JPH0592369A - Composite abrasive board and manufacture thereof - Google Patents
Composite abrasive board and manufacture thereofInfo
- Publication number
- JPH0592369A JPH0592369A JP27493291A JP27493291A JPH0592369A JP H0592369 A JPH0592369 A JP H0592369A JP 27493291 A JP27493291 A JP 27493291A JP 27493291 A JP27493291 A JP 27493291A JP H0592369 A JPH0592369 A JP H0592369A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- composite
- weight
- sintered body
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,石英やジルコニアセラ
ミックス等の研磨に用いる研磨材に関し,詳しくは,こ
の研磨材を用いた複合研磨盤とこの複合研磨盤の製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasive used for polishing quartz, zirconia ceramics and the like, and more particularly to a composite polishing machine using this abrasive and a method for producing the composite polishing machine.
【0002】[0002]
【従来の技術】従来,石英やジルコニアセラミックス等
の研磨には,高精度の研磨面が要求されており,ダイヤ
モンド砥粒が用いられている。研磨する際には,回転す
る研磨盤上にダイヤモンド砥粒を含んだ加工液を供給し
ながら,被研磨物を押し付けて研磨していた。2. Description of the Related Art Conventionally, for polishing quartz or zirconia ceramics, a highly accurate polishing surface has been required, and diamond abrasive grains have been used. During polishing, the material to be polished was pressed and polished while supplying a working liquid containing diamond abrasive grains onto a rotating polishing plate.
【0003】[0003]
【発明が解決しようとする課題】しかしながら,従来の
石英やジルコニアセラミックス等の研磨において,回転
する研磨盤上にダイヤモンド砥粒を含んだ加工液を供給
するためダイヤモンド砥粒は,遠心力で飛ばされ易く,
無駄になるダイヤモンド砥粒も多くある。また,被研磨
物の研磨スピードを上げようとすれば研磨盤の回転スピ
ードを速くし,ダイヤモンド砥粒の供給量を多くしなけ
ればならず,なおさらダイヤモンド砥粒の研磨効率が低
くなる。更に,被研磨物の面精度を上げるには,加工液
の供給量を多くしなければならず,そのためダイヤモン
ド砥粒が流れやすくなり,ダイヤモンド砥粒の研磨効率
を著しく低下させる。このダイヤモンド砥粒は,超微粒
子が用いられているがダイヤモンドは非常に高価であ
り,研磨コストも高くなるという欠点があった。そこ
で,本発明の技術的課題は,製造コストが安く且つ研磨
効率の高い石英やジルコニアセラミックス等の研磨に用
いる複合研磨盤とこの研磨盤を製造する方法を提供する
ことにある。However, in the conventional polishing of quartz, zirconia ceramics, etc., the diamond abrasive grains are blown off by centrifugal force in order to supply the working fluid containing the diamond abrasive grains onto the rotating polishing plate. Easy,
Many diamond grains are wasted. In addition, if it is attempted to increase the polishing speed of the object to be polished, the rotation speed of the polishing disk must be increased and the diamond abrasive grain supply amount must be increased, which further reduces the diamond abrasive grain polishing efficiency. Furthermore, in order to improve the surface accuracy of the object to be polished, the supply amount of the working liquid must be increased, which facilitates the flow of diamond abrasive grains and significantly reduces the polishing efficiency of the diamond abrasive grains. Although ultrafine particles are used for the diamond abrasive grains, diamond is very expensive and has a drawback that the polishing cost is also high. Therefore, a technical problem of the present invention is to provide a composite polishing machine used for polishing quartz, zirconia ceramics, or the like, which has a low manufacturing cost and a high polishing efficiency, and a method of manufacturing the polishing machine.
【0004】[0004]
【課題を解決するための手段】一般に,WC,Mo2 C
等の炭化物は,モースの硬さではダイヤモンドの次に硬
いものであり,W,Moもそれに準ずる程度に硬いもの
である。そのため,ダイヤモンド砥粒に変り得るものと
考えられていた。そこで,本発明では,これらのものを
砥粒として用いるよりも研磨盤として用いる方が研磨効
率の良いはずであり,WC,Mo2 C,W,Mo等の硬
質微粒子をCu,Ni,Co,Fe等の低融点金属で結
合する研磨盤として本発明をなすに至ったものである。
しかし,これらの研磨盤を作る場合に,相対密度を高く
すると硬質微粒子が離脱しにくくなり,被研磨物により
研磨盤が目詰りを起こし研磨がし難くなる。そこで,本
発明において,被研磨物に対し研磨盤の硬質微粒子の種
類をWC,Mo2 C,W,Mo等のうちから選択された
少なくとも一種とし,この硬質微粒子を結合するCu,
Ni,Co,Fe等の低融点金属の量を2〜40重量
%,焼結温度を700〜1600℃に調節することによ
り,焼結体の相対密度を40〜90%にすることと,硬
質微粒子の粒成長を極力抑え,また,焼結体の平均粒子
径を1μm以下にすることにより,研磨盤による研磨時
に硬質微粒子が適度の離脱をし,常にフレッシュな硬質
微粒子が研磨盤の表面にでてきて,極めて有効的に研磨
ができ,そのうえ被加工物の面精度も良くしたものであ
る。このことにより,実質的に研磨コストを低減され
る。即ち,本発明によれば,WC,Mo2 C,W,Mo
の内から選択された少なくとも一種からなる硬質微粒子
を60〜98重量%と,Cu,Ni,Co,Feの前記
硬質微粒子の結合剤として役立つ低融点金属の少なくと
も一種を2〜40重量%とを含むことを特徴とする複合
研磨材が得られる。本発明によれば,前記複合研磨材を
プレス成型し,還元雰囲気または不活性雰囲気中で70
0〜1600℃で焼結することを特徴とする複合研磨盤
の製造方法が得られる。本発明によれば,WC,Mo2
C,W,Moの内少なくとも一種からなる硬質微粒子を
60〜98重量%と,結合材としてCu,Ni,Co,
Feの低融点金属の少なくとも一種を2〜40重量%と
を含む焼結体であって,前記焼結体は40〜90%の相
対密度を有することを特徴とする複合研磨盤が得られ
る。本発明によれば,前記複合研磨盤において,前記複
合研磨盤はポーラスな焼結体であることを特徴とする複
合研磨盤が得られる。本発明によれば,前記複合研磨盤
において,石英又はジルコニアセラミックスの研磨に使
用されることを特徴とする複合研磨盤が得られる。本発
明によれば,前記複合研磨盤において,前記硬質微粒子
の平均粒子径は1μm以下であることを特徴とする複合
研磨盤が得られる。[Means for Solving the Problems] Generally, WC, Mo 2 C
The carbides such as are hardest next to diamond in terms of Mohs' hardness, and W and Mo are also harder to a degree corresponding thereto. Therefore, it was thought that it could be changed to diamond abrasive grains. Therefore, in the present invention, it is expected that the polishing efficiency will be better when these materials are used as the polishing plate than when they are used as the abrasive grains, and hard particles such as WC, Mo 2 C, W, and Mo are used for Cu, Ni, Co, The present invention has been accomplished as a polishing plate that is bonded with a low melting point metal such as Fe.
However, when making these polishing discs, if the relative density is increased, the hard fine particles are less likely to come off, and the polishing disc is clogged by the object to be polished, making polishing difficult. Therefore, in the present invention, the type of hard fine particles of the polishing plate for the object to be polished is at least one selected from WC, Mo 2 C, W, Mo, etc., and Cu that binds these hard fine particles is used.
By adjusting the amount of low melting point metal such as Ni, Co and Fe to 2 to 40% by weight and the sintering temperature to 700 to 1600 ° C., the relative density of the sintered body is set to 40 to 90%, and By suppressing the particle growth of fine particles as much as possible, and by making the average particle size of the sintered body 1 μm or less, the hard fine particles are appropriately separated during polishing by the polishing plate, and always fresh hard fine particles are formed on the surface of the polishing plate. As a result, polishing can be performed extremely effectively, and the surface accuracy of the work piece is improved. This substantially reduces the polishing cost. That is, according to the present invention, WC, Mo 2 C, W, Mo
60 to 98% by weight of hard fine particles of at least one selected from among the above, and 2 to 40% by weight of at least one of low-melting point metals of Cu, Ni, Co and Fe which serve as a binder for the hard fine particles. A composite abrasive is obtained which is characterized in that it contains. According to the present invention, the composite abrasive material is press-molded, and the composite abrasive material is pressed in a reducing or inert atmosphere.
A method for manufacturing a composite polishing plate is obtained, which is characterized by sintering at 0 to 1600 ° C. According to the invention, WC, Mo 2
60 to 98% by weight of hard fine particles composed of at least one of C, W and Mo, and Cu, Ni, Co as a binder,
A composite polishing plate is obtained, which is a sintered body containing at least one low melting point metal of Fe in an amount of 2 to 40% by weight, and the sintered body has a relative density of 40 to 90%. According to the present invention, in the composite polishing plate, the composite polishing plate is a porous sintered body. According to the present invention, there is obtained a composite polishing plate which is used for polishing quartz or zirconia ceramics in the composite polishing plate. According to the present invention, in the composite polishing machine, an average particle diameter of the hard fine particles is 1 μm or less, and a composite polishing machine is obtained.
【0005】[0005]
【実施例】以下,本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0006】(実施例1)0.5μmWC475gと,
マイナス44μm銅25gをアトライターで混合し,W
C−Cuの複合粉を作り,この粉を294MPaでプレ
スし700〜1600℃の水素気流中で2時間焼結し
た。得られた焼結体の焼結温度に対する相対密度の変化
及び焼結温度に対する焼結体の曲げの強さの関係を図1
及び図2に示す。尚,相対密度とは,基準として各成分
の占める体積を各成分の重量比と,比重から導いた比重
の理論値dから換算して求めた理論密度を100%とし
たものである。例えば,95%WC−5%Cuの焼結体
の密度が7.50g/cm3 である場合,d95-5=14.
95であるので,相対密度(%)=7.5/14.95
=50.17である。図1から明らかなように,焼結温
度が高くなるほど,焼結密度も上昇している。さらに,
図2から明らかなように,焼結温度が高くなると,焼結
体の曲げの強さも上昇する。また,実施例1で得られた
焼結体の破断面を走査型電子顕微鏡(SEM)で観察し
たところ,焼結体中の平均粒子径は全て1μm以下であ
った。(Example 1) 475 g of 0.5 μm WC,
Mix 25g of minus 44μm copper with an attritor, and
C-Cu composite powder was prepared, and this powder was pressed at 294 MPa and sintered in a hydrogen stream at 700 to 1600 ° C for 2 hours. FIG. 1 shows the relationship between the change in relative density of the obtained sintered body with respect to the sintering temperature and the bending strength of the sintered body with respect to the sintering temperature.
And shown in FIG. The relative density is a theoretical density obtained by converting the volume occupied by each component from the weight ratio of each component and the theoretical value d of the specific gravity derived from the specific gravity as 100% as a reference. For example, when the density of the sintered body of 95% WC-5% Cu is 7.50 g / cm 3 , d 95-5 = 14.
Since 95, the relative density (%) = 7.5 / 14.95
= 50.17. As is clear from FIG. 1, the higher the sintering temperature, the higher the sintering density. further,
As is clear from FIG. 2, as the sintering temperature increases, the bending strength of the sintered body also increases. Further, when the fracture surface of the sintered body obtained in Example 1 was observed with a scanning electron microscope (SEM), the average particle diameter in the sintered body was all 1 μm or less.
【0007】(実施例2)WCとCuの配合比を変化さ
せ実施例1と同様に混合粉を作り,この粉を294MP
aでプレスし,1000℃で焼結した。得られた焼結体
の曲げの強さの関係を図3に示す。図3で示すように,
焼結体の混合比(Cu含有量)が増加すると,焼結体の
曲げの強さも上昇することが判明した。(Example 2) A mixed powder was prepared in the same manner as in Example 1 by changing the compounding ratio of WC and Cu, and this powder was 294MP.
Pressed at a and sintered at 1000 ° C. The relationship of bending strength of the obtained sintered body is shown in FIG. As shown in Figure 3,
It was found that the bending strength of the sintered body increased as the mixing ratio (Cu content) of the sintered body increased.
【0008】(実施例3)実施例1によって得られた焼
結体のうち,1000℃で焼結した焼結体を,回転研磨
盤として,1000rpmで用い,石英とジルコニアセ
ラミックスをそれぞれ同時に研磨したときの結果を表1
に示す。Example 3 Among the sintered bodies obtained in Example 1, the sintered body sintered at 1000 ° C. was used as a rotary polishing machine at 1000 rpm to simultaneously polish quartz and zirconia ceramics. Table 1 shows the results when
Shown in.
【0009】[0009]
【表1】 [Table 1]
【0010】尚,表1から,石英とジルコニアセラミッ
クスは,適度の粗さで,研磨の際,割れが生ぜず良好で
あった。また,石英とジルコニアセラミックスの接合物
を同時に研磨したが,境界面の段差は,0.02μm以
下で殆どなく,更に割れが生ぜず良好であった。From Table 1, it is found that quartz and zirconia ceramics have an appropriate roughness and are good in that they do not crack during polishing. Moreover, when a bonded product of quartz and zirconia ceramics was polished at the same time, the level difference on the boundary surface was 0.02 μm or less, and there was almost no crack, which was good.
【0011】[0011]
【発明の効果】以上,説明したように,本発明によれ
ば,低融点金属を用い焼結温度とその含有量を調節する
ことで,硬質微粒子の結合力を調整したために,研磨時
において硬質微粒子が離脱し易く,常にフレッシュな粒
子が表面にでてくるため研磨性の良い複合研磨盤および
その製造方法を提供することができる。また,本発明に
よれば,硬質微粒子が細かいために,被研磨物の研磨面
の面精度を高くすることができる複合研磨盤およびその
製造方法を提供することができる。ここで,微粒ダイヤ
モンドの研磨粒子として使用した場合,ダイヤモンド粒
子が有効に作用しないものもあり研磨コストが非常に高
かったが,本発明によれば,研磨盤が安価に製造できる
ため研磨コストが大幅に低減できる複合研磨盤およびそ
の製造方法を提供することができる。更に,本発明によ
れば,被研磨物の硬さにより,硬質微粒子の種類および
結合金属量,焼結温度を調整し,研磨盤の相対密度を調
整することにより,研磨効率の良い研磨盤を容易に製造
できる複合研磨盤およびその製造方法を提供することが
できる。As described above, according to the present invention, the binding temperature of hard fine particles is adjusted by adjusting the sintering temperature and the content thereof by using a low melting point metal. Since the fine particles are easily released and fresh particles are constantly exposed on the surface, it is possible to provide a composite polishing machine having a good polishing property and a method for producing the same. Further, according to the present invention, since the hard fine particles are fine, it is possible to provide a composite polishing machine and a method for manufacturing the same that can improve the surface accuracy of the polishing surface of the object to be polished. Here, when used as the abrasive particles of fine diamond, the diamond particles did not work effectively and the polishing cost was very high. However, according to the present invention, the polishing disk can be manufactured at a low cost, and thus the polishing cost is significantly increased. It is possible to provide a composite polishing plate and a method for manufacturing the same, which can be significantly reduced. Further, according to the present invention, the type of hard fine particles, the amount of bound metal, and the sintering temperature are adjusted according to the hardness of the object to be polished, and the relative density of the polishing plate is adjusted, so that a polishing plate with high polishing efficiency can be obtained. It is possible to provide a composite polishing plate that can be easily manufactured and a manufacturing method thereof.
【図1】本発明の実施例1に係る複合研磨盤用焼結体の
焼結温度と焼結体相対密度との関係を示す図である。FIG. 1 is a diagram showing a relationship between a sintering temperature and a relative density of a sintered body of a composite polishing plate sintered body according to Example 1 of the present invention.
【図2】本発明の実施例1に係る複合研磨盤用焼結体の
焼結温度と曲げ強さとの関係を示す図である。FIG. 2 is a diagram showing a relationship between a sintering temperature and a bending strength of a composite polishing plate sintered body according to Example 1 of the present invention.
【図3】本発明の実施例2に係る複合研磨盤用焼結体の
混合比と曲げ強さとの関係を示す図である。FIG. 3 is a diagram showing a relationship between a mixing ratio and a bending strength of a sintered body for a composite polishing plate according to Example 2 of the present invention.
Claims (6)
された少なくとも一種からなる硬質微粒子を60〜98
重量%と,Cu,Ni,Co,Feの前記硬質微粒子の
結合剤として役立つ低融点金属の少なくとも一種を2〜
40重量%とを含むことを特徴とする複合研磨材。1. Hard particles comprising at least one selected from the group consisting of WC, Mo 2 C, W, and Mo of 60 to 98.
% By weight and at least one of the low melting point metals of Cu, Ni, Co and Fe which serve as a binder for the hard particles.
40% by weight of the composite abrasive.
し,還元雰囲気または不活性雰囲気中で700〜160
0℃で焼結することを特徴とする複合研磨盤の製造方
法。2. The composite abrasive according to claim 1, which is 700 to 160 in a reducing atmosphere or an inert atmosphere by press molding.
A method for manufacturing a composite polishing plate, which comprises sintering at 0 ° C.
も一種からなる硬質微粒子を60〜98重量%と,結合
材としてCu,Ni,Co,Feの低融点金属の少なく
とも一種を2〜40重量%とを含む焼結体であって,前
記焼結体は40〜90%の相対密度を有することを特徴
とする複合研磨盤。3. A hard fine particle composed of at least one of WC, Mo 2 C, W and Mo is contained in an amount of 60 to 98% by weight and at least one of low melting point metals of Cu, Ni, Co and Fe is used as a binder. 40% by weight, said composite having a relative density of 40-90%.
記複合研磨盤はポーラスな焼結体であることを特徴とす
る複合研磨盤。4. The composite polishing plate according to claim 3, wherein the composite polishing plate is a porous sintered body.
英又はジルコニアセラミックスの研磨に使用されること
を特徴とする複合研磨盤。5. The composite polishing machine according to claim 3, which is used for polishing quartz or zirconia ceramics.
記硬質微粒子の平均粒子径は1μm以下であることを特
徴とする複合研磨盤。6. The composite polishing board according to claim 3, wherein the hard particles have an average particle diameter of 1 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27493291A JPH0592369A (en) | 1991-09-27 | 1991-09-27 | Composite abrasive board and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27493291A JPH0592369A (en) | 1991-09-27 | 1991-09-27 | Composite abrasive board and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0592369A true JPH0592369A (en) | 1993-04-16 |
Family
ID=17548556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27493291A Withdrawn JPH0592369A (en) | 1991-09-27 | 1991-09-27 | Composite abrasive board and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0592369A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002018724A (en) * | 2000-07-03 | 2002-01-22 | Tosoh Corp | Polishing molding and polishing surface plate using the same |
-
1991
- 1991-09-27 JP JP27493291A patent/JPH0592369A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002018724A (en) * | 2000-07-03 | 2002-01-22 | Tosoh Corp | Polishing molding and polishing surface plate using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3949891B2 (en) | Super whetstone with active binder | |
KR101269498B1 (en) | Abrasive slicing tool for electronics industry | |
JP4157082B2 (en) | Method for manufacturing rigidly bonded thin whetstone | |
JPH072307B2 (en) | Metal bond diamond whetstone | |
JP2006501068A (en) | Method for producing sintered support polycrystalline diamond compact | |
JPH09103965A (en) | Porous superbrasive grinding wheel and its manufacture | |
JP2000319704A (en) | Manufacture of cutting tool insert of polycrystalline cubic boron nitride, and powder containing polycrystalline cubic boron nitride | |
JP3380125B2 (en) | Porous superabrasive stone and its manufacturing method | |
MX2008010856A (en) | Cutting tip, method for making the cutting tip and cutting tool. | |
JPH0592369A (en) | Composite abrasive board and manufacture thereof | |
JPH08229826A (en) | Super-abrasive grain grinding wheel, and manufacture thereof | |
JP3703228B2 (en) | Diamond whetstone, manufacturing method thereof and tool | |
JPS606356A (en) | Sintered minute short fiber abrasive | |
JP3751160B2 (en) | Hard material abrasive grain densification structure | |
JP4540791B2 (en) | Cermet for cutting tools | |
JPS62287035A (en) | Copper-iron group metal-base diamond tool for cutting fine ceramic | |
CN117300923A (en) | Preparation process and application of porous active metal-based diamond abrasive particle tool | |
JPH07246562A (en) | Metal bonded grinding wheel and its manufacture | |
JPH10113877A (en) | Super abrasive grain grindstone and its manufacturing method | |
JPH05302136A (en) | Whisker reinforced sintered hard alloy | |
JP2004009251A (en) | Ultrathin super abrasive grain metal bond grind stone and manufacturing method thereof | |
JPS60186375A (en) | Abrasive molded body and method of manufacturing thereof | |
JPS59152065A (en) | Diamond wheel for working hard fragile material | |
JPH07126791A (en) | Cermet alloy | |
JPH04294977A (en) | Diamond grinding wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981203 |