JPS60182425A - Manufacture of optical control system - Google Patents

Manufacture of optical control system

Info

Publication number
JPS60182425A
JPS60182425A JP3802784A JP3802784A JPS60182425A JP S60182425 A JPS60182425 A JP S60182425A JP 3802784 A JP3802784 A JP 3802784A JP 3802784 A JP3802784 A JP 3802784A JP S60182425 A JPS60182425 A JP S60182425A
Authority
JP
Japan
Prior art keywords
optical
substrate
optical waveguide
control element
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3802784A
Other languages
Japanese (ja)
Inventor
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3802784A priority Critical patent/JPS60182425A/en
Publication of JPS60182425A publication Critical patent/JPS60182425A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Abstract

PURPOSE:To manufacture light guides different in refractive indexe in one body by forming partially different-thickness beltlike thin-film patterns which contain metal atoms on a substrate. CONSTITUTION:Part corresponding to input/output light guides 5-8 are covered with a shield plate to vapor-deposit Ti films, and thus light guide patterns 110 are formed of the Ti films which have film thickness t1 at the part of an optical control element and t2 (t2<t1) at parts of the input/output light guides. The gap between the shield plate and substrate is adjusted and the shield plate is moved gradually during vapor deposition to form an optional taper shape. In another way, the thin films are made constant in thickness and then the substrate is heated at different temperatures locally to obtain a refractive index distribution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光波の変調、光路切換え等を行なう光制御素子
に関し、特に基板中に設けた光導波路を用いて制御を行
なう導波形の光制御回路の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a light control element that modulates light waves, switches light paths, etc., and particularly relates to a waveguide type light control device that performs control using an optical waveguide provided in a substrate. This invention relates to a method of manufacturing a circuit.

(従来技術とその問題点) 光通信システムの実用化が進むにつれ、さらに大容量や
多機能をもつ、高度のシステムがめられている。より高
速の光信号の発生や光伝送路の切換え、交換等の新たな
機能の付加が必要とされている。現在の実用システムで
は光信号は直接半導体レーザや発光ダイオードの注入電
流を変調することによって得られているが、直接変調で
は、緩和振動等の効果のため、数GHz以上の高速変調
が離しいこと5波長変動が発生するためコヒーレント光
伝送方式には適用が難しいこと等の欠点がある0これを
解決する手段と[7ては、外部光変調器を使用する方法
があシ、特に基板中に形成した先導波路によシ構成した
導波形の光変調器は、小形、高効率、高速という特長が
ある。一方、光伝送路の切換えやネットワークの交換機
能を得る手段としては光スィッチが使用される。現在実
用されている光スィッチは、プリズム、ミラー、ファイ
バー等を機械的に移動させるものでちゃ、低速であると
と、信頼性が不十分、形状が大きくマトリクス化に不適
等の欠点がある。これを解決する手段として開発が進め
られているものはやはり光導波路を用いた導波形の光ス
ィッチであり、高速多素子の集積化が可能、高信頼等の
特長がある。
(Prior art and its problems) As the practical use of optical communication systems progresses, advanced systems with larger capacity and multiple functions are being sought. There is a need to add new functions such as generation of faster optical signals and switching and exchanging optical transmission lines. In current practical systems, optical signals are obtained by directly modulating the injection current of a semiconductor laser or light emitting diode, but with direct modulation, high-speed modulation of several GHz or more is difficult due to effects such as relaxation oscillation. 5There are drawbacks such as difficulty in applying the coherent optical transmission method due to wavelength fluctuations.There is a method to solve this problem [7], but there is a method to use an external optical modulator. The waveguide type optical modulator constructed using the formed guide wavepath has the features of being small, highly efficient, and high speed. On the other hand, an optical switch is used as a means for switching optical transmission lines and providing network switching functions. Optical switches currently in use mechanically move prisms, mirrors, fibers, etc., and have drawbacks such as slow speed, insufficient reliability, and large size making them unsuitable for matrix formation. A waveguide-type optical switch using an optical waveguide is being developed as a means to solve this problem, and has features such as high-speed integration of multiple elements and high reliability.

特にLiNbO3結晶等の強誘電体材料を用いたものは
、光吸収が小さく低損失であること、大きな電気光学効
果を有しているため高効率である等の特長があり、従来
からも方向性結合形光変調器またはスイッチ、全反射形
光スイッチ等の種々の方式の光制御素子が報告されてい
る。このような導波形の光制御素子を実際の光通信シス
テムに適用する場合、低損失であることと同時に高速性
が必要とされる。LiNbO3結晶中にTi を拡散し
て形成した光導波路では、波長1.3μmに対して、0
1〜0.2dB/αという小さな伝搬損失が得られてい
る。
In particular, materials using ferroelectric materials such as LiNbO3 crystals have features such as low light absorption, low loss, and high efficiency due to a large electro-optic effect. Various types of optical control elements such as coupled optical modulators or switches and total internal reflection optical switches have been reported. When such a waveguide type optical control element is applied to an actual optical communication system, low loss and high speed are required. In the optical waveguide formed by diffusing Ti in LiNbO3 crystal, the wavelength is 0.
A small propagation loss of 1 to 0.2 dB/α has been obtained.

実際の光フアイバ系へ適用する場合には、光ファイバと
の結合損失を十分に小さくする必要があシ、このため光
導波路の伝搬モードの光エネルギー分布を光ファイバの
伝搬モードの光エネルギー分布になるべく近づけるよう
に先導波路を作成することが行われている。上記の手段
により光フアイバ間に光導波路を挿入したときの損失値
として1〜2dBの値が得られている〇一方、前述のよ
うな電気光学効果を利用した光制御素子を実際のシステ
ムで使用する場合、通常その動作速度は駆動回路の性能
で決定される。駆動回路の高速化及び消費電力の低減、
小形化のために、光制御素子の動作電圧を出来るだけ小
さくすることが実用上非常に重要となる。しかし、光制
御素子の電圧を低減するためには、印加電界の強度が大
きい電極近傍に伝搬モードの光エネルギーを集中させる
必要があシ、この低電圧化の条件は一般に前述の光ファ
イバとの結合損失を低減するための条件とは異なってい
る。通常用いられる単一モード光ファイバの光エネルギ
ー分布は強度が17e4.となる幅が6〜8μm程度で
あるので低損失結合を目的とする場合、光導波路の光エ
ネルギー分布も上記値程度となるよう選ばれる。この条
件は例えば、ブイ・ラマスワーミイ(V、Ramasw
amy) %7− ル拳ソー ・アルファーネス(Ro
C,Alferness) 、エム・デヒ/ (M、D
iv 1no)によシエレクトロニクス・レターズ誌(
Electronics Letters) 第18巻
%1号、30ページから31ページに述べられていb一
方、低電圧化のためには光導波路の伝搬モードの光エネ
ルギー分布の幅を上記の光ファイバとの低損失結合に適
した幅よりも小さくなるように選ぶ必要がある。この低
電圧化条件と光ファイバとの結合損失の低減条件とのト
レードオフについてはエル・リビエール(L、Rivi
ere)らにより、第4回集積光学と光フアイバ通信国
際会議(4thInternational Conf
erence on IntegrRted 0pti
csand 0ptical Fiber Commu
nication)のテクニカル・ダイジェスト29C
4−4番(ページ362〜363)に述べられて吟る。
When applied to an actual optical fiber system, it is necessary to sufficiently reduce the coupling loss with the optical fiber, so the optical energy distribution of the propagation mode of the optical waveguide is changed to the optical energy distribution of the propagation mode of the optical fiber. The leading wavepath is created so as to be as close as possible. By the above method, a loss value of 1 to 2 dB has been obtained when an optical waveguide is inserted between optical fibers.On the other hand, in an actual system, an optical control element using the electro-optic effect as described above is used. When used, the operating speed is usually determined by the performance of the drive circuit. Increased drive circuit speed and reduced power consumption,
For miniaturization, it is practically important to reduce the operating voltage of the light control element as much as possible. However, in order to reduce the voltage of the optical control element, it is necessary to concentrate the optical energy of the propagation mode near the electrode where the applied electric field strength is large, and the conditions for this voltage reduction are generally the same as those of the optical fiber mentioned above. This is different from the conditions for reducing coupling loss. The optical energy distribution of a commonly used single mode optical fiber has an intensity of 17e4. Since the width is about 6 to 8 μm, when low-loss coupling is aimed at, the optical energy distribution of the optical waveguide is also selected to be about the above value. This condition is, for example, V Ramaswamy (V, Ramasw)
amy) %7- Le Fist So Alphaness (Ro
C, Alferness), M Dehi/ (M, D
iv 1no) by Electronics Letters Magazine (
Electronics Letters) Vol. 18, No. 1, pages 30 to 31b On the other hand, in order to lower the voltage, the width of the optical energy distribution of the propagation mode of the optical waveguide should be changed by the low-loss coupling with the above-mentioned optical fiber. It is necessary to choose a width that is smaller than the appropriate width. Regarding the trade-off between this low voltage condition and the condition to reduce the coupling loss with the optical fiber, see El Rivière (L, Rivi).
4th International Conference on Integrated Optics and Fiber Communications
erence on IntegrationRted 0pti
csand 0ptical Fiber Commu
nication) Technical Digest 29C
4-4 (pages 362-363).

上述のように従来の光制御素子では低損失結合と低電圧
動作の両方は同時に得られないという欠点があった。
As mentioned above, conventional optical control elements have the drawback that both low-loss coupling and low-voltage operation cannot be achieved at the same time.

(本発明の目的) 本発明の目的は上述の従来の光制御素子の欠点を除き、
低損失に光ファイバに結合でき、かつ低電圧動作が可能
な光制御回路及びその製造方法を提供することにある。
(Objective of the present invention) The object of the present invention is to eliminate the drawbacks of the conventional light control element described above,
An object of the present invention is to provide an optical control circuit that can be coupled to an optical fiber with low loss and can operate at low voltage, and a method for manufacturing the same.

(本発明の構成) 本発明による光制御回路の製造方法は、2つあシ、その
1つは基板上に部分的に厚さの異なる帯状の金属原子を
含む薄膜パターンを形成し、上記基板を加熱して上記薄
膜パターンを該基板中に拡散させることによって光導波
路を形成し、前記薄膜パターンの膜厚の大きい部分が拡
散されて形成された光導波路の近傍に電極を設置して少
くとも1つの光制御素子を形成し、該光制御素子と接続
されかつ、前記薄膜パターンの膜厚の小さい部分が拡散
されて形成された光導波路の端部に光入出力端面を形成
する構成となっている。また、もう1つの製造方法は、
基板上に帯状の金属原子を含む薄膜パターンを形成し、
上記基板を部分的に異なる温度で加熱することによって
前記薄膜パターンを該基板中に拡散させて光導波路を形
成し、前記拡散時の加熱温度の低い部分で形成された光
導波路の近傍に電極を設置して少くとも1つの光制御素
子を形成し、該光制御素子と接続され、かつ前記拡散時
の加熱温度の高い部分で形成された光導波路の端部に光
入出力端面を形成する構成となっている。
(Structure of the present invention) The method for manufacturing an optical control circuit according to the present invention has two steps. One is to form a thin film pattern containing band-shaped metal atoms with partially different thicknesses on a substrate, and An optical waveguide is formed by heating and diffusing the thin film pattern into the substrate, and an electrode is installed near the optical waveguide formed by diffusing a thicker part of the thin film pattern, and at least One light control element is formed, and a light input/output end surface is formed at an end of an optical waveguide connected to the light control element and formed by diffusing a thin film pattern of the thin film pattern. ing. Another manufacturing method is
Forming a thin film pattern containing band-shaped metal atoms on a substrate,
By heating the substrate partially at different temperatures, the thin film pattern is diffused into the substrate to form an optical waveguide, and an electrode is placed near the optical waveguide formed in the portion heated at a lower temperature during the diffusion. A configuration in which the optical waveguide is installed to form at least one light control element, and is connected to the light control element and forms an optical input/output end face at the end of the optical waveguide formed in the portion where the heating temperature is high during the diffusion. It becomes.

(構成の詳細外説明) 本発明では、上述のように光制御素子を構成する光導波
路とそれと光入出力端面とを接続する入出力光導波路と
の間で両者の屈折率を異ならしめることにより、入出力
光導波路部分では光ファイバの光エネルギー分布に近い
伝搬光エネルギー分布を与えるように屈折率を設定し、
かつ、それとは独立に光制御素子を構成する光導波路の
屈折率をその部分の伝搬光エネルギー分布が電極近傍に
十分閉込められるように設定することにより、低損失結
合が可能でかつ低電圧動作が可能な光制御回路が得られ
る。
(Detailed explanation of the configuration) In the present invention, as described above, the optical waveguide constituting the light control element and the input/output optical waveguide connecting it to the optical input/output end surface are made to have different refractive indexes. In the input/output optical waveguide section, the refractive index is set to give a propagation light energy distribution close to the optical energy distribution of the optical fiber.
In addition, independently, by setting the refractive index of the optical waveguide constituting the light control element so that the propagation light energy distribution in that part is sufficiently confined near the electrode, low-loss coupling is possible and low-voltage operation is possible. A light control circuit capable of this can be obtained.

(実施例) 以下図面を8照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明による光制御回路の製造方法の一実施例
を説明するための方向性結合形光制御回路の斜視図であ
る。第1図において、LtNbos基板lの上に、互い
に数μmの間隔で近接した幅数〜数十μm、長さ数〜数
十−の光導波路2,3が設置され、その上に光吸収を防
ぐために設けたSin。
FIG. 1 is a perspective view of a directionally coupled optical control circuit for explaining an embodiment of the method for manufacturing an optical control circuit according to the present invention. In FIG. 1, optical waveguides 2 and 3 with a width of several to several tens of μm and a length of several to several tens of meters are installed on an LtNbos substrate l, which are adjacent to each other with an interval of several μm, and optical waveguides 2 and 3 with a width of several to several tens of μm and a length of several tens of μm are installed on the LtNbos substrate l. Sin was set up to prevent this.

膜(図では省略)を介して1対の電極4が形成され、こ
れらの光導波路2,3と電極4によ逆方向性結合形光制
御素子が構成されている。また、基/Z し;し 板1の入射端と対向する端面に出射端17,18もつ出
力光導波路7,8が光導波路2,3の出力側にそれぞれ
接続されている。ここで光導波路2゜3.5,6,7,
8はすべて基板1の表面に形成したTi 薄膜パターン
を基板l中に熱拡散して形成したものである。光導波路
2,3の部分の屈折率は深さ方向に第2図(alに示す
ような分布をもっており最大屈折率はn、である。一方
、光導波路5.6,7,8の屈折率は深さ方向に第2図
(blの分布をもっており最大屈折率はn、であシ、n
、 >n。
A pair of electrodes 4 are formed via a film (not shown), and these optical waveguides 2 and 3 and the electrodes 4 constitute a reversely coupled optical control element. Further, output optical waveguides 7 and 8 having output ends 17 and 18 on the end face opposite to the input end of the substrate 1 are connected to the output sides of the optical waveguides 2 and 3, respectively. Here, the optical waveguides 2゜3.5, 6, 7,
8 are all formed by thermally diffusing a Ti thin film pattern formed on the surface of the substrate 1 into the substrate l. The refractive index of the optical waveguides 2 and 3 has a distribution in the depth direction as shown in Figure 2 (al), and the maximum refractive index is n. has a distribution of bl in the depth direction, and the maximum refractive index is n, ash, n
, >n.

(”I+ntは10〜lO程度)となっている。また(
at 、 (blの分布の深さは同程度である。光導波
路2.3と5.6,7.8の接続部分9,10は伝搬光
のモード変換による損失を小さくするために屈折率が第
2図(alの分布から(b)の分布へと数百μmから融 数謂にわたって2々に変化するように形成されている。
("I+nt is about 10 to 1O). Also, (
The depths of the distributions of at and (bl are approximately the same. The connecting portions 9 and 10 between the optical waveguides 2.3 and 5.6, 7.8 have a refractive index of It is formed so that it changes in two from the distribution of FIG. 2 (al) to the distribution of FIG.

上述の光制御回路は一例として以下のような作製方法に
よシ得られる。先ず、LiNb0.基板上に通常のフォ
トリングラフィ技術を用いて光導波路のパターンを作成
する。すなわち、ZiNbO,基板上に7オトレジスト
を一様に塗布し、第1図の光導波路部分と同形のフォト
マスクを通して上記フォトレジストを露光し、現象する
ことによって、フォトレジスト膜に導波路形状の溝を形
成する。
The above-mentioned optical control circuit can be obtained, for example, by the following manufacturing method. First, LiNb0. An optical waveguide pattern is created on the substrate using ordinary photolithography technology. That is, 7 photoresists are uniformly coated on a ZiNbO substrate, and the photoresist is exposed to light through a photomask having the same shape as the optical waveguide portion shown in FIG. form.

との上からTI膜を500〜700A程度全面に蒸着す
る。次に入出刃先導波路5,6,7.8に相当する部分
を遮へい板でおおってさらに200〜400A程度Ti
膜を蒸着する。この後フォトレジスト膜を溶解すること
によって第3図に示すような光制御素子の部分でtl、
入出刃先導波路の部分でt。
A TI film is deposited over the entire surface to a thickness of about 500 to 700 A. Next, cover the portions corresponding to the leading waveguides 5, 6, 7.8 with shielding plates, and further apply approximately 200 to 400 A of Ti.
Deposit the film. After that, by dissolving the photoresist film, tl,
t at the part of the incoming and outgoing cutting edge leading wavepath.

(但し、tl>h)の膜厚をもつTI膜の光導波路パタ
ーン110が形成される。膜厚t1とt、の境界の部分
は、前記遮へい板と基板との間隔を調整する休 ことによって、または遮へい板を蒸着時に踪々に移動す
ることによって任意のテーバ形状にすることができる。
An optical waveguide pattern 110 of a TI film having a film thickness of (tl>h) is formed. The boundary between the film thicknesses t1 and t can be formed into an arbitrary tapered shape by adjusting the distance between the shielding plate and the substrate, or by moving the shielding plate intermittently during vapor deposition.

第3図のようにTi 膜のパターンを設置した基板は1
000〜1100’O15〜10時間程度拡散炉中で加
熱されることにより、前述の第1図に示したような光導
波路が形成される。この製造方法では、光導波路の屈折
率が拡散前のTi膜厚に依存することを利用している。
As shown in Figure 3, the substrate with the Ti film pattern is 1
By heating in a diffusion furnace for about 15 to 10 hours at 000 to 1100'O, an optical waveguide as shown in FIG. 1 described above is formed. This manufacturing method utilizes the fact that the refractive index of the optical waveguide depends on the thickness of the Ti film before diffusion.

光制御素子の部分には透明で絶縁性の高い840を等の
バッファ膜が形成され、その上にフートリソグラフィ技
術によって電極パターンが形成される。
A transparent and highly insulating buffer film such as 840 is formed on the light control element portion, and an electrode pattern is formed thereon by foot lithography.

次に第1図に示した光制御回路の動作を説明する。入射
端15への入射光11は入力光導波路5を通過して方向
性結合形光制御素子の光導波路2へ導かれる0先導波路
2と3は互いに近接して方ここで光導波路2及び3の長
さは、電極4に′1圧を印加しない状態では入射光のエ
ネルギーがはぼ100%光導波路3に移行するような−
長さ、すなわち1完全結合長に等しくなるように選ばれ
ている。
Next, the operation of the optical control circuit shown in FIG. 1 will be explained. The incident light 11 to the input end 15 passes through the input optical waveguide 5 and is guided to the optical waveguide 2 of the directionally coupled light control element.The optical waveguides 2 and 3 are close to each other. The length of - is such that when no pressure is applied to the electrode 4, almost 100% of the energy of the incident light is transferred to the optical waveguide 3.
length, ie, equal to one complete bond length.

そこで印加電圧0の状態では入射光11は光導波路3、
出力光導波路8を通フて出射端18から出射する〇一方
、電極4に電圧を印加した場合(は電気光学効果による
屈折率変化によって光導波路2と30伝搬光の位相定数
の整合がくずれ、あるり光導波路2、出力光導波路7を
通りて出射端17から出射する。上記のように印加電圧
の有無によって入射光は光路が切替えられる。また、出
射端18から“)出射光12だけに注目すれば出射光1
2は電極4への印加電圧波形によって変調されることに
なる。上記の光路切換えに必要な電圧又は100%変調
に必要な電圧は、電極下に伝搬光のエネルギーが小さく
閉込められているほど小さい。
Therefore, when the applied voltage is 0, the incident light 11 passes through the optical waveguide 3,
It passes through the output optical waveguide 8 and exits from the output end 18. On the other hand, when a voltage is applied to the electrode 4, the matching of the phase constants of the optical waveguides 2 and 30 propagates due to a change in the refractive index due to the electro-optic effect. , passes through the optical waveguide 2 and the output optical waveguide 7 and is emitted from the output end 17.As described above, the optical path of the incident light is switched depending on the presence or absence of the applied voltage. If you pay attention to the output light 1
2 will be modulated by the voltage waveform applied to the electrode 4. The voltage required for the above-mentioned optical path switching or the voltage required for 100% modulation is smaller as the energy of the propagating light is smaller and confined under the electrode.

本実施例では光導波路2及び3の屈折率は第2図(al
のように大きいので伝搬光のエネルギー分布は第2図(
clに示すように小さくなり先導波路内に強く、小さく
閉込められている。一方、入出力光導波路5,6,7.
8では屈折率が@2図fblに示すように小さいので伝
搬光のエネルギー分布は第2図fdlに示すように広が
っており、入出射端15,16゜17.18において元
ファイバに低損失に結合することが可能である。
In this example, the refractive index of the optical waveguides 2 and 3 is shown in FIG.
The energy distribution of the propagating light is as shown in Figure 2 (
As shown in cl, it becomes smaller and is strongly confined within the leading wavepath. On the other hand, input/output optical waveguides 5, 6, 7 .
8, the refractive index is small as shown in Figure 2 fbl, so the energy distribution of the propagating light is widened as shown in Figure 2 fdl, resulting in low loss in the original fiber at the input and output ends 15, 16° and 17.18°. It is possible to combine.

なお、本実施例では、第3図のようKTi膜厚を光制御
素子の部分と入出刃先導波路で異ならしめる製作方法を
用いたが、両者で一様なTi膜厚を用い、熱拡散時に入
出力光導波路が形成される部分の温度を光制御素子が形
成される部分の温度より高くしても第1図と同様の光制
御回路を作製することができる0第4図は上述の作製方
法の一例を示すものである。第4図は熱拡散工程を示す
断面図であり、20は拡散炉の断面、1はL i N1
)O。
In this example, as shown in Fig. 3, a manufacturing method was used in which the KTi film thickness was made different between the light control element part and the input/output leading waveguide, but a uniform Ti film thickness was used for both parts, so that the thickness of the KTi film was different during thermal diffusion. Even if the temperature of the part where the input/output optical waveguide is formed is higher than the temperature of the part where the optical control element is formed, an optical control circuit similar to that shown in Fig. 1 can be fabricated. Figure 4 shows the fabrication process described above. An example of the method is shown. FIG. 4 is a cross-sectional view showing the thermal diffusion process, where 20 is a cross section of the diffusion furnace, 1 is L i N1
)O.

基板、J3はTi膜、21は入出力光導波路が形成され
るべき部分に近接して設置された付加的なヒータを示す
。光制御素子の部分よりも数十度程度、入出刃先導波路
部分の昌度を高くして拡散される。上記のように基板の
一部を局所的に加熱する他の手段としては、局所的な高
周波加熱やレーザ、フラッノーランプによるアニール等
の方法がある。この場合には、入出力光導波路は光制御
素子の部分よりも屈折率分布が基板中により深くまで広
がシ、最大屈折率もlOオーダ程度低下させることがで
きる。
The substrate, J3 is a Ti film, and 21 is an additional heater installed close to a portion where an input/output optical waveguide is to be formed. The light is diffused by making the incoming and outgoing blade leading waveguide portions have a higher degree of magnification by several tens of degrees than the light control element portion. Other means for locally heating a part of the substrate as described above include methods such as local high-frequency heating, laser, and annealing using a Furano lamp. In this case, the refractive index distribution of the input/output optical waveguide spreads deeper into the substrate than the portion of the light control element, and the maximum refractive index can also be lowered by about 1O order.

第5図は本発明による光制御回路の製造方法の第2の実
施例を説明するための全反射形の2X2マトリクス光ス
イツチを示す平面図であるo L i Nb OJ基板
l上に形成された平行な2本の光導波路31゜32とそ
れに小さな角度で交差する2本の先導波路33.34の
それぞれの交差点上に電極が形成され、全反射形光スイ
ッチ24.25,26.27が構成され、全体で2X2
光スイツチが構成されている。
FIG. 5 is a plan view showing a total reflection type 2×2 matrix optical switch for explaining the second embodiment of the method for manufacturing an optical control circuit according to the present invention. Electrodes are formed on the respective intersections of two parallel optical waveguides 31, 32 and two leading waveguides 33, 34 that intersect them at a small angle, forming total internal reflection optical switches 24, 25, 26, 27. and total 2X2
A light switch is configured.

光導波路31,32にはLiNbO3基板lの端面に入
射端35.36をもつ入力光導波路37 、38が接続
され光導波路33,34にはLiNb0.基板lの上記
と対向する端面39,40に出射端をもつ出力光導波路
41,42が設置されている。ここで、光導波路31,
32,33.34は、伝搬光エネルギーが基板表面近く
に強く閉込められ、全反射形光スイッチ24.25,2
6.27が低電圧で動作するよう[Ti膜の膜厚を選ん
で屈折率を大きくしてあり、一方、入出力光導波路37
.38,41.42はそれぞれの端面に接続された単一
モード光ファイバ43,44゜45.46に高効率に光
結合するように、伝搬光エネルギー分布が上記光ファイ
バでの光エネルギー分布と同程度になるように拡散前の
Ti膜の膜厚を上記光導波路31,32,33.34の
部分よりも小さく選び屈折率を小さくしている。また、
光導波路31,32,33.34と入出力光導波路37
 、3B。
Input optical waveguides 37 and 38 having input ends 35 and 36 are connected to the end faces of the LiNbO3 substrate l to the optical waveguides 31 and 32, and LiNb0. Output optical waveguides 41 and 42 having output ends are installed on end faces 39 and 40 of the substrate l facing the above. Here, the optical waveguide 31,
32, 33, 34 are total reflection type optical switches 24, 25, 2, in which the propagating optical energy is strongly confined near the substrate surface.
The thickness of the Ti film was selected to increase the refractive index so that the input/output optical waveguide 37 could operate at low voltage.
.. 38, 41, and 42 have propagation light energy distributions that are the same as the optical energy distributions in the above-mentioned optical fibers so that they can be optically coupled with high efficiency to the single mode optical fibers 43, 44°, and 45.46 connected to their respective end faces. The thickness of the Ti film before diffusion is selected to be smaller than that of the optical waveguides 31, 32, 33, and 34 so as to reduce the refractive index. Also,
Optical waveguides 31, 32, 33, 34 and input/output optical waveguide 37
, 3B.

41.42の接続部は屈折率が光透過方向にテーバ状に
変化するように拡散前のTi膜厚はテーパ状に形成され
ている。本実施例は、交差部の全反射形光スイッチの電
極に電圧を印加することにより・一方の光導波路を通過
する伝搬光エネルギーが交差した他方の光導波路に反射
されて移行することを動作原理として、単一モード光フ
ァイバ43.44と単一モード光ファイバ45.46間
の光信号の光路を切替えるものである。
At the connection portions 41 and 42, the thickness of the Ti film before diffusion is tapered so that the refractive index changes in a tapered manner in the light transmission direction. The operating principle of this embodiment is that by applying a voltage to the electrodes of the total reflection type optical switch at the intersection, the propagating light energy passing through one optical waveguide is reflected and transferred to the other optical waveguide that intersects. , the optical path of the optical signal between the single mode optical fiber 43.44 and the single mode optical fiber 45.46 is switched.

(本発明の効果) 以上述べたように本発明によれば低損失に光フアイバ結
合可能でかつ、低電圧動作可能な光制御回路の製造方法
が得られる0 本発明は、いかなる方式の光制御素子、例えば分岐干渉
形光変調器や交差導波路形光スイッチ等に対しても従来
それぞれ別々の素子で得られている低動作電圧特性と低
損失光ファイバ結合特性の両方を1つの素子で得ること
ができる。本発明に用いる基板材料、先導波路形状、電
極形状等は上記実施例に限定されるものでなく、基板材
料として、1iTaos結晶等の強誘電体結晶、InP
等の璽−V族半導体結晶を、光導波路としてはイオン交
換による光導波路や結晶成長によシ作成した光導波路等
を、電極形状としては、高速化により適した進行波形の
電極等を用いることができる0
(Effects of the Present Invention) As described above, the present invention provides a method for manufacturing an optical control circuit that can be coupled with optical fibers with low loss and can operate at low voltage. For devices such as branching interference type optical modulators and crossed waveguide type optical switches, it is possible to obtain both low operating voltage characteristics and low loss optical fiber coupling characteristics with a single device, which were conventionally obtained with separate devices. be able to. The substrate material, guiding waveguide shape, electrode shape, etc. used in the present invention are not limited to the above-mentioned examples.
For the optical waveguide, use an optical waveguide using ion exchange or an optical waveguide created by crystal growth, and for the electrode shape, use a traveling waveform electrode that is more suitable for high speed. can do 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光制御回路の製造方法の実施例を
説明するだめの光制御回路を示す斜視図、第5図は本発
明による光制御回路の製造方法の実施例を説明するため
の2×2マトリクス光スイツチの平面図、第3図、第4
図は本発明による光制御回路の製造方法を説明するだめ
の図、第2図は本発明により得られる光制御回路の原理
を説明するための図である。 図において1は基板、2,3,31,32,33,34
は光制御素子を構成する光導波路、5.J7,8゜37
.38,41.42 は入出力光導波路、4は電極、1
1.13は拡散物であるTi 薄膜である0依 ヤノ 
V= ンJ ぐ4 胃t ヤノ ゛旨餐 Yノ 10 薯 4 図
FIG. 1 is a perspective view showing an optical control circuit for explaining an embodiment of the method for manufacturing an optical control circuit according to the present invention, and FIG. 5 is a perspective view for explaining an embodiment of the method for manufacturing an optical control circuit according to the present invention. Top view of 2×2 matrix light switch, Figures 3 and 4
The figure is a diagram for explaining the method of manufacturing the optical control circuit according to the present invention, and FIG. 2 is a diagram for explaining the principle of the optical control circuit obtained according to the present invention. In the figure, 1 is the substrate, 2, 3, 31, 32, 33, 34
5. is an optical waveguide constituting a light control element; J7,8゜37
.. 38, 41.42 are input/output optical waveguides, 4 is an electrode, 1
1.13 is a diffused Ti film and a thin film.
V= NJ gu4 stomach t yano ゛food Yノ10 薯 4 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に部分的に厚さの異なる帯状の金属原子を
含む薄膜パターンを形成し、上記基板を加熱して上記薄
膜パターンを該基板中に拡散させることによって光導波
路を形成し、前記薄膜パターンの膜厚の大きい部分が拡
散されて形成された光導波路の近傍に電極を設置して少
くとも1つの光制御素子を形成し、該光制御素子と接続
されかつ、前記薄膜パターンの膜厚の小さい部分が拡散
されて形成された光導波路の端部に光入出力端面を形成
することを特徴とする光制御回路の製造方法。
(1) forming a thin film pattern containing band-shaped metal atoms with partially different thicknesses on a substrate, heating the substrate to diffuse the thin film pattern into the substrate to form an optical waveguide; At least one light control element is formed by installing an electrode near an optical waveguide formed by diffusing a thicker part of the thin film pattern, and the film of the thin film pattern is connected to the light control element. 1. A method of manufacturing an optical control circuit, comprising forming an optical input/output end face at an end of an optical waveguide formed by diffusing a portion with a small thickness.
(2)基板上に帯状の金属原子を含む薄膜パターンを形
成し、上記基板を部分的に異なる温度で加熱することに
よって、前記薄膜パターンを該基板中に拡散させて光導
波路を形成し、前記拡散時の加熱温度の低い部分で形成
された光導波路の近傍に電極を設置して少くとも1つの
光制御素子を形成し、該光制御素子と接続され、かつ前
記拡散時の加熱温度の高い部分で形成された光導波路の
端部に光入出力端面を形成するととを特徴とする光制御
回路の製造方法。
(2) forming a thin film pattern containing band-shaped metal atoms on a substrate, heating the substrate partially at different temperatures to diffuse the thin film pattern into the substrate to form an optical waveguide; At least one light control element is formed by installing an electrode in the vicinity of the optical waveguide formed in the part where the heating temperature is low during diffusion, and the electrode is connected to the light control element and where the heating temperature is high during the diffusion. 1. A method of manufacturing an optical control circuit, comprising: forming an optical input/output end face at an end of an optical waveguide formed by a section.
JP3802784A 1984-02-29 1984-02-29 Manufacture of optical control system Pending JPS60182425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3802784A JPS60182425A (en) 1984-02-29 1984-02-29 Manufacture of optical control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3802784A JPS60182425A (en) 1984-02-29 1984-02-29 Manufacture of optical control system

Publications (1)

Publication Number Publication Date
JPS60182425A true JPS60182425A (en) 1985-09-18

Family

ID=12514075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3802784A Pending JPS60182425A (en) 1984-02-29 1984-02-29 Manufacture of optical control system

Country Status (1)

Country Link
JP (1) JPS60182425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170537A (en) * 1984-09-14 1986-04-11 Canon Inc Thin film type optical element and its manufacture
JPS6449004A (en) * 1987-07-28 1989-02-23 Polaroid Corp Manufacture of tapered waveguide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176730A (en) * 1983-03-28 1984-10-06 Fujitsu Ltd Optical switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176730A (en) * 1983-03-28 1984-10-06 Fujitsu Ltd Optical switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170537A (en) * 1984-09-14 1986-04-11 Canon Inc Thin film type optical element and its manufacture
JPS6449004A (en) * 1987-07-28 1989-02-23 Polaroid Corp Manufacture of tapered waveguide

Similar Documents

Publication Publication Date Title
JP2000137196A (en) Optical luminance modulator as well as switch and rotatable attenuator using the same
US5155620A (en) Nonlinear optical devices and methods
US7184631B2 (en) Optical device
JP2940141B2 (en) Waveguide type optical control device
US6320990B1 (en) High-performance electro-optic intensity modulator using polymeric waveguides and grating modulation
JPS60182425A (en) Manufacture of optical control system
US6999646B2 (en) All optical data selection element
US5050947A (en) Optical waveguide control device employing directional coupler on substrate
JP2004325536A (en) Nonlinear optical device
JPS60182424A (en) Optical control circuit
JPS61134730A (en) Production of optical control element
JPH0721597B2 (en) Optical switch
JPH02114243A (en) Optical control device and its manufacture
Chen et al. Integrated optical beam splitters formed in glass channel waveguides having variable weighting as determined by mask dimensions
JP2635986B2 (en) Optical waveguide switch
US6384958B1 (en) Free-space thermo-optical devices
JP2643927B2 (en) Manufacturing method of optical branching / optical coupling circuit
JPH09211501A (en) Thermooptical optical switch
JPS6086530A (en) Waveguide type optical switch
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JPS61134731A (en) Production of optical control circuit
US6647167B1 (en) Solid state optical switch and router
JPH0381740A (en) Optical control circuit
JP2912039B2 (en) Light control device
JPH0550436U (en) Directional coupler type optical control device