied to the electrode 4. The voltage required for the above-mentioned optical path switching or the voltage required for 100% modulation is smaller as the energy of the propagating light is smaller and confined under the electrode.

本実施例では光導波路2及び3の屈折率は第2図[al
のように大きいので伝搬光のエネルギー分布は第2図(
elに示すように小さくなり光導波路内に強く、小さく
閉込められている。一方、入出力光導波路5,6,7,
8では屈折率が第2図(blに示すように小さいので伝
搬光のエネルギー分布は第2図(dlに示すように広が
っており、入出射端15,16゜17.18において光
ファイバに低損失に結合することが可能である。
In this example, the refractive index of the optical waveguides 2 and 3 is shown in FIG.
The energy distribution of the propagating light is as shown in Figure 2 (
As shown in el, it becomes smaller and is strongly confined within the optical waveguide. On the other hand, the input/output optical waveguides 5, 6, 7,
8, the refractive index is small as shown in Figure 2 (bl), so the energy distribution of the propagating light is widened as shown in Figure 2 (dl), and the optical fiber has a low It is possible to combine losses.

なお、本実施例では、第3図のようにTi膜厚を光制御
素子の部分と入出力光導波路で異ならしめる製作方法を
用いたが、両者で一様なTi膜厚を用い、熱拡散時に入
出力光導波路が形成される部分の温度を)七制御素子が
形成される部分の温度より高くしても本発明による光制
御回路を作製することができる。第4図は上述の作製方
法の一例を示すものである。第4図は熱拡散工程を示す
断面図であり、20は拡散炉の断面、lはL i N 
bos基板、13はT+膜、21は入出刃先導波路が形
成されるべき部分に近接して設置された付加的なヒータ
を示す。光制御素子の部分よりも数十度程度、入出刃先
導波路部分の温度を高くして拡散される。上記のように
基板の一部を局所的に加熱する他の手段としては局所的
な高周波加熱やレー蝋フラッシュランプによるアニール
等の方、法がある。
In this example, a manufacturing method was used in which the Ti film thickness was made different between the optical control element and the input/output optical waveguide as shown in Figure 3, but a uniform Ti film thickness was used for both, and thermal diffusion In some cases, the optical control circuit according to the present invention can be manufactured even if the temperature of the portion where the input/output optical waveguide is formed is higher than the temperature of the portion where the control element is formed. FIG. 4 shows an example of the above-mentioned manufacturing method. FIG. 4 is a cross-sectional view showing the thermal diffusion process, where 20 is the cross section of the diffusion furnace, l is L i N
A BOS substrate, 13 a T+ film, and 21 an additional heater installed close to a portion where an input/output leading waveguide is to be formed. The light is diffused by making the temperature of the inlet/output leading waveguide portion several tens of degrees higher than that of the light control element portion. Other methods for locally heating a part of the substrate as described above include local high-frequency heating, annealing using a wax flash lamp, and the like.

この場合には、入出力光導波路は光制御素子の部分より
も屈折率分布が基板中により深くまで広がり、最大屈折
率も10オ一ダ程度低下させることができる。
In this case, the refractive index distribution of the input/output optical waveguide extends deeper into the substrate than the light control element portion, and the maximum refractive index can also be lowered by about 10 orders of magnitude.

第5図は本発明による光制御回路の第2の実施例である
全反射形の2×2マトリクス光スイツチを示す平面図で
ある。LiNbO3基板l上に形成された平行な2本の
光導波路31,32とそれに小さな角度で交差する2本
の光導波路33.34のそれぞれの交差点上に電極が形
成され、全反射形光スイッチ24 、25 、26 、
27が構成され、全体で2x2光スイツチが構成されて
いる0光導波路31.32♂6 にはLiNbO5基板lの端面に入射端35.埒をもつ
入力光導波路37,38が接続され光導波路33.34
にはTJ i N b Os基板lの上記と対向する端
面39.40に出射端をもつ出力光導波路4]、42が
設置されている0ここで、光導波路31,32,33.
34は、伝搬光エネルギーが基板表面近くに強く閉込め
られ、全反射形光スイッチ24,25,26.27が低
電圧で動作するように屈折率を大きくしてあシ、一方、
入出力光導波路37,38,41.42はそれぞれの端
面に接続された単一モード光ファイバ43,44,45
.46に高効率に光結合するように、伝搬光エネルギー
分布が上記光ファイバでの光エネルギー分布と同程度に
なるように屈折率が選ばれている。また、光導波路31
,32,33.34と入出力光導波路37,38,41
.42の接続部は屈折率が光透過方向にテーパ状に変化
するように形成されている。本実施例は、交差部の全反
射形光スイッチの電極に電圧を印加することにより一方
の光導波路を通過する伝搬光エネルギーが交差した他方
の先導波路に反射されて移行することを動作原理として
、単一モード光ファイバ43 、44と単一モード光フ
ァイバ45.46間の光信号の光路を切替えるものであ
る0 なお、本実施例では、光導波路31,32,33゜34
の屈折率を入出力光導波路37.3B、41.42より
も大きくしたが、光導波路31 、32 、33.34
の幅を上記入出力光導波路よりも1〜数μm程度太きく
し、両者の光導波路をテーパ状に接続しても本発明の効
果は得られる0 (本発明の効果) 以上述べたように本発明によれば低損失に光フアイバ結
合可能でかつ、低電圧動作可能な光制御回路が得られる
0 本発明は、いかなる方式の光制御素子、例えば分岐干渉
形光変調器や交差導波路形光スイッチ等に対しても従来
それぞれ別々の素子で得られている低動作電圧特性と低
損失光ファイバ結合特性の両方を1つの素子で得る′−
乙とができる0本発明の光制御回路の基板材料、光導波
路形状、電極形状等は上記実施例に限定されるものでな
く、基板材料として、LiTa0.結晶等の強誘電体結
晶、InP等のI−V族半導体結晶を、光導波路として
はイオン交換による光導波路や結晶酸受により作成した
光導波路等を、電極形状としては、高速化により適した
進行波形の電極等を用いることができる。
FIG. 5 is a plan view showing a total reflection type 2×2 matrix optical switch which is a second embodiment of the optical control circuit according to the present invention. Electrodes are formed on each intersection of two parallel optical waveguides 31 and 32 formed on a LiNbO3 substrate l and two optical waveguides 33 and 34 that intersect with the optical waveguides at a small angle, and a total reflection optical switch 24 is formed. , 25 , 26 ,
The optical waveguide 31.32♂6 has an incident end 35. The input optical waveguides 37 and 38 having the same diameter are connected to form optical waveguides 33 and 34.
Output optical waveguides 4], 42 having output ends on end faces 39, 40 opposite to the above of the TJ i N b Os substrate l are installed here. Here, the optical waveguides 31, 32, 33, .
34 has a large refractive index so that the propagating light energy is strongly confined near the substrate surface and the total internal reflection type optical switches 24, 25, 26, and 27 operate at low voltage.
The input/output optical waveguides 37, 38, 41.42 are single mode optical fibers 43, 44, 45 connected to their respective end faces.
.. 46, the refractive index is selected so that the propagation light energy distribution is comparable to the light energy distribution in the optical fiber. In addition, the optical waveguide 31
, 32, 33, 34 and input/output optical waveguides 37, 38, 41
.. The connecting portion 42 is formed so that the refractive index changes in a tapered manner in the light transmission direction. The operating principle of this embodiment is that by applying a voltage to the electrodes of the total reflection optical switch at the intersection, the propagating light energy passing through one optical waveguide is reflected and transferred to the other intersecting leading waveguide. , which switches the optical path of the optical signal between the single mode optical fibers 43 and 44 and the single mode optical fibers 45 and 46. In this embodiment, the optical waveguides 31, 32, 33, 34
The refractive index of the input/output optical waveguides 37.3B and 41.42 was made larger than that of the optical waveguides 31, 32, and 33.34.
The effect of the present invention can be obtained even if the width of the input/output optical waveguide is made wider by 1 to several μm and both optical waveguides are connected in a tapered manner. According to the invention, it is possible to obtain an optical control circuit that can be coupled with optical fibers with low loss and that can operate at low voltage. For switches, etc., both low operating voltage characteristics and low loss optical fiber coupling characteristics, which were conventionally obtained with separate devices, can be obtained with a single device.
The substrate material, optical waveguide shape, electrode shape, etc. of the optical control circuit of the present invention are not limited to the above embodiments, and LiTa0. Ferroelectric crystals such as crystals, IV group semiconductor crystals such as InP, etc. are used as optical waveguides, such as optical waveguides created by ion exchange or crystal acid receptors, and electrode shapes that are more suitable for high speed. A traveling waveform electrode or the like can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光制御回路の実施例を示す斜視図
、第5図は本発明による光制御回路の実施例である2X
2マトリクス光スイツチの平面図・第3図、第4図は本
発明による光制御回路の製造方法を説明するだめの図、
第2図は本発明の詳細な説明するための図である0 図においてlは基板、2,3,31,32,33.34
は光制御素子を構成する光導波路、5,6,7,8゜3
7 、38.41 、42は入出力光導波路、4は電極
、13は拡散物であるTi薄膜である。 llO ! 第 4 図
FIG. 1 is a perspective view showing an embodiment of the optical control circuit according to the present invention, and FIG. 5 is a 2X embodiment of the optical control circuit according to the present invention.
A plan view of a two-matrix optical switch. FIGS. 3 and 4 are diagrams for explaining the method of manufacturing an optical control circuit according to the present invention.
FIG. 2 is a diagram for explaining the present invention in detail.
are optical waveguides constituting a light control element, 5, 6, 7, 8°3
7, 38, 41, and 42 are input/output optical waveguides, 4 is an electrode, and 13 is a Ti thin film that is a diffuser. llO! Figure 4

Claims (1)

【特許請求の範囲】 fil 基板上に設置された先導波路と該光導波路近傍
に設置された電極とによって構成される少くとも1つの
光制御素子と上記光制御素子と前記基板端面に設けられ
た光入出力端を接続する入出力光導波路よりなる光制御
回路において、前記光制御素子を構成する光導波路を伝
わる光波モードの等側屈折率を前記入出力光導波路を伝
わる光波モードの等側屈折率よシも大きくしたことを特
徴とする光制御回路〇 (2)光制御素子を構成する光導波路の屈折率を入出力
光導波路の屈折率よシも大きくしたことを特徴とする特
許請求の範囲第一項記載の光制御回路。 (3)光制御素子を構成する光導波路の幅を入出刃先導
波路の幅よりも大きくしたことを特徴とする特許請求の
範囲第一項記載の光制御回路0
[Claims] fil at least one light control element constituted by a guide waveguide installed on a substrate and an electrode installed near the optical waveguide; In an optical control circuit consisting of an input/output optical waveguide that connects optical input/output ends, the isolateral refractive index of the optical wave mode propagating through the optical waveguide constituting the optical control element is defined as the isolateral refraction index of the optical wave mode propagating through the input/output optical waveguide. (2) A light control circuit characterized in that the refractive index of the optical waveguide constituting the light control element is also made larger than the refractive index of the input/output optical waveguide. The light control circuit described in the first item of the scope. (3) The optical control circuit 0 according to claim 1, characterized in that the width of the optical waveguide constituting the optical control element is made larger than the width of the input/output leading waveguide.
JP3802584A 1984-02-29 1984-02-29 Optical control circuit Pending JPS60182424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3802584A JPS60182424A (en) 1984-02-29 1984-02-29 Optical control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3802584A JPS60182424A (en) 1984-02-29 1984-02-29 Optical control circuit

Publications (1)

Publication Number Publication Date
JPS60182424A true JPS60182424A (en) 1985-09-18

Family

ID=12514023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3802584A Pending JPS60182424A (en) 1984-02-29 1984-02-29 Optical control circuit

Country Status (1)

Country Link
JP (1) JPS60182424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170535A (en) * 1984-09-14 1986-04-11 Canon Inc Thin film type optical element and its manufactures
KR20030090238A (en) * 2002-05-21 2003-11-28 코모텍 주식회사 Non Radiative Dielectric Waveguide Mixer with Mode Conversion Reflector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176730A (en) * 1983-03-28 1984-10-06 Fujitsu Ltd Optical switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176730A (en) * 1983-03-28 1984-10-06 Fujitsu Ltd Optical switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170535A (en) * 1984-09-14 1986-04-11 Canon Inc Thin film type optical element and its manufactures
KR20030090238A (en) * 2002-05-21 2003-11-28 코모텍 주식회사 Non Radiative Dielectric Waveguide Mixer with Mode Conversion Reflector

Similar Documents

Publication Publication Date Title
JPWO2004083953A1 (en) Optical switch, optical modulator, and tunable filter
JP2940141B2 (en) Waveguide type optical control device
JPS60182424A (en) Optical control circuit
US6684013B2 (en) Optical waveguide device to be optically poled, method of manufacturing optical waveguide device to be optically poled, and method of optically poling optical waveguide device
CN110426865B (en) Thermo-optical switch utilizing guided mode reflection displacement effect and multimode interference effect in silicon waveguide corner mirror
Oh et al. Integrated-optic focal-spot intensity modulator using electrooptic polymer waveguide
JPH0721597B2 (en) Optical switch
JP2635986B2 (en) Optical waveguide switch
JPS61134730A (en) Production of optical control element
JPS60182425A (en) Manufacture of optical control system
JPH02114243A (en) Optical control device and its manufacture
JP2580088Y2 (en) Directional coupler type light control device
JP2643927B2 (en) Manufacturing method of optical branching / optical coupling circuit
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JPH01201628A (en) Optical switch
JP2998373B2 (en) Light control circuit
JPH0566428A (en) Optical control device
JP2720654B2 (en) Light control device
JPH0743485B2 (en) Light control device
JP2900569B2 (en) Optical waveguide device
JPH09211501A (en) Thermooptical optical switch
JPH0820651B2 (en) Optical waveguide switch
JP2912039B2 (en) Light control device
JPS61134731A (en) Production of optical control circuit
JPH0381740A (en) Optical control circuit