JPS59152065A - Diamond wheel for working hard fragile material - Google Patents

Diamond wheel for working hard fragile material

Info

Publication number
JPS59152065A
JPS59152065A JP58024383A JP2438383A JPS59152065A JP S59152065 A JPS59152065 A JP S59152065A JP 58024383 A JP58024383 A JP 58024383A JP 2438383 A JP2438383 A JP 2438383A JP S59152065 A JPS59152065 A JP S59152065A
Authority
JP
Japan
Prior art keywords
diamond
wheel
pressure
temperature
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024383A
Other languages
Japanese (ja)
Inventor
Kaoru Kawada
川田 薫
Tsutomu Takahashi
務 高橋
Yasuo Tsujisato
辻郷 康生
Noboru Shimakawa
島川 昇
Masaaki Kurosawa
黒沢 正明
Noritaka Naganami
長南 教孝
Nobuhiko Arai
荒井 信彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58024383A priority Critical patent/JPS59152065A/en
Publication of JPS59152065A publication Critical patent/JPS59152065A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To obtain the captioned wheel which develops the superior performance in working fireresistive bricks, etc. and with which the amount of abrasion can be reduced and the service life can be prolonged by pulverizing a diamond sintered body synthesized at high temperature and high pressure and using said substance as grinding grains. CONSTITUTION:Since the tungsten-carbide layer in the conventional method can be removed in sintering a diamond sitered body at high temperature and high pressure, the problems that the strength of tungsten carbide is remarkably reduced at an excessively high temperature and the life of a high-pressure container is shortened at high pressure are eliminated. Therefore, temperature and pressure can be varied freely, and the part made of tungsten carbide can be replaced with diamond powder in a same apparatus, and the larger diamond sintered body can be synthesized. The granular diamond which is sharp and has a high strength can be obtained, and the amount of abrasion can be reduced, and the life can be prolonged.

Description

【発明の詳細な説明】 この発明は、硬脆材料加工用ダイヤモンドホイールに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diamond wheel for machining hard and brittle materials.

最近、耐火レンガは耐熱性向上の観点から[粗粒の炭化
硅素」入りレンガが多く使用されるようになった。
Recently, firebricks containing coarse-grained silicon carbide have been increasingly used to improve heat resistance.

従来、このようなレンガの加工には、粗度が30〜60
番の人工ダイヤモンド砥粒の入ったダイヤモンド砥石(
以下、チップという)を合金にロー付したダイヤモンド
ホイール(以下、単にホイールという)が使われていた
。ところが、耐火レンカニ粗粒の炭化硅素が入っている
ために、チップの摩耗が激しく、充分にその威力を発揮
するには至らないのが現状である。
Traditionally, when machining such bricks, the roughness is 30 to 60.
A diamond whetstone containing artificial diamond abrasive grains (
A diamond wheel (hereinafter simply referred to as a wheel) was used, which had a chip (hereinafter referred to as a chip) brazed to an alloy. However, since refractory crackers contain coarse grains of silicon carbide, the tips are subject to severe wear and are currently unable to demonstrate their full potential.

本発明者らは、種々検討を加え実験を重ねた結果、チッ
プに使用するダイヤモンド粒子を大きくすることによっ
て著しく性能を向上させることができることをつきとめ
た。実験結果を判断すると、ダイヤモンド粒子の大きさ
は2mm〜2.5 mmが適当であることが判明した。
As a result of various studies and repeated experiments, the present inventors have found that performance can be significantly improved by increasing the size of diamond particles used in the chip. Judging from the experimental results, it was found that the appropriate size of the diamond particles is 2 mm to 2.5 mm.

ところが、人工ダイヤモンドでこの大きさの物は入手難
であり、また天然ダイヤモンドは高価すぎる。しかも、
仮りに天然ダイヤモンドを使用した場合には、コストを
別にしても、単結晶であるために璧開面が発達していて
チップが摩耗し易くホイール寿命が予想外にのびないと
いう決定的な難点があるとか分かった。
However, synthetic diamonds of this size are difficult to obtain, and natural diamonds are too expensive. Moreover,
If natural diamond were to be used, apart from the cost, there would be a definite drawback that since it is a single crystal, it would have a well-developed crack surface, which would cause the tip to wear easily and the wheel life would not be extended as expected. I found out that there is.

一方、人工ダイヤモンド微粉末と、コバルト、鉄、ニッ
ケル等の触媒金属とを混合し、これを高温高圧下(14
00℃以上、50kbar以上)で焼結することにより
、緻密な多結晶ダイヤモンド焼結体が容易に得られる。
On the other hand, artificial diamond fine powder is mixed with catalytic metals such as cobalt, iron, and nickel, and this is mixed under high temperature and high pressure (14
By sintering at a temperature of 00° C. or higher and 50 kbar or higher, a dense polycrystalline diamond sintered body can be easily obtained.

この焼結体は、切削工具やダイヤモンドダイス工具を一
目的として開発されており、このため、焼結体形状が円
盤状、円筒状に限定され、そして一般にはタングステン
カーバイドと同時焼結している。したがって、このダイ
ヤモンド焼結体は、上記のような目的思考の開発のため
、工具としての優れた性能をもってはいるが、その形状
や構造が限定されているために広い分野への応用が困難
である。
This sintered body was developed for the purpose of being used as cutting tools and diamond die tools, and for this reason, the shape of the sintered body is limited to disk-like or cylindrical shapes, and it is generally co-sintered with tungsten carbide. . Therefore, although this diamond sintered body has excellent performance as a tool due to the purpose-oriented development described above, it is difficult to apply it to a wide range of fields due to its limited shape and structure. be.

本発明者らは、このダイヤモンド焼結体の用途拡大の一
環として、前述した耐火レンガなどの加工用ホイールの
チップへの応用を試みた。そして、それを粉砕して使用
することに思い至った。
As part of expanding the uses of this diamond sintered body, the present inventors attempted to apply it to the chips of wheels for machining the aforementioned refractory bricks and the like. Then, I came up with the idea of crushing it and using it.

この発明は、2ν上記のような知見に基づいてなされた
ものである。すなわち、この発明は、高温高圧下で合成
されたダイヤモンド焼結体分粉砕して、これを粒状ダイ
ヤモンド塊体としたものを砥粒として用いることにより
、優れた性能を発揮する硬脆材料加工用ホイールを提供
するものである。
This invention was made based on the above-mentioned findings. That is, the present invention provides a method for processing hard and brittle materials that exhibits excellent performance by pulverizing a synthesized diamond sintered body under high temperature and high pressure and using this as granular diamond lumps as abrasive grains. It provides wheels.

この発明において、砥粒として用いられるダイヤモンド
環体はダイヤモンド焼結体を粉砕したものであるが、そ
のダイヤモンド焼結体の高温高圧下での焼結に際しては
、従来のようなタングステンカーバイド層が不要である
。これは、本発明者らが見い出したことであり、このこ
とには次のような利点がある。
In this invention, the diamond ring used as the abrasive grain is a pulverized diamond sintered body, but when the diamond sintered body is sintered under high temperature and high pressure, the conventional tungsten carbide layer is not required. It is. This is what the present inventors have discovered, and this has the following advantages.

すなわち、従来の焼結法では、タングステンカーバイド
とダイヤモンド粉末が一体になっているために、温度、
圧力を種々変化させて焼結するには限界があった。その
第一の理由は、温度を上げすぎるとタングステンカーバ
イド中のコバルトがダイヤモンド粉末に吸収され、タン
グステンカーバイドが著しく強度低下することである。
In other words, in the conventional sintering method, the tungsten carbide and diamond powder are integrated, so the temperature and
There was a limit to sintering by varying the pressure. The first reason is that if the temperature is raised too high, the cobalt in the tungsten carbide will be absorbed by the diamond powder, resulting in a significant decrease in the strength of the tungsten carbide.

第二の理由は、温度を上げてコバルトの移動を押えるに
は圧力をかなり上昇させなければならず、高圧容器の寿
命が短くなってしまうことである。
The second reason is that increasing the temperature and suppressing the movement of cobalt requires a significant increase in pressure, which shortens the life of the high-pressure vessel.

その点、この発明において砥粒となるダイヤモンド塊体
用のダイヤモンド焼結体は、ダイヤモンド粉末のみの焼
結でよい。したがって、上記の問題を一切考慮に入れる
必要がなく、かなり自由に温度、圧力を変化させること
ができる。さらに、同一装置内でタングステンカーバイ
ドの部分をダイヤモンド粉末で置き換えられるので、よ
り大きなダイヤモンド焼結体を合成することが可能とな
る。
In this respect, the diamond sintered body for the diamond mass serving as the abrasive grain in the present invention may be sintered with only diamond powder. Therefore, there is no need to take any of the above problems into account, and the temperature and pressure can be changed quite freely. Furthermore, since the tungsten carbide portion can be replaced with diamond powder in the same device, it is possible to synthesize larger diamond sintered bodies.

しかして、このようなダイヤモンド焼結体を粉砕するこ
とにより、それが鋭利かつ強度の高い粒状多結晶ダイヤ
モンドとなるのである。
By pulverizing such a diamond sintered body, it becomes sharp and strong granular polycrystalline diamond.

そこで、このようにして得られる粒状多結晶状のダイヤ
モンド環体を粉砕し、そしてそれを例えば2mm〜2.
5 mfi砥粒として第1図乃至第4図に示すように執
チップlを作り、このチップ1を複数個並べて鋼製台金
2にロー付けしてホイール3を作成した。そして、この
ホイール3に対して、矢印A方向から耐火レンガWを台
車4を用いて送り、かつホイール3を回転させつつ矢印
B方向に切込ませた。
Therefore, the granular polycrystalline diamond ring obtained in this manner is crushed and then cut into pieces of, for example, 2 mm to 2 mm.
As shown in FIGS. 1 to 4, abrasive chips 1 were made using 5 mfi abrasive grains, and a plurality of these chips 1 were lined up and brazed to a steel base metal 2 to create a wheel 3. Then, the refractory bricks W were sent to this wheel 3 from the direction of arrow A using a trolley 4, and cut in the direction of arrow B while rotating the wheel 3.

そうしたところ、第8図および第9図に示すような予想
通りの満足な結果が得られた。
As a result, the expected and satisfactory results as shown in FIGS. 8 and 9 were obtained.

なお、ダイヤモンドホイールは前記のものの他、50〜
も6番の人工ダイヤモンドを用いたホイール(直径20
0朋)も比較のため併せて試験を行った。
In addition to the above-mentioned diamond wheels, 50~
Wheels made of No. 6 artificial diamonds (diameter 20
0) was also tested for comparison.

被削材は炭硅質耐火レンガで、機械条件はホイールの周
速v = 850 m / rrfvr、切込f = 
1 mm、被削材の送りf=200mm/―で冷却水を
用いt載式切断である。
The workpiece material is anthracite firebrick, and the mechanical conditions are: wheel peripheral speed v = 850 m / rrfvr, depth of cut f =
1 mm, feed of the work material f = 200 mm/-, and T-mount cutting using cooling water.

被削材の研削された量を横軸とし、ダイヤモンド層部(
長さ3龍)に対する摩耗量を縦軸とすると第8図の如く
焼結体を砕いた砥粒を用いたホイールは極めて少ない摩
耗を示す。又、これを負荷でみると第9図の如く正味脚
力も又変動中が小さい。
The horizontal axis represents the amount of workpiece material ground, and the diamond layer (
If the vertical axis is the amount of wear with respect to the length (3 mm), then as shown in Fig. 8, a wheel using abrasive grains made from crushed sintered bodies exhibits extremely little wear. Also, when looking at this in terms of load, as shown in Figure 9, the net leg force is also small during fluctuations.

従って、破砕焼結体を用いる場合は長寿命且小馬力(切
味の良い)ホイールといえる。
Therefore, when a crushed sintered body is used, it can be said that the wheel has a long life and low horsepower (good sharpness).

これは、チップlの次のような特徴が生かされたからで
ある。すなわち、高温高圧下で焼結した物は、微粉末(
1〜10μ)のダイヤモンド集合体であり、個々の微粉
末粒子には璧開面はあっても、多結晶体であるため、焼
結体としては璧開面がないという点である。
This is because the following characteristics of the chip I were utilized. In other words, materials sintered under high temperature and high pressure are fine powders (
It is a diamond aggregate of 1 to 10μ), and although each fine powder particle has a crystallographic face, since it is a polycrystalline body, the sintered body does not have a crystallographic face.

これらの結果、粗粒の耐火物、アルミナ、陶磁器等の研
削にきわめて適し、ホイール寿命は従来品より3倍以上
延びることが確認できた。
These results confirmed that the wheel is extremely suitable for grinding coarse refractories, alumina, ceramics, etc., and the wheel life is more than three times longer than conventional products.

ところで、チップ作成に際しては焼結ダイヤモンドを粉
砕したダイヤモンド環体は結合材によって結合しなけれ
ばならないが、このときには高温処理が不可欠である。
By the way, when making a chip, diamond ring bodies made by crushing sintered diamond must be bonded using a bonding material, and high-temperature treatment is essential at this time.

ところが、この高温処理中にダイヤモンド環体の表面が
一部黒鉛化し、そのダイヤモンド環体の保持力が低下す
ることが判明した。この発明において使用しているダイ
ヤモンド粒子は1〜10μの超微粒子の焼結体であるた
めに、粉砕したダイヤモンド塊体表面の超微粒ダイヤモ
ンドは700〜800℃の温度で黒鉛化が始まる。
However, it was found that during this high-temperature treatment, the surface of the diamond ring was partially graphitized, reducing the holding power of the diamond ring. Since the diamond particles used in this invention are sintered bodies of ultrafine particles of 1 to 10 μm in size, the ultrafine diamond particles on the surface of the crushed diamond mass begin to graphitize at a temperature of 700 to 800°C.

そこで、粉砕した多結晶のダイヤモンド環体にメッキ等
のフーテイシ“グを施して、黒鉛化の防止を図った。金
属等のコーティング?施す方法としては気相メッキ(P
VD、CVD等)、湿式メッキ(無電解メッキ)等が可
能であるが、生産性の面からは無電解メッキが好ましい
。コーテイング物質としては耐熱性、コーディングの容
易さからニッケルあるいはコバルトまたはこれらの合金
が良く、コーティングの厚さは被覆欠陥のなくなる1μ
以上が好ましい。
Therefore, the crushed polycrystalline diamond ring was subjected to foot marking such as plating to prevent graphitization.The method for applying metal coating is vapor phase plating (P
VD, CVD, etc.), wet plating (electroless plating), etc. are possible, but electroless plating is preferable from the viewpoint of productivity. Nickel, cobalt, or their alloys are preferred as coating materials due to their heat resistance and ease of coating, and the coating thickness is 1μ to avoid coating defects.
The above is preferable.

この結果、ダイヤモンド環体の温度を900°C〜10
00°Cに上げても短時間ならば黒鉛化を完全に防止す
ることができた。しかも、この超微粒ダイヤモンドの唯
一の欠点である黒鉛化防止により高温焼結の金属硬質結
合剤が使用可能となり、工具としての寿命を延ばすこと
に成功した。
As a result, the temperature of the diamond ring was increased from 900°C to 10°C.
Graphitization could be completely prevented even if the temperature was raised to 00°C for a short time. Furthermore, by preventing graphitization, which is the only drawback of ultrafine diamond, it became possible to use a hard metal binder sintered at high temperatures, successfully extending the life of the tool.

コーティングの効果を明記すると次のようにな・る0 ィ)黒鉛化防止。The effect of the coating is specified as follows.ru0 b) Prevention of graphitization.

口)結合材との接着力向上。口)Improved adhesive strength with binding materials.

ハ)イ)と口)の結果としての保持力の強化。c) Strengthening of retention as a result of b) and mouth).

更に、このようなコーティング効果の一層の向上のため
には、湿式メッキを施した後、第二層目に■、■、■族
金属の硼化物、炭化物、窒化物等の気相メッキを従来技
術のPVDまたはCVDによって行なうことが望ましい
Furthermore, in order to further improve such coating effects, after wet plating, vapor phase plating of borides, carbides, nitrides, etc. of group metals such as ■, ■, and ■ group metals is used as the second layer. Preferably, this is done by the techniques PVD or CVD.

そこで、ダイヤモンド環体の無電解メッキに金属被覆を
施す方法の一例を挙げる。
Therefore, an example of a method of applying a metal coating to electroless plating of a diamond ring will be described.

ダイヤモンド環体(粒径1〜3rnml→感受化処理(
日本カニゼン社、ピンクシューマー(商品名枦 10倍液、常温5分)→水洗→活性化処理(日本カニゼ
ン社、レッドシューマー(商品名)5倍液、常温5分)
→水洗→N1メッキ(日本カニゼン社、5B−55(商
品名)60″C,20分)→水洗→乾燥。
Diamond ring (particle size 1~3rnml → sensitization treatment (
Nippon Kanigen Co., Ltd., Pink Schumer (product name: 10x liquid, room temperature 5 minutes) → Washing with water → Activation treatment (Japan Kanigen Co., Ltd., Red Schumer (product name) 5x liquid, 5 minutes at room temperature)
→ Wash with water → N1 plating (Nippon Kanizen Co., Ltd., 5B-55 (product name) 60″C, 20 minutes) → Wash with water → Dry.

以上説明したように、この発明に係る硬脆材料加工用ホ
イールにおけるチップは、高温高圧下で合成されたダイ
ヤモンド焼結体を粉砕して、これを粒状ダイヤモンド環
体としたものを砥粒として用いているから、優れた性能
を発揮し、しかも制作が容易である等の効果を有する。
As explained above, the chip in the wheel for machining hard and brittle materials according to the present invention uses as abrasive grains obtained by pulverizing a diamond sintered body synthesized under high temperature and high pressure to form granular diamond rings. Because of this, it exhibits excellent performance and is easy to manufacture.

次に実施例によって本発明の内容を具体的に説明する。Next, the content of the present invention will be specifically explained with reference to Examples.

〈実施例1〉 平均粒径:1μの人工ダイヤモンド微粉末と平均粒径:
0.1μのコバルト粉末を原料粉末として使い、通常の
方法にてコバルト粉末=8容量%(以下、%は容量%)
と人工ダイヤモンド微粉末および不可避不純物:残部か
らなる混合粉末を混合し、圧粉体とし、これを温度:1
50C1’C1圧力=60kb、保持時間:30分の条
件にて高圧焼結を行い、直径=15關、厚さ:10mm
のダイヤモンド焼結体を得、これをアトライターによっ
て粉砕して平均粒径:2mmのダイヤモンド環体を得た
。そして、このダイヤモンド環体を砥粒とし、通常のチ
ップと同様に銅、錫および鉄を結合剤として、温度ニア
11)0℃、圧カニ3oo’gt、保持時間:5分の条
件にて加圧焼結し、長さ:30mm、巾:a5mm、厚
さ=3關のチップを作成した。次に、第1図および第2
図に示すように、研削チップ1として前記チップを鋼製
台金2にその周方向に沿って等間隔にロー付けして、下
記のようなホイール3を作成し、試験に供した。
<Example 1> Average particle size: 1μ artificial diamond fine powder and average particle size:
Using 0.1μ cobalt powder as a raw material powder, cobalt powder = 8% by volume (hereinafter, % is % by volume) using the usual method.
and artificial diamond fine powder and unavoidable impurities: A mixed powder consisting of the remainder is mixed to form a compact, and this is heated at a temperature of 1
50C1'C1 High pressure sintering was performed under the conditions of pressure = 60 kb, holding time: 30 minutes, diameter = 15 mm, thickness: 10 mm.
A diamond sintered body was obtained, and this was crushed by an attritor to obtain a diamond ring having an average particle size of 2 mm. Then, using this diamond ring as an abrasive grain and using copper, tin, and iron as a binder in the same way as a normal chip, the temperature was 11) 0°C, the pressure crab was 3oo'gt, and the holding time was 5 minutes. A chip having a length of 30 mm, a width of 5 mm, and a thickness of 3 mm was produced by pressure sintering. Next, Figures 1 and 2
As shown in the figure, the above-mentioned grinding chips 1 were brazed to a steel base metal 2 at equal intervals along the circumferential direction to create a wheel 3 as described below, and the wheel 3 was subjected to a test.

ホイールの形:カップ型の研削砥石 チップの取付は数: 12個 ホイールの外径:200.。Wheel shape: cup-shaped grinding wheel Number of chips installed: 12 pieces Wheel outer diameter: 200. .

試験として、第3図に示すように耐火レンガWを台車4
に乗せて矢印Aの方向に移動させ、第4図に示すように
ホイール3を矢印Bの方向に切込ませて、次の条件で研
削を行った。
As a test, the refractory bricks W were placed on a trolley 4 as shown in Figure 3.
Grinding was carried out under the following conditions by placing it on the machine and moving it in the direction of arrow A, and cutting the wheel 3 in the direction of arrow B as shown in FIG.

ホイールの周速=85am7min 切込み:1間 被削材送り速度:  20 Oram/1nittこの
試験の結果、本発明のチップは摩耗量が従来のものに比
して%程度に減少することが確認できた。
Wheel circumferential speed = 85 am 7 min Depth of cut: 1 Work material feed rate: 20 Oram/1 nit As a result of this test, it was confirmed that the amount of wear of the tip of the present invention was reduced by about % compared to the conventional tip. .

〈実施例2〉 平均粒径:2μの人工ダイヤモンド微粉末と平均粒径:
0.1μのニッケル粉末を原料粉末として使い、通常の
方法にてニッケル粉末二8%と人工ダイヤモンド微粉末
および不可避不純物:残部からなる混合粉末を混合し、
圧粉体とし、これを温度:1450°C1圧力ニ60k
b1保持時間:60分の条件にて焼結を行い、直径:1
5朋、厚さ210mmのダイヤモンド焼結体を得、これ
を了トライターによって粉砕して平均粒径: 2,5 
mmのダイヤモンド載体を得た。そして、このダイヤモ
ンド載体に無電解メッキ法により内層二ニッケル層05
μ、外層:コバルト層0.5μの複層コーティングを施
し、それからこのようにして金属コーティングを施した
ダイヤモンド載体を砥粒とし、通常のチップと同様に銅
、錫および鉄を結合剤として、温度:900°C1圧カ
ニ650〜、保持時間ニア分の条件にて加圧焼結し、長
さ: ” 01nm %巾*3IIIrls高さニア罷
のチップを作成した。次に、第5図および第6図に示し
たように、研削チップ1′として前記チップを鋼製台金
2′にその周方向に沿って等間隔にロー付けし、下記の
ようなホイール3′を作成し、試験に供した。
<Example 2> Average particle size: 2μ artificial diamond fine powder and average particle size:
Using 0.1μ nickel powder as a raw material powder, a mixed powder consisting of 28% nickel powder, artificial diamond fine powder, and the remainder of unavoidable impurities is mixed in the usual manner.
A compacted powder is heated to a temperature of 1450°C and a pressure of 60k.
Sintering was performed under conditions of b1 holding time: 60 minutes, diameter: 1
5, a diamond sintered body with a thickness of 210 mm was obtained, and this was crushed with a Ryotater to give an average particle size of 2.5 mm.
A diamond support of mm was obtained. Then, two inner nickel layers 05 are applied to this diamond support by electroless plating.
μ, outer layer: A multi-layer coating of 0.5μ cobalt layer is applied, and then the metal-coated diamond support is used as abrasive grains, and copper, tin, and iron are used as binders in the same way as with normal chips, and the temperature Pressure sintering was carried out under the conditions of: 900°C, 1 pressure 650°C and a holding time of about 1 minute to create a chip with a length of 01 nm and a width of 3% and a height of about 300 cm. As shown in Fig. 6, the chips used as the grinding chips 1' were brazed to a steel base metal 2' at equal intervals along the circumferential direction, and a wheel 3' as shown below was prepared and used for testing. did.

ホイールの形:セグメント型 チップの取付は数: 28個 ホイールの外径:400mm 試験として、第7図に示すように耐火レンガWを台車4
に乗せて矢印Aの方向に移動させ、湿式にて下記の条件
で切断を行った。
Wheel shape: Segment type Number of chips installed: 28 Wheel outer diameter: 400 mm As a test, refractory bricks W were placed on a trolley 4 as shown in Figure 7.
The specimen was moved in the direction of arrow A, and wet cutting was performed under the following conditions.

ホイールの周速: 1380771/m切   込  
み:120mm 被削材送り速度:500Hm/龍 この試験の結果、本発明のチップは摩耗量が従来のもの
に比して1/3程度に減少することが確認できた。
Wheel peripheral speed: 1380771/m depth of cut
As a result of this test, it was confirmed that the wear amount of the tip of the present invention was reduced to about 1/3 compared to the conventional tip.

〈実施例3〉 平均粒径:3μの人工ダイヤモンド微粉末と平均粒径:
0.1μのコバルト粉末と平均粒径:01μのニッケル
粉末を原料粉末として使い、通常の方法にてコバルト粉
末:5%とニッケル粉末:3%と人工ダイヤモンド微粉
末および不可避不純物:残部からなる混合粉末を混合し
、圧粉体とし、これを温度:1550°C1圧力=65
kb1保持時間=40分の条件にて焼結を行い、直径=
15mms厚さ:10關のダイヤモンド焼結体を得、こ
れを了トライターによって粉砕して平均粒径:2羽のダ
イヤモンド載体を得た。そして、このダイヤモンド載体
に実施例2と同じニッケルとコバルトの複層コーティン
グを施し、その上にさらにPVDによってTiC:1μ
の被覆を行い、それからこのようにして金属およびTi
Cの複合コーティングを施した!イヤモンド環体を砥粒
とし、通常のチップと同様に銅、錫および鉄を結合材と
して、温度=950°C1圧カニ300′Yl’、保持
時間:10分の条件にて加圧焼結し、長さ:30關、巾
5.5 mm %厚さ:5mmのチップを作成した。次
に、このチップを使って、実施例1の場合と同様のホイ
ールを作成し、試験に供した。
<Example 3> Average particle size: 3μ artificial diamond fine powder and average particle size:
Using cobalt powder of 0.1μ and nickel powder of average particle size: 01μ as raw material powders, a mixture consisting of 5% cobalt powder, 3% nickel powder, artificial diamond fine powder, and the balance of unavoidable impurities is prepared in the usual manner. The powders are mixed to form a green compact, which is heated to a temperature of 1550°C and a pressure of 65.
Sintering was performed under the conditions of kb1 holding time = 40 minutes, diameter =
A diamond sintered body with a thickness of 15 mms: 10 mm was obtained, and this was crushed by a grinder to obtain a diamond-bearing body with an average particle size of 2 blades. Then, the same multilayer coating of nickel and cobalt as in Example 2 was applied to this diamond support, and on top of that, TiC: 1 μm was coated by PVD.
and then coat the metal and Ti in this way.
C composite coating applied! Diamond rings were used as abrasive grains, copper, tin and iron were used as binders in the same way as for ordinary chips, and pressure sintered at a temperature of 950°C, 1 pressure crab of 300'Yl', and a holding time of 10 minutes. A chip having a length of 30 mm, a width of 5.5 mm, and a thickness of 5 mm was prepared. Next, using this chip, a wheel similar to that in Example 1 was created and subjected to a test.

試験として、下記の条件で実施例1と同様の研削を行っ
た。
As a test, the same grinding as in Example 1 was performed under the following conditions.

ホイールの周速:1500m/闇 切   込   み:  5mm 被削材送り速度:500/馴 この試験の結果、本発明のチップは耐摩性が従来のもの
に比して%程度に減少することを確認できた0 〈試験例4〉 ダイヤモンド微粉体:1〜10μ コバルト:5〜・10vod % ダイヤモンド焼結体の焼結条件 温度:1450〜1650℃ 圧カニ55kb〜70kb 焼結時間:30分 このような焼結条件下にて、直径15グ、厚み5〜10
翻のダイヤモンド環体を得、これをアトライターによっ
て粉砕して大きさが1〜3mmのダイヤモンド粒子を得
た。そして、このダイヤモンド粒子を砥粒とし、金属粉
末分納合剤として下記の条件下で高温焼結し、チップの
大きさが長さ30m’Rz輻55u1高さ3mmのカッ
プ形ダイヤモンドチップを成した。
Wheel circumferential speed: 1500m/Dark depth of cut: 5mm Work material feed rate: 500/Tensing test results confirmed that the wear resistance of the tip of the present invention was reduced by approximately % compared to the conventional tip. 0 <Test Example 4> Diamond fine powder: 1~10μ Cobalt: 5~・10vod% Sintering conditions for diamond sintered body Temperature: 1450~1650℃ Pressure crab 55kb~70kb Sintering time: 30 minutes Like this Under sintering conditions, diameter 15g, thickness 5-10
A round diamond ring was obtained, which was crushed by an attritor to obtain diamond particles having a size of 1 to 3 mm. The diamond particles were used as abrasive grains and used as a metal powder dispensing agent and sintered at high temperature under the following conditions to form a cup-shaped diamond chip having a length of 30 m'Rz 55u1 and a height of 3 mm.

焼結条件 温度ニア00℃ 圧力=300〜 焼結時8:5分 このようにして成したダイヤモンドチップを図示したよ
うな鋼製台金2に、その周方向に沿って等間隔的に並べ
て取付けた。
Sintering conditions Temperature near 00℃ Pressure = 300 ~ 8:5 minutes during sintering The diamond chips made in this way are mounted on a steel base metal 2 as shown in the figure at equal intervals along its circumferential direction. Ta.

ホイールの形状二カップ型 ダイヤモンドチップの取付は数(N):12個ダイヤモ
ンドチップの取付は位置:ホイールの回転中心から距離
ioo朋離れた位置。
Shape of the wheel Two-cup type Diamond tips are installed in the number (N): 12 Diamond tips are installed in the position: Ioo distance from the center of rotation of the wheel.

そして、このようにダイヤモンドチップを取付けたホイ
ールを速度8507H/ mMの周速で回転させ、図示
したような台車4を用いて耐火レンガの研削を行なった
Then, the wheel to which the diamond chip was attached was rotated at a circumferential speed of 8507 H/mM, and the refractory bricks were ground using a cart 4 as shown.

ホイール周M : V=+850 HH/m’vt研削
速度:切込みt二UmmX被削材送りf二2000關/
騙 以上のような試験の結果、本発明のホイールの摩耗量が
従来のものに比して1/3程度に減少することが確認で
きた。
Wheel circumference M: V=+850 HH/m'vt Grinding speed: Depth of cut t2 UmmX Work material feed f2 2000/
As a result of the above tests, it was confirmed that the amount of wear of the wheels of the present invention was reduced to about 1/3 compared to conventional wheels.

〈試験例5〉 ダイヤモンド焼結体の組成 人工ダイヤモンド微粉体:1〜10μ ニッケル:5〜jOvoe% ダイヤモンド焼結体の焼結条件 温度:145C1〜1650℃ 圧カニ55kb〜70kb ′焼結時M:30分 このような焼結条件下にて、直径15グ、厚み5〜10
mmのダイヤモンド環体を得、これ分アトライターによ
って粉砕して大きさが1〜3mmのダイヤモンド粒子を
得た。
<Test Example 5> Composition of diamond sintered body Artificial diamond fine powder: 1~10μ Nickel: 5~jOvoe% Sintering condition temperature of diamond sintered body: 145C1~1650℃ Pressure crab 55kb~70kb 'M during sintering: Under these sintering conditions for 30 minutes, a diameter of 15 grams and a thickness of 5 to 10
A diamond ring having a diameter of 1 mm was obtained, and the diamond ring was crushed by an attritor to obtain diamond particles having a size of 1 to 3 mm.

その後、このダイヤモンド粒子に、湿式法によるコーテ
ィングを施した。
The diamond particles were then coated using a wet method.

コーティング材料二N1、C。Coating material 2N1,C.

コーティングの厚さ:約1μ そねから、このようなダイヤモンド粒子を砥粒とし、金
属粉末を結合剤として下記の条件下で高温焼結し、大き
さが長さくL)40mm、厚さくT)3mms 幅(X
 ) 7mmのダイヤモンドチップ2成したO 焼結条件 温度ニア00°C 圧カニ3[10Yj 焼結時間:5分 このようにして成したダイヤモンドチップを図示したよ
うな鋼製台金2に、その周方向に沿って等間隔的に並べ
て取付けた。
Coating thickness: approx. 1μ After that, these diamond particles were used as abrasive grains and metal powder was used as a binder and sintered at high temperature under the following conditions, and the size was 40 mm in length and T) in thickness. 3mms width (X
) A 7 mm diamond chip 2 was formed O Sintering conditions Temperature near 00°C Pressure crab 3 They were installed at equal intervals along the direction.

ホイールの形:セグメント型 チップの取付は数:28個 ホイールの外径:400mm そして、このようにダイヤモンドチップを取付けたホイ
ールを回転させ、図示したような台車3を用いて下記の
ような条件で耐火レンガの研削を行なった。
Wheel shape: Segment type Number of chips installed: 28 Wheel outer diameter: 400 mm Then, the wheel with the diamond chips attached in this way was rotated, and using the cart 3 as shown in the figure, it was tested under the following conditions. Grinding of refractory bricks was carried out.

ホイールの周速:1580m/藤 切込み:120mm 被削材送り速度: 500 H/min・以上のような
試験の結果、本ダイヤモンド砥石の摩耗量が従来のもの
に比して%程度に減少することが確認できた。
Wheel circumferential speed: 1580 m/Water depth of cut: 120 mm Work material feed rate: 500 H/min As a result of the above tests, the amount of wear of this diamond grinding wheel was reduced by about % compared to conventional ones. was confirmed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面Gはこの発明の実施例・−1を示くじ7、第1図は
カップ型ホイールの横断面図、第2図はその拡大部分平
面図、第3図はその使用状態を示す概略側面図、第4図
はその使用状、Bをニー示す概略平面図である。また、
第5図はセグメント型ホイールの継断面図、第6図はそ
の拡大部分斜視図、第7図はその使用状態を示す概略側
面図、第8図および第9図は従来のホイールとこの発明
によるホイールとの性能の比較例を示す図である。 1.1′・・・・・チップ、2.2′・・・・・鋼製台
金、3.3′・・・・・ホイール、4・・・・・台車、
W・・・・・耐火レンガ。 第8図 被削#緋削i 被削#研削l
Drawing G shows Embodiment-1 of the present invention. Figure 1 is a cross-sectional view of a cup-shaped wheel, Figure 2 is an enlarged partial plan view thereof, and Figure 3 is a schematic side view showing its usage condition. , FIG. 4 is a schematic plan view showing its use. Also,
Fig. 5 is a joint cross-sectional view of a segment type wheel, Fig. 6 is an enlarged perspective view of the segment, Fig. 7 is a schematic side view showing its usage state, and Figs. 8 and 9 are a conventional wheel and a wheel according to the present invention. It is a figure which shows the comparative example of the performance with a wheel. 1.1'... Chip, 2.2'... Steel base metal, 3.3'... Wheel, 4... Dolly,
W... Firebrick. Fig. 8 Machining #Hikari i Machining #Grinding l

Claims (3)

【特許請求の範囲】[Claims] (1)  高温高圧下で合成されたダイヤモンド焼結体
を砕いた粒状ダイヤモンド環体を砥粒としたことを特徴
とする硬脆材料加工用ダイヤモンドホイール。
(1) A diamond wheel for machining hard and brittle materials, characterized in that the abrasive grains are granular diamond rings obtained by crushing a diamond sintered body synthesized under high temperature and high pressure.
(2)前記粒状ダイヤモンド環体に、金属メッキのコー
ティング層を形成した特許請求の範囲第1項記載の硬脆
材料加工用ダイヤモンドホイール。
(2) The diamond wheel for machining hard and brittle materials according to claim 1, wherein a metal plating coating layer is formed on the granular diamond ring body.
(3)前記粒状ダイヤモンド環体に、金属メッキのコー
ティング層を形成し、さらに硼化物、炭化物、1[物等
の非酸化物系セラミックスのコーティング層を形成した
特許請求の範囲第1項記載の硬脆材料加工用ダイヤモン
ドホイール。
(3) A coating layer of metal plating is formed on the granular diamond ring body, and a coating layer of non-oxide ceramics such as boride, carbide, 1[substance, etc.] is further formed on the granular diamond ring body. Diamond wheel for machining hard and brittle materials.
JP58024383A 1983-02-16 1983-02-16 Diamond wheel for working hard fragile material Pending JPS59152065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024383A JPS59152065A (en) 1983-02-16 1983-02-16 Diamond wheel for working hard fragile material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024383A JPS59152065A (en) 1983-02-16 1983-02-16 Diamond wheel for working hard fragile material

Publications (1)

Publication Number Publication Date
JPS59152065A true JPS59152065A (en) 1984-08-30

Family

ID=12136655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024383A Pending JPS59152065A (en) 1983-02-16 1983-02-16 Diamond wheel for working hard fragile material

Country Status (1)

Country Link
JP (1) JPS59152065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103266A (en) * 1986-10-16 1989-04-20 General Electric Co <Ge> Coated oxidation-resistant porous abrasive molded form and manufacture thereof
JP2004322281A (en) * 2003-04-28 2004-11-18 Kurosaki Harima Corp Grinding method of furnace inner surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141746A (en) * 1960-10-03 1964-07-21 Gen Electric Diamond compact abrasive
JPS50153387A (en) * 1974-05-29 1975-12-10
JPS544155U (en) * 1978-05-30 1979-01-11
JPS55112772A (en) * 1978-12-18 1980-08-30 De Beers Ind Diamond Pellet of abrasive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141746A (en) * 1960-10-03 1964-07-21 Gen Electric Diamond compact abrasive
JPS50153387A (en) * 1974-05-29 1975-12-10
JPS544155U (en) * 1978-05-30 1979-01-11
JPS55112772A (en) * 1978-12-18 1980-08-30 De Beers Ind Diamond Pellet of abrasive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103266A (en) * 1986-10-16 1989-04-20 General Electric Co <Ge> Coated oxidation-resistant porous abrasive molded form and manufacture thereof
JP2616936B2 (en) * 1986-10-16 1997-06-04 ゼネラル・エレクトリック・カンパニイ Coated oxidation-resistant porous abrasive moldings and process for producing the same
JP2004322281A (en) * 2003-04-28 2004-11-18 Kurosaki Harima Corp Grinding method of furnace inner surface

Similar Documents

Publication Publication Date Title
JP3238007B2 (en) Manufacturing method of abrasive compact
JP3472622B2 (en) Method for producing abrasive molded body
CA2164494C (en) Abrasive body
JP2004505786A (en) Manufacturing method of polishing products containing diamond
JP5268908B2 (en) Abrasive compact
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
CN101341268A (en) Cubic boron nitride compact
BR112013005026B1 (en) abrasive article and method for forming an abrasive article
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
JPH02160429A (en) Super-abrasive cutting element
IE861487L (en) Diamond compact
JPH0579735B2 (en)
JPH0443874B2 (en)
AU2011231729B2 (en) Aggregate abrasives for abrading or cutting tools production
JPS59152065A (en) Diamond wheel for working hard fragile material
JPS6158432B2 (en)
JP3038439B2 (en) Cutting, grinding and polishing tools using composite diamond grains
JPS5819737B2 (en) High hardness sintered body for tools and its manufacturing method
JPS6310119B2 (en)
JPH04294977A (en) Diamond grinding wheel
JPH0116894B2 (en)
JPH0450271B2 (en)
JPS623111B2 (en)