JPH0116894B2 - - Google Patents
Info
- Publication number
- JPH0116894B2 JPH0116894B2 JP63063446A JP6344688A JPH0116894B2 JP H0116894 B2 JPH0116894 B2 JP H0116894B2 JP 63063446 A JP63063446 A JP 63063446A JP 6344688 A JP6344688 A JP 6344688A JP H0116894 B2 JPH0116894 B2 JP H0116894B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- boron nitride
- volume
- cbn
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 71
- 229910052582 BN Inorganic materials 0.000 claims description 59
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 54
- 238000005245 sintering Methods 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 25
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 23
- 239000010936 titanium Substances 0.000 claims description 23
- 229910052719 titanium Inorganic materials 0.000 claims description 23
- 239000000654 additive Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 11
- 230000000996 additive effect Effects 0.000 claims description 10
- 150000004767 nitrides Chemical class 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims description 4
- 229910033181 TiB2 Inorganic materials 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims 1
- 238000005520 cutting process Methods 0.000 description 40
- 239000000463 material Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 13
- 238000011282 treatment Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000002775 capsule Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910003468 tantalcarbide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000000399 optical microscopy Methods 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- -1 tantalum carbides Chemical class 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は高硬度焼結体の製造法に関し、比較的
低い焼結圧力及び温度でも製造することが出来、
得られた高硬度焼結体は、特に高硬度の鋼材を高
速度で切削したり、鋳鉄、鋳鋼及び軟鋼などを従
来の工具では不可能とされるものでも高能率で切
削したりする為の工具用素材として、又、各種材
料との接触面や摩擦面に用いて長時間摩耗に耐え
る耐摩耗材として用いられるものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a high-hardness sintered body, which can be manufactured even at relatively low sintering pressure and temperature,
The obtained high-hardness sintered body can be used to cut particularly hard steel materials at high speeds, and to cut cast iron, cast steel, and mild steel with high efficiency even when it is impossible with conventional tools. It is used as a material for tools and as a wear-resistant material that can withstand long-term wear by being used on contact surfaces and friction surfaces with various materials.
<従来の技術>
従来立方晶系窒化ホウ素(以後CBNとする)
及び/又はウルツ鉱型窒化ホウ素(以後WBNと
する)を含有する焼結体は公知であり、これらを
主成分として含有する切削工具又は研削材は、こ
れらを含有しないものに比して高能率で切削でき
かつ耐摩耗性を有することから最近急速にその利
用が拡大されてきた。<Conventional technology> Conventional cubic boron nitride (hereinafter referred to as CBN)
Sintered bodies containing and/or wurtzite boron nitride (hereinafter referred to as WBN) are known, and cutting tools or abrasive materials containing these as main components have higher efficiency than those that do not contain them. Recently, its use has been rapidly expanding because it can be cut with abrasion and has wear resistance.
まずCBN及び又はWBN(以後高圧相窒化ホウ
素と総称する)を含む焼結体の製造法に関して開
示されている先行文献についてのべる。 First, we will discuss prior documents that have been disclosed regarding methods for manufacturing sintered bodies containing CBN and/or WBN (hereinafter collectively referred to as high-pressure phase boron nitride).
特公昭39−8948号公報にはCBNのみ又は3乃
至30重量%の酸化アルミニウム、ベリリウム、タ
ングステン、モリブデン、ニツケル、銅、クロ
ム、マンガン、チタニウムの中から選ばれた添加
物をCBNに添加したものからなるCBNの粒子同
士が結合した焼結体の製造法が記載されている。 Japanese Patent Publication No. 39-8948 discloses CBN alone or CBN with 3 to 30% by weight of an additive selected from aluminum oxide, beryllium, tungsten, molybdenum, nickel, copper, chromium, manganese, and titanium. A method for manufacturing a sintered body in which CBN particles are bonded together is described.
また、特開昭49−44014号公報には、WBNと
セラミツクとからなる焼結体とその製造法が記載
され、WBNの量が多い場合にはWBNの連続し
た相が、セラミツクの量が多い場合にはセラミツ
クの連続した相が得られるとされている。また任
意成分としてアルミニウム、ニツケル等の金属で
WBNを被覆することが好ましいとしている。 Furthermore, JP-A No. 49-44014 describes a sintered body made of WBN and ceramic and a method for producing the same. In some cases, a continuous phase of ceramic is said to be obtained. In addition, metals such as aluminum and nickel can be used as optional components.
It is said that coating with WBN is preferable.
また、特開昭50−82689号公報には、CBN、ダ
イヤモンド及びそれらの混合物から選択される研
摩材粒子について記載されており、研摩材粒子と
してのCBNに関してはアルミニウム、鉛、スズ、
マグネシウム、リチウム、及びそれらの合金から
選ばれた溶剤物質とホウ化物、窒化物、ケイ化物
などの耐化物で接着して研摩成形体としたものが
記載されている。 Furthermore, JP-A-50-82689 describes abrasive particles selected from CBN, diamond, and mixtures thereof, and regarding CBN as abrasive particles, aluminum, lead, tin,
It is described that an abrasive molded article is formed by adhering a solvent substance selected from magnesium, lithium, and alloys thereof with a resistant substance such as a boride, nitride, or silicide.
また、特開昭56−77359号公報には、CBN4〜
16体積%およびWBN96〜84体積%からなる高圧
相窒化ホウ素を15〜60体積%含有し、窒化物、酸
化物、ホウ化物および炭化物からなる群から選ば
れた1種または2種以上のセラミツク物質70〜95
体積%とニツケル、コバルト、クロム、マンガ
ン、鉄、モリブデン、タングステン、バナジウ
ム、アルミニウム、マグネシウム、ケイ素、チタ
ン、ジルコニウムおよびハフニウムから選ばれた
1種または2種以上の金属からなる焼結体の製造
法が記載されていて、得られた焼結体は焼結後の
加工が容易であるという特徴を有するとしてい
る。 Also, in Japanese Patent Application Laid-open No. 56-77359, CBN4~
One or more ceramic materials selected from the group consisting of nitrides, oxides, borides, and carbides, containing 15 to 60 volume % of high-pressure phase boron nitride consisting of 16 volume % and WBN 96 to 84 volume %. 70-95
Volume % and method for manufacturing a sintered body made of one or more metals selected from nickel, cobalt, chromium, manganese, iron, molybdenum, tungsten, vanadium, aluminum, magnesium, silicon, titanium, zirconium, and hafnium It is stated that the obtained sintered body is characterized by being easy to process after sintering.
更に、特公昭57−49621号公報には、CBN80〜
20体積%、周期率表第4a、5a、6a族遷移金属の
炭化物、窒化物、ホウ化物、ケイ化物もしくはこ
れらの混合物または相互固溶体化合物を第1の結
合相とし、アルミニウム、ケイ素、ニツケル、コ
バルト、鉄または、これらを含む合金、化合物を
第2の結合相として、該第1、第2の結合相が焼
結体組織中で連続した結合相をなす高硬度工具用
焼結体の製造法が記載されている。 Furthermore, in Japanese Patent Publication No. 57-49621, CBN80~
20% by volume, carbides, nitrides, borides, silicides, or mixtures thereof or mutual solid solution compounds of transition metals of groups 4a, 5a, and 6a of the periodic table as the first binder phase, and aluminum, silicon, nickel, cobalt. , iron, or an alloy or compound containing these as a second binder phase, and the first and second binder phases form a continuous binder phase in the sintered body structure. is listed.
<発明が解決しようとする問題点>
然し前述の各公報に開示されている焼結体の製
造法には次のようになお実用上の問題点を有して
いる。<Problems to be Solved by the Invention> However, the methods for producing sintered bodies disclosed in the above-mentioned publications still have the following practical problems.
即ち、特公昭39−8948号公報記載の方法は、
CBNのみからなる焼結体の場合、CBNは高温で
の強度が非常に高い為に、焼結しようとする場合
極めて高い圧力と温度例えば約90000気圧で2100
℃を加えなければならず、焼結する為の超高圧高
温装置に対する負荷が非常に大きくなり、装置の
寿命が極めて短く、事実上工業的に製造しようと
すると採算が成り立たない。 That is, the method described in Japanese Patent Publication No. 39-8948 is as follows:
In the case of a sintered body made only of CBN, CBN has extremely high strength at high temperatures, so when attempting to sinter it, it must be sintered at an extremely high pressure and temperature of about 90,000 atm.
℃, the load on the ultra-high pressure and high temperature equipment for sintering is extremely large, and the life of the equipment is extremely short, making it practically unprofitable to manufacture it industrially.
又CBNに添加物を加えた焼結体の製造法が記
載されているが添加物が金属である場合、金属は
高温では強度が低く、切削工具のように使用時に
高温と大きな応力に耐えなければならない材料と
しては適当ではない。即ち単純にCBNと混合し
て焼結しただけでは好ましい焼結体は得られな
い。又添加物として酸化アルミニウムを用いた場
合、又は酸化アルミニウムを金属と共に添加した
焼結体もなおその性能は不充分であつた。 Also, a method for manufacturing a sintered body with additives added to CBN is described, but if the additive is metal, metal has low strength at high temperatures, and like cutting tools, it must withstand high temperatures and large stress during use. It is not suitable as an essential material. That is, a preferable sintered body cannot be obtained simply by mixing with CBN and sintering it. Furthermore, when aluminum oxide was used as an additive, or when aluminum oxide was added together with metal, the performance of the sintered body was still insufficient.
特開昭49−44014号公報に記載の焼結体の製造
法は、表面積の極めて大きいWBNにセラミツク
を添加して焼結することによつて得られるもので
ある。WBNは硬度焼結工具材料の原料として優
れた材料であるが、一般に爆薬の爆発衝撃で瞬時
に合成する為結晶成長を伴わず、個々のWBN粉
末粒子は数10nm程度の微小な結晶粒の集合体か
らなり、粉末粒自体の強度は単結晶より強くな
い。粒子を単結晶迄粉砕して使用すれば粒の強度
上の問題は解決するが、添加したセラミツクや金
属との接合界面の面積が増え、接合界面の強度は
当然WBN自体の強度より低いので、焼結体の強
度もより大きな単結晶を焼結した場合より低い。
即ち本公報記載の焼結体は強度に一定の限界があ
つた。 The method for manufacturing a sintered body described in JP-A-49-44014 is obtained by adding ceramic to WBN having an extremely large surface area and sintering the mixture. WBN is an excellent material as a raw material for hard sintered tool materials, but it is generally synthesized instantaneously by the impact of an explosive explosion, so there is no crystal growth, and each WBN powder particle is an aggregation of microcrystal grains on the order of tens of nanometers. The strength of the powder grain itself is not stronger than that of a single crystal. If the particles are crushed to a single crystal and used, the problem of particle strength can be solved, but the area of the bonding interface with the added ceramic or metal increases, and the strength of the bonding interface is naturally lower than the strength of the WBN itself. The strength of the sintered body is also lower than when larger single crystals are sintered.
That is, the sintered body described in this publication had a certain limit in strength.
また、特開昭50−82689号公報に開示の焼結体
の製造方法は、特許請求の範囲に示される添加物
の範囲が非常に広い。然し具体的な実施例として
は、添加物として32重量%のアルミニウムと68重
量%の窒化ケイ素を混合したもの19.5重量%を
80.5重量%のCBNに添加して焼結した例が示さ
れているだけである。また、各成分の粒子につい
ても、“好適には40ミクロン以下、一層好適には
12ミクロン以下にされる”と言う記載があるにす
ぎない。また、特許請求の範囲の記載によれば、
“それら(研摩材粒子…この場合CBN)を少なく
ともある限られた程度まで溶解し得る溶剤物質と
耐火物質とを含むマトリツクスによつて互いに接
着されたものを有することを特徴とする研摩成形
体”とあり、CBN粒子とCBN粒子の接合は溶剤
物質と耐火物質のマトリツクスを介して行われる
ことが理解される。然しこのものの硬度にも一定
の限界がある。 Furthermore, the method for producing a sintered body disclosed in Japanese Patent Application Laid-Open No. 50-82689 has a very wide range of additives as indicated in the claims. However, as a specific example, 19.5% by weight of a mixture of 32% by weight aluminum and 68% by weight silicon nitride was used as an additive.
Only an example in which CBN was added to 80.5% by weight and sintered is shown. In addition, regarding the particles of each component, "preferably 40 microns or less, more preferably 40 microns or less,
There is only a statement that ``the particle size is reduced to 12 microns or less''.Also, according to the claims,
“Abrasive compacts characterized in that they have abrasive particles adhered to one another by a matrix comprising a solvent substance and a refractory substance capable of dissolving them (abrasive particles…in this case CBN) at least to a limited extent” It is understood that the bonding between CBN particles is carried out through a matrix of a solvent substance and a refractory substance. However, there is a certain limit to the hardness of this material.
特開昭56−77359号公報に開示の発明は、CBN
とWBNとの両方を焼結体の出発原料として用い
る点に特徴があるが、焼結体中に含まれるCBN
とWBNとの合計量は15〜60体積%であり、CBN
粒子或いはWBN粒子同士又はCBN粒子とWBN
粒子の結合する点が非常に少ない。その為、焼結
体の硬度が低く、研削加工が容易であるという特
徴を示している。 The invention disclosed in Japanese Unexamined Patent Publication No. 56-77359 is a CBN
It is characterized in that both CBN and WBN are used as starting materials for the sintered body, but CBN contained in the sintered body
The total amount of and WBN is 15-60% by volume, and CBN
Particles or WBN particles or CBN particles and WBN
There are very few bonding points between particles. Therefore, the sintered body has low hardness and is easy to grind.
即ち本発明とする高硬度の焼結体の製造法は開
示されていない。 That is, a method for producing a highly hard sintered body according to the present invention is not disclosed.
特公昭57−49621号に開示の発明の特徴は、
CBN粒子同士の結合よりCBNが出来るだけ第1
及び第2の結合相によつて結合されるようにした
もので、それによつて優れた性質が得られるとし
ている。上記の結合相はCBN粒子の結合相とし
て非常に優れたものであり、この発明によつて得
られる焼結体も優れたものであるが、前述特公昭
56−77359号に開示の発明と同様にCBN粒子同士
の結合が非常に少ないことが予想され、その為に
焼結体としての強度もCBN同士の結合があるも
のより低く、従つて切削時の負荷が大きい切削や
衝撃が加わる切削には適さない。 The characteristics of the invention disclosed in Japanese Patent Publication No. 57-49621 are as follows:
CBN is more important than the bonds between CBN particles.
and a second bonding phase, which is said to provide excellent properties. The above-mentioned binder phase is very excellent as a binder phase for CBN particles, and the sintered body obtained by this invention is also excellent.
Similar to the invention disclosed in No. 56-77359, it is expected that there will be very little bonding between CBN particles, and therefore the strength of the sintered body will be lower than that of a sintered body that has bonds between CBN particles, and therefore it will be difficult to cut during cutting. Not suitable for cutting with heavy loads or impact.
上記の従来技術による焼結体の製造方法及び得
られた焼結体の性質をまとめると、以下のように
なる。 The method for manufacturing a sintered body according to the above-mentioned prior art and the properties of the obtained sintered body are summarized as follows.
1 強度の優れた高圧相窒化ホウ素焼結体をうる
ためには非常に高い圧力と温度が必要で、経済
的に不利である。1. Very high pressure and temperature are required to obtain a high-pressure phase boron nitride sintered body with excellent strength, which is economically disadvantageous.
2 添加物を高圧相窒化ホウ素と添加した場合、
製造条件は比較的緩やかであるが焼結体の強度
は不十分である。2 When the additive is added with high pressure phase boron nitride,
Although the manufacturing conditions are relatively gentle, the strength of the sintered body is insufficient.
3 従来のCBN及び又はWBNを含む焼結体、高
圧相窒化ホウ素粒子同士の接合を得ようとする
場合、非常に高い圧力と温度を加え、高圧相窒
化ホウ素の含有量を例えば70体積%を超える程
度に増やさねばならず、たゞ単に高圧相窒化ホ
ウ素の添加量を増しただけでは高圧相窒化ホウ
素粒子同士の接合は不十分である。3. When attempting to bond conventional sintered bodies containing CBN and/or WBN and high-pressure phase boron nitride particles, extremely high pressure and temperature are applied to reduce the content of high-pressure phase boron nitride to, for example, 70% by volume. However, simply increasing the amount of high-pressure phase boron nitride added is insufficient to bond the high-pressure phase boron nitride particles together.
従つて、製造コストが従来より低く、且つ焼結
体の強度が高いものを得る為には、例えば焼結圧
力が2万気圧以上というような低い圧力で、高圧
相窒化ホウ素粒子が変形して空隙を埋めるような
厳しい条件で焼結したものと同様に強固な焼結体
を得ることが要求されることになる。 Therefore, in order to obtain a sintered body with lower manufacturing cost and higher strength than before, it is necessary to deform the high-pressure phase boron nitride particles at a low sintering pressure of 20,000 atmospheres or more. It is now required to obtain a sintered body as strong as that obtained by sintering under severe conditions that fill the voids.
<問題点を解決するための手段>
発明者らは、前項記載の従来技術の問題点を検
討し考察を加えた結果、次の様な結論に達した。
即ち、高圧相窒化ホウ素を含む焼結体の強度を向
上させて、且つ焼結条件を緩やかにするには、高
圧相窒化ホウ素粒子同士の接合機会を増すことが
必要であると言うことである。<Means for Solving the Problems> As a result of examining and considering the problems of the prior art described in the previous section, the inventors have reached the following conclusion.
In other words, in order to improve the strength of a sintered body containing high-pressure phase boron nitride and to moderate the sintering conditions, it is necessary to increase the bonding opportunities between high-pressure phase boron nitride particles. .
粒子同士の接合機会をますために、単純には細
かい高圧相窒化ホウ素粒子を用いればよいことに
なる。然し単に細かい高圧相窒化ホウ素粒子を用
いるだけでは、例えば特開昭49−44014号公報に
ついてのべたような各種の問題を生ずる。 In order to increase the bonding opportunities between particles, it is sufficient to simply use fine high-pressure phase boron nitride particles. However, simply using fine high-pressure phase boron nitride particles causes various problems such as those described in JP-A-49-44014.
本発明者らは種々研究の結果、焼結原料中の高
圧相窒化ホウ素のCBN、WBNの容積比、添加剤
の種類、粒度を特定した焼結体の製造法が、従来
公知の焼結体の製造法に比し、得られる焼結体が
すぐれた特性を有することを確認して本発明を完
成した。即ち本発明の焼結体の製造方法は、粒子
径最大10〜50μm、最小1μm以下で、その間に連
続的な粒度分布を有する立方晶系窒化ホウ素又は
前記立方晶系窒化ホウ素とウルツ鉱型窒化ホウ素
とからなる高圧相窒化ホウ素65〜95体積%と、チ
タンまたはチタンおよびタンタルのそれぞれの炭
化物、窒化物、炭窒化物のいずれかの少なくとも
1種である添加物を4〜34体積%、およびアルミ
ニウムを加えて100体積%としさらに外割で0.1〜
5体積%のホウ素を加えた混合物を得、該混合物
を最低1200℃、2万気圧で焼結して高圧相窒化ホ
ウ素同士が結合して連続的なマトリツクスを形成
している高硬度焼結体の製造方法である。 As a result of various studies, the present inventors have found that a method for manufacturing a sintered body in which the volume ratio of CBN and WBN of high-pressure phase boron nitride in the sintering raw material, types of additives, and particle size are specified, The present invention was completed by confirming that the resulting sintered body had superior properties compared to the manufacturing method of . That is, the method for producing a sintered body of the present invention uses cubic boron nitride having a maximum particle size of 10 to 50 μm and a minimum particle size of 1 μm or less and a continuous particle size distribution therebetween, or the cubic boron nitride and wurtzite type nitride. 65 to 95 volume % of high-pressure phase boron nitride consisting of boron, 4 to 34 volume % of an additive that is at least one of titanium or each of titanium and tantalum carbides, nitrides, and carbonitrides, and Add aluminum to make it 100% by volume and further divide by 0.1~
A high-hardness sintered body in which a mixture containing 5% by volume of boron is obtained and the mixture is sintered at a minimum of 1200°C and 20,000 atmospheres to form a continuous matrix in which high-pressure phase boron nitrides bond together. This is a manufacturing method.
本発明の高硬度焼結体の製造法において得られ
る混合物中の高圧相窒化ホウ素は、70〜95体積%
が立方晶系窒化ホウ素で、残部がウルツ鉱型窒化
ホウ素であることが好ましく、更に添加物はチタ
ンの化合物であり、このため2ホウ化チタン
(TiB2)が生成し、高圧相窒化ホウ素が強固に結
合した連続せるマトリツクスが形成されることが
好ましい。 The high-pressure phase boron nitride in the mixture obtained in the method for producing a high-hardness sintered body of the present invention is 70 to 95% by volume.
is preferably cubic boron nitride and the remainder is wurtzite boron nitride, and the additive is a compound of titanium, so that titanium diboride (TiB 2 ) is formed and the high pressure phase boron nitride is formed. Preferably, a tightly bonded continuous matrix is formed.
そして本発明の製造法で得られる高硬度焼結体
はとくに高圧相窒化ホウ素が70〜95体積%の立方
晶系窒化ホウ素5〜30体積%のウルツ鉱型窒化ホ
ウ素とからなることが好ましい。 The high-hardness sintered body obtained by the production method of the present invention is particularly preferably composed of high-pressure phase boron nitride of 70 to 95% by volume, cubic boron nitride of 5 to 30% by volume of wurtzite boron nitride.
なお前述の連続的な粒度分布とは最大粒子寸法
を有する粒子から1μm以上の粒子寸法を有する粒
子が、5μm毎の級分けをして各級に少なくとも
100粒中1粒はその級に属する粒があり、且つ
1μm以下の粒子数が1μm以上の粒子数の10%以上
確認出来れば良い。 The above-mentioned continuous particle size distribution means that particles with a particle size of 1 μm or more from the maximum particle size are classified into 5 μm increments.
1 out of 100 grains has a grain belonging to that grade, and
It is sufficient if the number of particles 1 μm or smaller is at least 10% of the number of particles 1 μm or larger.
<作用>
本発明の製造法によつて、得られる高硬度焼結
体においては高圧相窒化ホウ素がマトリツクスを
形成し、その空隙をチタンまたはチタンおよびタ
ンタルのそれぞれの炭化物、窒化物、炭窒化物の
いずれかの少なくとも1種およびアルミニウムよ
りなる添加物が埋める役割を果たしている。そし
てチタン化合物は焼結性が良好であり、又それ自
体切削時の耐熱性、熱伝導度がすぐれている。即
ち本発明に於ては、上記化合物は特公昭57−
49621号公報に記載の焼結体中におけるように高
圧相窒化ホウ素を連続的な結合相で結合するため
の材料として用いるだけのものではなく、前記の
ように高圧相窒化ホウ素粒子同士が多くの部分で
結合して、所謂高圧相窒化ホウ素のマトリツクス
を形成した空隙を埋め強硬度の焼結体たりうる役
割を担うものである。また、チタン化合物はチタ
ンが過剰な結合をしていることが多く、この場合
は焼結に際して過剰な部分のチタンがアルミニウ
ムと反応してTi―Al間の化合物を作る。さらに、
チタンは焼結の際に高圧相窒化ホウ素の界面で高
圧相窒化ホウ素と反応してTiB2を、アルミニウ
ムは同様にして窒化アルミニウム(AlN)を作
る。これらは、高圧相窒化ホウ素同士が点で接触
している部分で両者をのり付けして強固な接合を
作り出し、高圧相窒化ホウ素同士が直接接合して
立体的なマトリツクスを構成したような構造とな
る。本発明では広い粒度範囲の高圧相窒化ホウ素
が含まれているので大粒と大粒の間に中粒が入り
込み、中粒と中粒の間に小粒が入り込みといつた
各種の粒が密に充填された構造をつくる為に高圧
相窒化ホウ素同士の接触点が狭い粒度範囲の高圧
相窒化ホウ素を原料として使つた場合より遥かに
多くなり、従つてマトリツクスの強度が向上す
る。なお、焼結の際に生成したAlNはCBNの焼
結触媒であり、本発明方法において高圧相窒化ホ
ウ素同士を極めて低い温度、圧力で焼結し、連続
的なマトリツクスを有する高硬度焼結体を形成す
るに至る。<Function> In the high-hardness sintered body obtained by the production method of the present invention, high-pressure phase boron nitride forms a matrix, and the voids are filled with titanium or carbides, nitrides, and carbonitrides of titanium and tantalum. An additive consisting of at least one of these and aluminum plays a filling role. Titanium compounds have good sinterability, and themselves have excellent heat resistance and thermal conductivity during cutting. That is, in the present invention, the above compound is
It is not only used as a material for bonding high-pressure phase boron nitride with a continuous bonding phase as in the sintered body described in Publication No. 49621, but also as a material for bonding high-pressure phase boron nitride particles with each other as described above. It plays the role of forming a high-pressure phase boron nitride matrix by combining the parts to fill the voids and creating a strong and hard sintered body. In addition, titanium compounds often have an excessive amount of titanium bonded, and in this case, during sintering, the excess titanium reacts with aluminum to form a Ti-Al compound. moreover,
During sintering, titanium reacts with high-pressure boron nitride at the interface to form TiB2 , and aluminum reacts with the high-pressure boron nitride to form aluminum nitride (AlN). These have a structure in which the high-pressure phase boron nitrides are glued together at points where they are in contact with each other to create a strong bond, and the high-pressure phase boron nitrides are directly bonded to each other to form a three-dimensional matrix. Become. In the present invention, high-pressure phase boron nitride with a wide particle size range is included, so various types of particles are densely packed, with medium particles between large particles and small particles between medium particles. In order to create such a structure, the contact points between the high pressure phase boron nitrides are much greater than when a narrow particle size range of high pressure phase boron nitride is used as the raw material, thus improving the strength of the matrix. Note that AlN produced during sintering is a sintering catalyst for CBN, and in the method of the present invention, high-pressure phase boron nitride is sintered together at extremely low temperature and pressure to create a high-hardness sintered body with a continuous matrix. leading to the formation of
本発明で、高圧相窒化ホウ素の量が65体積%未
満の場合には、十分な強度を有するマトリツクス
が得られずまた、95体積%を越える場合には、結
合相の量が不足で、目的とする高硬度焼結体をう
ることはできない。 In the present invention, if the amount of high-pressure phase boron nitride is less than 65% by volume, a matrix with sufficient strength cannot be obtained, and if it exceeds 95% by volume, the amount of binder phase is insufficient and It is not possible to obtain a high hardness sintered body.
また、チタンまたはチタンおよびタンタルの炭
化物、窒化物、炭窒化物の量を4〜34体積%に限
定する理由を次に示す。即ちそれらとアルミニウ
ムとを合わせたものが高圧相窒化ホウ素の残部を
構成するわけであり、高圧相窒化ホウ素が95体積
%を占める場合チタンまたはチタンおよびタンタ
ルの炭化物、窒化物、炭窒化物は4体積%、アル
ミニウムは1体積%必要であり、又高圧相窒化ホ
ウ素が65体積%を占める場合チタンまたはチタン
およびタンタルの炭化物、窒化物、炭窒化物は4
体積%から34体積%の範囲で、アルミニウムは31
体積%から1体積%の範囲とすることにより、目
的とする高硬度焼結体とすることができる。 The reason why the amount of titanium or titanium and tantalum carbides, nitrides, and carbonitrides is limited to 4 to 34% by volume is as follows. That is, the combination of these and aluminum constitutes the remainder of the high-pressure phase boron nitride, and if the high-pressure phase boron nitride accounts for 95% by volume, titanium or carbides, nitrides, and carbonitrides of titanium and tantalum are 4% by volume. % by volume, aluminum requires 1% by volume, and if the high-pressure phase boron nitride occupies 65% by volume, titanium or carbides, nitrides, carbonitrides of titanium and tantalum require 4% by volume.
Ranges from 34% by volume to 31% by volume for aluminum
By setting the content within the range of 1% by volume, the desired high hardness sintered body can be obtained.
更に、焼結する為の圧力が2万気圧以上必要で
ある理由は、それ以下では安定した焼結が困難で
あり、温度が1200℃以上必要な理由は、それ以下
では焼結体の強度が不十分であるからである。 Furthermore, the reason why a pressure of 20,000 atmospheres or more is required for sintering is that stable sintering is difficult if it is lower than that, and the reason why a temperature of 1,200 degrees Celsius or more is required is that if it is lower than that, the strength of the sintered body will decrease. This is because it is insufficient.
本発明方法を実施するに当つては、原料混合物
を1200℃以上、2万気圧以上で加圧する必要があ
る。なおこの焼結は前記以上の高温高圧で実施し
うるが、実際の温度、圧力は装置自体の条件によ
り定めうるものである。即ち焼結条件としての圧
力はとくに上限はなく、又温度も原料混合物が高
圧相窒化ホウ素が低圧相窒化ホウ素に相転換を起
さない範囲の高温で実施可能である。又ホウ素を
添加することにより焼結体の高温による硬度低下
を防ぐことができる。 In carrying out the method of the present invention, it is necessary to pressurize the raw material mixture at a temperature of 1,200° C. or higher and a pressure of 20,000 atmospheres or higher. Note that this sintering can be carried out at a higher temperature and pressure than the above, but the actual temperature and pressure can be determined depending on the conditions of the apparatus itself. That is, there is no particular upper limit to the pressure as the sintering condition, and the sintering can be carried out at a high temperature within a range in which the raw material mixture does not undergo phase transformation from high-pressure phase boron nitride to low-pressure phase boron nitride. Also, by adding boron, it is possible to prevent the hardness of the sintered body from decreasing due to high temperatures.
更に高圧相窒化ホウ素中、WBNの占める割合
は30体積%以下であることが好ましい。その理由
を次に示す。 Further, it is preferable that the proportion of WBN in the high-pressure phase boron nitride is 30% by volume or less. The reason is as follows.
WBN粒子の粗いものは、粒としての強度はさ
程高くなく、従つて粒としての強度を求める場合
は大きくても5μmを限度とする可きである。実際
的には、CBN粒子の10μm以上の粒度を有する原
料粉末を粉砕して10μm以上の最大寸法を有する
CBN粒子から1μm以下の最小寸法を有するCBN
粒子迄連続的な粒度分布を有するCBN原料とし
て焼結体に含有させ、粉砕時間を短縮したり、
1μm以下の高圧相BNの含有量を増す目的で
WBNを添加することが適当である。よつて、
WBNはCBNの細かい粒子の含有量を補なうもの
であるから、高圧相BN量全体の中の30体積%以
下に止めることが好ましい。また、CBNを粉砕
して連続的な粒度分布を作る場合には、CBNの
粉砕された粒の破断面はCBNが合成されてから
雰囲気に触れていない新鮮な面であり、従つて雰
囲気によつて汚染されていない為、焼結に際して
不純物を持込むことが少ない点でも好ましい。そ
の為、粉砕後には焼結する迄出来るだけ雰囲気に
触れさせず、真空中や不活性気体中に保管するこ
とが好ましい。更に、必要に応じて複数の粒度分
布を有するCBN粒子群を組合せて粉砕し、連続
的な粒度分布を有する原料を作つても良い。例え
ばボールミル、スタンプミル、エツジランナー、
らい潰機、振動ミルなどを用いることにより連続
的な粒度分布を有する粒体をうることができる。 Coarse WBN particles do not have very high strength as grains, and therefore, when determining the strength as grains, it is best to limit the grain size to 5 μm at most. In practice, CBN particles with a maximum dimension of 10 μm or more are ground by grinding the raw powder with a particle size of 10 μm or more.
CBN with a minimum dimension of 1 μm or less from CBN particles
By incorporating it into a sintered body as a CBN raw material with a continuous particle size distribution down to the particles, it can shorten the grinding time,
For the purpose of increasing the content of high-pressure phase BN of 1 μm or less
It is appropriate to add WBN. Then,
Since WBN supplements the content of fine particles of CBN, it is preferable to limit the content to 30% by volume or less of the total amount of high-pressure phase BN. In addition, when CBN is crushed to create a continuous particle size distribution, the fracture surface of the crushed CBN grains is a fresh surface that has not been exposed to the atmosphere since CBN was synthesized, and therefore it is not affected by the atmosphere. It is also preferable in that it is less likely to introduce impurities during sintering because it is not contaminated. Therefore, after pulverization, it is preferable to store the material in vacuum or in an inert gas without exposing it to the atmosphere as much as possible until sintering. Furthermore, if necessary, CBN particle groups having a plurality of particle size distributions may be combined and pulverized to produce a raw material having a continuous particle size distribution. For example, ball mill, stamp mill, edge runner,
Particles having a continuous particle size distribution can be obtained by using a crusher, a vibrating mill, or the like.
<実施例>
次に具体的な実施例、比較例を掲げ本発明につ
いて詳群に説明する。<Examples> Next, the present invention will be explained in detail with reference to specific examples and comparative examples.
実施例 1
平均粒径15μmのCBNと平均粒径5μmのCBN
との比が3:1である混合物を超硬合金製ボール
ミル中で4時間粉砕混合をした。得られた混合物
の最大粒子は18μmであり、1μm以下の粒子は23
%、そして1μmをこえる粒子は連続した粒度分布
を有することを、水中沈降分級処理および顕微鏡
観察により確認した。Example 1 CBN with an average particle size of 15 μm and CBN with an average particle size of 5 μm
A mixture having a ratio of 3:1 was pulverized and mixed in a cemented carbide ball mill for 4 hours. The largest particle of the resulting mixture is 18 μm, and the particles smaller than 1 μm are 23
%, and it was confirmed by underwater sedimentation classification treatment and microscopic observation that particles exceeding 1 μm had a continuous particle size distribution.
次に前記のCBN混合物72体積%、チタンと炭
素のモル比が1:0.68である炭化チタン10体積
%、タンタルと炭素のモル比が1:1の炭化タン
タル4体積%、チタンと窒素のモル比が1:0.72
である窒化チタン2.6体積%およびアルミニウム
11.4体積%を超硬合金製ボールミルで12時間混合
した。 Next, 72% by volume of the above CBN mixture, 10% by volume of titanium carbide with a molar ratio of titanium and carbon of 1:0.68, 4% by volume of tantalum carbide with a molar ratio of tantalum and carbon of 1:1, and mol of titanium and nitrogen. The ratio is 1:0.72
Titanium nitride 2.6% by volume and aluminum
11.4% by volume was mixed in a cemented carbide ball mill for 12 hours.
次いでこの混合物に外割で3.8体積%の無定形
ホウ素を加えて混合した。 Next, 3.8% by volume of amorphous boron was added to this mixture and mixed.
さらに外径15mm、高さ6mm、厚さ0.8mmの工業
用純チタンの底付き円筒状カプセルに、まず下か
ら3mmの深さまでコバルト10重量%を有する超硬
合金粉を充填し、その上に前記無定形ホウ素を含
む混合粉を2mmの厚さになるように圧入し、工業
用純チタン円板で封をした。この封入カプセルの
周囲を理論密度に対して98%の密度に成形した食
塩で包囲し、ベルト式超高圧装置に装入して、焼
結圧力、温度を2.5万気圧、1400℃に8分間かけ
て徐々に上昇させ、そのまゝ20分間保持してから
常温常圧12分間かけて下降させてから取り出し
た。 Furthermore, a cylindrical capsule with an outer diameter of 15 mm, a height of 6 mm, and a thickness of 0.8 mm made of industrially pure titanium with a bottom is first filled with cemented carbide powder containing 10% by weight of cobalt to a depth of 3 mm from the bottom. The mixed powder containing amorphous boron was press-fitted to a thickness of 2 mm and sealed with an industrially pure titanium disc. This sealed capsule was surrounded by salt molded to a density of 98% of the theoretical density, and placed in a belt-type ultra-high pressure device, where it was sintered at a pressure and temperature of 25,000 atm and 1,400°C for 8 minutes. The temperature was gradually raised, held as it was for 20 minutes, and then lowered to room temperature and pressure for 12 minutes, and then taken out.
カプセルをグラインダーで除去した処、CBN
を含む混合粉と超硬合金の粉末は強固に焼結さ
れ、かつ両者が2層に分かれて接合された厚さ約
2.8mm、直径約12.3mmの円板状焼結体が得られた。 CBN where the capsule was removed with a grinder
The mixed powder containing the powder and the cemented carbide powder are strongly sintered, and the two are separated into two layers and joined to a thickness of approximately
A disc-shaped sintered body with a diameter of 2.8 mm and a diameter of approximately 12.3 mm was obtained.
CBNを含む焼結体の硬度をマイクロビツカー
ス硬度計で荷重を1Kgとして測定した結果、5点
の測定点の平均は4350Kg/mm2であつた。CBNを
含む焼結体部分をダイヤモンドペーストで研摩し
て、1500倍の光学顕微鏡で観察した処、CBN同
士が結合している組織が認められた。 The hardness of the sintered body containing CBN was measured using a micro-Vickers hardness tester under a load of 1 kg, and the average of the 5 measurement points was 4350 kg/mm 2 . When the sintered body containing CBN was polished with diamond paste and observed under an optical microscope at 1500x magnification, a structure in which CBN was bonded together was observed.
次にこのCBNを含む焼結体を濃度46%のフツ
化水素酸と濃度35%の硝酸との体積で1:1の割
合の混合物に浸漬した。その浸漬後の焼結体は化
学処理後も焼結体の形状が保たれていた。 Next, this sintered body containing CBN was immersed in a mixture of hydrofluoric acid with a concentration of 46% and nitric acid with a concentration of 35% in a volume ratio of 1:1. The sintered body after immersion maintained its shape even after chemical treatment.
なおこのCBNを含む焼結体について、化学処
理前後のX線回折測定を行つたが、その結果、炭
窒化チタン、ホウ化チタン及び炭化タンタルのピ
ークが、化学処理後は消失し、強いCBNのピー
クと弱い窒化アルミニウムのピークのみが確認さ
れた。 X-ray diffraction measurements were performed on this CBN-containing sintered body before and after chemical treatment, and the results showed that the peaks of titanium carbonitride, titanium boride, and tantalum carbide disappeared after chemical treatment, indicating that the strong CBN Only the peak and weak aluminum nitride peak were confirmed.
即ち本発明の方法により製造された高硬度焼結
体は焼結前の連続した粒度分布のCBNが結合し
た連続的なマトリツクスと、炭化チタン、炭化タ
ンタル、窒化タンタル、アルミニウムを含んでな
るものであることがあきらかである。 That is, the high-hardness sintered body produced by the method of the present invention contains a continuous matrix bonded with CBN having a continuous particle size distribution before sintering, and titanium carbide, tantalum carbide, tantalum nitride, and aluminum. One thing is clear.
次に本発明で製造された高硬度焼結体が実用的
に極めてすぐれていることを切削工具として使用
した例により説明する。 Next, the fact that the high-hardness sintered body manufactured by the present invention is extremely excellent in practical use will be explained by using an example in which the high-hardness sintered body is used as a cutting tool.
即ち実施例1により製造された円板状の焼結体
を直径11mm、厚さ2.5mmでCBNを含む焼結体部分
の厚さが約1mmとなるようにダイヤモンド砥石で
仕上げた。更にダイヤモンドカツターで円の中心
を通る切断線で6等分に切断し、頂角が60゜の扇
形のチツプとし、K20種の超硬合金の台に銀ロウ
によつてろう付けし、ダイヤモンド砥石で研摩し
て頂角60゜、内接円寸法9.525mm、厚さ4.76mm、刃
先R0.8mmのTNG332と称するスローアウエイチツ
プに加工した。 That is, the disk-shaped sintered body manufactured in Example 1 was finished with a diamond grindstone so that the diameter of the sintered body was 11 mm, the thickness was 2.5 mm, and the thickness of the sintered body portion containing CBN was approximately 1 mm. Next, cut the circle into 6 equal parts using a diamond cutter along a cutting line that passes through the center of the circle, create a fan-shaped chip with an apex angle of 60°, and solder it to a K20 grade cemented carbide stand with silver solder. It was polished with a whetstone and processed into a throw-away tip called TNG332 with an apex angle of 60°, an inscribed circle dimension of 9.525 mm, a thickness of 4.76 mm, and a cutting edge radius of 0.8 mm.
切削試験用の被削材として、SCM415種鋼の直
径120mm、長さ500mmのものに巾20mm、深さ20mmの
断面が矩形の溝を彫り込み、ロツクウエル硬度C
スケール58に熱処理したものを用意して、前記の
スローアウエイチツプで外周を切削した。切削条
件を、周速(以後Vとする)=201m/min、切込
み(以後dとする)=0.5mm、送り(以後fとす
る)=0.2mm/revとして連続60分間切削した処、
刃先の逃げ面摩耗は0.08mmに止まり、欠損やチツ
ピングの傾向は全く認められず、更に切削を続け
ることが可能と判断された。この種の切削方法
は、一般に継続切削と呼ばれ、従来のCBNを含
む焼結体工具では、本試験で実施した様な厳しい
条件では早期に刃先の欠損が発生して全く実施出
来なかつた。 As the workpiece material for the cutting test, a groove with a rectangular cross section of 20 mm width and 20 mm depth was carved into a piece of SCM415 grade steel with a diameter of 120 mm and a length of 500 mm.
A heat-treated scale 58 was prepared, and the outer periphery was cut using the aforementioned throw-away tip. The cutting conditions were: circumferential speed (hereinafter referred to as V) = 201 m/min, depth of cut (hereinafter referred to as d) = 0.5 mm, feed (hereinafter referred to as f) = 0.2 mm/rev, and continuous cutting was performed for 60 minutes.
Flank wear on the cutting edge stopped at 0.08 mm, and no tendency for chipping or chipping was observed, and it was determined that further cutting could be continued. This type of cutting method is generally called continuous cutting, and with conventional sintered tools containing CBN, it could not be performed at all under the harsh conditions used in this test, as the cutting edge would break quickly.
比較例 1
CBNは平均粒径3μmのものを粉砕せずに用い、
無定形ホウ素を添加せず、かつ他の添加物との混
合処理を3時間処理した以外、他はすべて実施例
1と同様に処理した。Comparative example 1 CBN with an average particle size of 3 μm was used without being crushed.
All other treatments were carried out in the same manner as in Example 1, except that amorphous boron was not added and the mixing treatment with other additives was carried out for 3 hours.
得られた焼結体のマイクロビツカース硬度は
3400Kg/mm2で実施例1に比して低い。これは
CBN同士の結合がないためと考えられるが、こ
のことは光学顕微鏡による観察によつてもCBN
の粒が互いに結合相により隔てられていることが
確認されたしかめられた。更に実施例1と同様な
方法で化学処理を行つた。 The microvitkers hardness of the obtained sintered body is
It is 3400Kg/mm 2 which is lower than that of Example 1. this is
This is thought to be due to the lack of bonding between CBNs, but this was also confirmed by observation with an optical microscope.
It was confirmed that the grains were separated from each other by a binder phase. Furthermore, chemical treatment was performed in the same manner as in Example 1.
その結果、焼結体は崩壊し、CBN同士が結合
していないことを示している。 As a result, the sintered body collapsed, indicating that the CBNs were not bonded to each other.
実施例1と同様な切削試験を行つた処、刃先は
2分間切削しただけで欠損し、更に同様な試験を
繰返した処、1分30秒で欠損した。 When the same cutting test as in Example 1 was conducted, the cutting edge broke off after only 2 minutes of cutting, and when the same test was repeated, it broke off after 1 minute and 30 seconds.
比較例 2
無定形ホウ素を添加せず、添加物をすべて酸化
アルミニウムに置換した以外、すべて実施例1と
同様に処理した。光学顕微鏡による観察、化学処
理後の観察の何れもCBN同士が結合しているこ
とが確認された。Comparative Example 2 All treatments were carried out in the same manner as in Example 1, except that amorphous boron was not added and all additives were replaced with aluminum oxide. Both observation using an optical microscope and observation after chemical treatment confirmed that CBNs were bonded to each other.
実施例1と同様な切削試験を実施した処、刃先
は18分間の切削後に逃げ面摩耗0.8mmに達し、以
後の切削が実施できなかつた。 When a cutting test similar to that in Example 1 was conducted, the flank wear of the cutting edge reached 0.8 mm after 18 minutes of cutting, and further cutting could not be performed.
実施例1と比較例1より、本発明においては
CBNが連続的な粒度分布を有することが、又実
施例1と比較例2とよりは添加物の種類がCBN
粒子同士の結合に大きな影響のあることが分か
る。 From Example 1 and Comparative Example 1, in the present invention
It is clear that CBN has a continuous particle size distribution, and that the types of additives are different from those of Example 1 and Comparative Example 2.
It can be seen that this has a large effect on the bonding between particles.
比較例 3
無定形ホウ素を添加せず、かつ焼結圧力、温度
を3.8万気圧、1520℃とした以外は実施例1と同
様に処理して高硬度焼結体を得た。Comparative Example 3 A high hardness sintered body was obtained in the same manner as in Example 1 except that amorphous boron was not added and the sintering pressure and temperature were 38,000 atm and 1520°C.
得られた焼結体の硬度は4020Kg/mm2で、光学顕
微鏡、化学処理の結果、何れもCBN同士が結合
してることを示した。 The hardness of the obtained sintered body was 4020Kg/ mm2 , and the results of optical microscopy and chemical treatment both showed that CBN was bonded to each other.
実施例1で実施した切削試験と同様な切削試験
をV=188m/minに下げて実施した結果、60分
間切削した後の逃げ面摩耗は周速が低くなつて条
件としてはより緩やかになつたにもかゝわらず、
実施例1と等しく0.08mmで、欠損やチツピングも
殆ど認められなかつた。 As a result of conducting a cutting test similar to the cutting test conducted in Example 1 at a lower V = 188 m/min, the flank wear after cutting for 60 minutes became more gradual as the circumferential speed became lower. Nevertheless,
The diameter was 0.08 mm, which is the same as in Example 1, and almost no chipping or chipping was observed.
実施例1と比較例3とから、本発明においては
ホウ素の添加により、焼結条件が比較例3より緩
やかな条件でも、同等またはそれ以上の切削性能
の焼結体が得られることは明らかである。 From Example 1 and Comparative Example 3, it is clear that in the present invention, by adding boron, a sintered body with the same or better cutting performance can be obtained even under milder sintering conditions than Comparative Example 3. be.
比較例 4
用いるCBNをすべて平均粒径5μmの粒体とし
た以外、すべて実施例1と同様に処理して焼結体
を得た。Comparative Example 4 A sintered body was obtained in the same manner as in Example 1 except that the CBN used was all granules with an average particle size of 5 μm.
得られた焼結体の硬度は3800Kg/mm2であつた。
光学顕微鏡、化学処理後の観察の何れもCBN同
士の結合がないか、あつても僅かであることを示
した。 The hardness of the obtained sintered body was 3800 Kg/mm 2 .
Both optical microscopy and observation after chemical treatment showed that there was no bonding between CBNs, or if there was, there was only a small amount of bonding.
実施例1と同様な切削試験を実施した処、刃先
は8分間切削しただけで欠損し、同様な試験を更
に2回繰返したが、5分及び10分30秒で欠損し
た。 When the same cutting test as in Example 1 was conducted, the cutting edge broke off after only 8 minutes of cutting, and when the same test was repeated two more times, it broke off after 5 minutes and 10 minutes and 30 seconds.
<発明の効果>
本発明は、焼結原料中の高圧相窒化ホウ素の粒
度及び配合割合、特定の添加剤及び配合割合、特
定の金属及び配合割合に加えてホウ素を特定量添
加することによつて、焼結条件(温度、圧力)を
緩和し、かつ高圧相窒化ホウ素同士を結合して連
続的なマトリツクスを形成させる高硬度焼結体の
製造方法である。<Effects of the Invention> The present invention has been achieved by adding a specific amount of boron in addition to the particle size and blending ratio of high-pressure phase boron nitride in the sintering raw material, specific additives and blending ratio, and specific metal and blending ratio. This is a method for manufacturing a high-hardness sintered body in which the sintering conditions (temperature, pressure) are relaxed and high-pressure phase boron nitrides are bonded together to form a continuous matrix.
従来技術による高圧相窒化ホウ素を含む焼結体
は、他の従来工具材料に比べて鉄系材料の切削に
かけ離れた性能を発揮することが知られている
が、本発明で得られる焼結体においては、それを
更に上回る性能を示した。特に高硬度焼入れ鋼の
高速断続切削、鋳鋼、鋳鉄、型鋼等の生材、焼入
れ材の重切削、高速切削、焼結金属の高速切削に
おいて従来の高圧相窒化ホウ素を含む焼結体に勝
り、更に従来は高圧相窒化ホウ素を含む焼結体に
は向かないとされ、事実切削しても良い結果を示
さなかつた低炭素から高炭素に及ぶ鋼の切削にも
適している。即ち本発明は従来のCBN及び又は
CBNとWBNとを含む焼結体では到底実施できな
いような厳しい条件での切削、特に高硬度の焼入
鋼材や未熱処理の鋼材の高速度での断続切削が可
能な工具用焼結体の製造法を提供する、産業上極
めて有用な発明である。 It is known that a sintered body containing high-pressure phase boron nitride according to the prior art exhibits far superior performance in cutting ferrous materials compared to other conventional tool materials, but the sintered body obtained by the present invention showed even better performance than that. In particular, it is superior to conventional sintered bodies containing high-pressure phase boron nitride in high-speed interrupted cutting of high-hardness hardened steel, heavy cutting of raw materials such as cast steel, cast iron, and type steel, heavy cutting of hardened materials, high-speed cutting of sintered metal, and high-speed cutting of sintered metal. Furthermore, it is also suitable for cutting steel ranging from low carbon to high carbon, which was conventionally considered unsuitable for sintered bodies containing high-pressure phase boron nitride, and in fact did not show good results when cutting. That is, the present invention can be applied to conventional CBN and/or
Manufacture of sintered bodies for tools that can perform cutting under severe conditions that cannot be performed with sintered bodies containing CBN and WBN, especially high-speed interrupted cutting of hardened hardened steel and unheat-treated steel. This is an industrially extremely useful invention.
Claims (1)
の間に連続的な粒度分布を有する立方晶系窒化ホ
ウ素又は前記立方晶系窒化ホウ素とウルツ鉱型窒
化ホウ素とからなる高相圧窒化ホウ素65〜95体積
%と、チタンまたはチタンおよびタンタルのそれ
ぞれの炭化物、窒化物、炭窒化物のいずれかの少
なくとも1種である添加物を4〜34体積%、およ
びアルミニウムを加えて100体積%としさらに外
割で0.1〜5体積%のホウ素を加えた混合物を得、
該混合物を最低1200℃、2万気圧で焼結して高圧
相窒化ホウ素同士が結合して連続的なマトリツク
スを形成している高硬度焼結体の製造方法。 2 高圧相窒化ホウ素が70〜95体積%の立方晶系
窒化ホウ素と5〜30体積%のウルツ鉱型窒化ホウ
素とからなる特許請求の範囲第1項の高硬度焼結
体の製造方法。 3 添加物がチタンの炭化物、窒化物、炭窒化物
の少なくとも1種であり、焼結に際して2ホウ化
チタン及び窒化アルミニウムが生成して高相圧窒
化ホウ素が強固に結合した連続せるマトリツクス
が生成する特許請求の範囲第1項の高硬度焼結体
の製造方法。[Scope of Claims] 1. Cubic boron nitride having a maximum particle size of 10 to 50 μm and a minimum particle size of 1 μm or less, with a continuous particle size distribution therebetween, or a polymer comprising the cubic boron nitride and wurtzite boron nitride. 65 to 95 volume % of phase pressure boron nitride, 4 to 34 volume % of an additive that is at least one of titanium or a carbide, nitride, or carbonitride of each of titanium and tantalum, and aluminum. A mixture of 100% by volume and further added 0.1 to 5% by volume of boron was obtained,
A method for producing a high-hardness sintered body, in which the mixture is sintered at a minimum of 1200°C and 20,000 atm, so that high-pressure phase boron nitrides bond together to form a continuous matrix. 2. The method for producing a high-hardness sintered body according to claim 1, wherein the high-pressure phase boron nitride comprises 70 to 95 volume % of cubic boron nitride and 5 to 30 volume % of wurtzite boron nitride. 3. The additive is at least one of titanium carbide, nitride, and carbonitride, and during sintering, titanium diboride and aluminum nitride are generated to form a continuous matrix in which high phase pressure boron nitride is firmly bonded. A method for manufacturing a high-hardness sintered body according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63063446A JPS63266030A (en) | 1988-03-18 | 1988-03-18 | Production of high hardness sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63063446A JPS63266030A (en) | 1988-03-18 | 1988-03-18 | Production of high hardness sintered body |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60041190A Division JPS61201751A (en) | 1985-03-04 | 1985-03-04 | High hardness sintered body and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63266030A JPS63266030A (en) | 1988-11-02 |
JPH0116894B2 true JPH0116894B2 (en) | 1989-03-28 |
Family
ID=13229481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63063446A Granted JPS63266030A (en) | 1988-03-18 | 1988-03-18 | Production of high hardness sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63266030A (en) |
-
1988
- 1988-03-18 JP JP63063446A patent/JPS63266030A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63266030A (en) | 1988-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960008726B1 (en) | Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby | |
JP5680567B2 (en) | Sintered body | |
EP1309732B1 (en) | Method of producing an abrasive product containing diamond | |
JP5574566B2 (en) | Cubic boron nitride compact | |
EP1313887B1 (en) | Method of producing an abrasive product containing cubic boron nitride | |
JPH0443874B2 (en) | ||
CN101341268A (en) | Cubic boron nitride compact | |
US5569862A (en) | High-pressure phase boron nitride sintered body for cutting tools and method of producing the same | |
KR100502585B1 (en) | Sintering body having high hardness for cutting cast iron and The producing method the same | |
JP2861487B2 (en) | High hardness sintered cutting tool | |
JPH0116894B2 (en) | ||
JPS6246510B2 (en) | ||
JPS6369760A (en) | Sintered body for high hardness tools and manufacture | |
JPS6158432B2 (en) | ||
JPS6241306B2 (en) | ||
JPH0377151B2 (en) | ||
JPS627259B2 (en) | ||
JPS62983B2 (en) | ||
KR810001998B1 (en) | Method producing a sintered diamond compact | |
JPS6242989B2 (en) | ||
KR860002131B1 (en) | Sintered compact for use in a tool | |
JPS5855111B2 (en) | High hardness sintered body for tools and its manufacturing method | |
JPS6310119B2 (en) | ||
JPH0357171B2 (en) | ||
JPS62247008A (en) | High-hardness sintered body for tool and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |