JPH10113877A - Super abrasive grain grindstone and its manufacturing method - Google Patents

Super abrasive grain grindstone and its manufacturing method

Info

Publication number
JPH10113877A
JPH10113877A JP26882796A JP26882796A JPH10113877A JP H10113877 A JPH10113877 A JP H10113877A JP 26882796 A JP26882796 A JP 26882796A JP 26882796 A JP26882796 A JP 26882796A JP H10113877 A JPH10113877 A JP H10113877A
Authority
JP
Japan
Prior art keywords
superabrasive
grindstone
sintering
binder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26882796A
Other languages
Japanese (ja)
Other versions
JP3406163B2 (en
Inventor
Katsuhiko Utsubo
勝彦 靱
Hitoshi Onishi
人司 大西
Masayuki Kobayashi
真幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP26882796A priority Critical patent/JP3406163B2/en
Publication of JPH10113877A publication Critical patent/JPH10113877A/en
Application granted granted Critical
Publication of JP3406163B2 publication Critical patent/JP3406163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve grinding performance and mechanical strength by constituting a grindstone of a sintered body with super abrasive grains consisting of diamond or cBN an average grain diameter of which is within a specific range and binding material particles and making these binding material particles of metal particles on surfaces of which oxide films are formed and of more than a specific melting point. SOLUTION: An average grain diameter of a super abrasive grain grindstone 10 is within a range of 0.5μm-60μm. It is constituted of a sintered body of super abrasive grains 1 of diamond or cBN and binding material particles 2. These binding material particles are made of particles 4 of metal of of a melting point of more than 2000 deg.C on surfaces of which oxide films 3 are formed, for example, of W. The average grain diameter of these super abrasive grains 1 is made within the range of 0.5μm-60μm. Consequently, sharpness of the super abrasive grains 1 is not spoiled by high temperature sintering, a dressing property is favourable, blinding is hardly caused, natural tooth cutting work is provided, grinding resistance is small, and grinding performance is favourable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密加工分野で用
いられる超砥粒砥石に関するものであり、特に高い研削
性能を有すると共に物理的強度も優れた超砥粒砥石とそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superabrasive grindstone used in the field of precision machining, and more particularly to a superabrasive grindstone having high grinding performance and excellent physical strength, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、Si34、アルミナ、ジルコニ
ア、Al23・TiCセラミックスなど研削が困難な構
造用セラミックスが多用されるようになり、これら難研
削材料の製品コストの中で大きなウエイトを占める加工
経費の削減が大きな課題となってきている。
2. Description of the Related Art In recent years, structural ceramics such as Si 3 N 4 , alumina, zirconia, and Al 2 O 3 .TiC ceramics, which are difficult to grind, have been frequently used. Reduction of the processing cost occupying the weight has become a major issue.

【0003】従来、これらの難研削材料の精密加工に
は、砥粒としてダイヤモンドや立方晶窒化ホウ素(以
下、「cBN」と記す)など高硬度を有するいわゆる
「超砥粒」を用いた砥石が用いられ、被加工物の材質、
寸法、形状、取りしろ、加工能率、加工精度、加工品質
などさまざまな要求により、その加工方式や研削盤が決
められ、それと同時に最も有効とされる砥石の形状、寸
法、仕様が決定される。
Conventionally, for the precision processing of these difficult-to-grind materials, a grindstone using so-called “super-abrasive grains” having high hardness such as diamond or cubic boron nitride (hereinafter referred to as “cBN”) as abrasive grains. Used, the material of the workpiece,
Based on various requirements such as dimensions, shapes, margins, machining efficiency, machining accuracy, and machining quality, the machining method and grinding machine are determined, and at the same time the shape, dimensions, and specifications of the most effective grinding stone are determined.

【0004】超砥粒を含む砥石は「超砥粒砥石」と呼ば
れ、一般に、超砥粒を結合材によって保持して構成さ
れ、その結合材の種類によって、例えば結合材として合
成樹脂を用いたレジンボンド砥石、ガラス質を用いたビ
トリファイドボンド砥石、金属を用いたメタルボンド砥
石など、いくつかの型に分類される。従来、難研削材料
であるセラミックスなどの精密切断などに用いる薄刃砥
石は、砥石の機械的強度の観点から前記のメタルボンド
砥石が用いられてきた。
[0004] A grindstone containing superabrasive grains is called a "superabrasive grindstone" and is generally constructed by holding superabrasive grains with a binder, and depending on the type of the binder, for example, a synthetic resin is used as the binder. It is classified into several types, such as resin-bonded grinding wheels, vitrified bonded grinding wheels using glass, and metal-bonded grinding wheels using metal. Conventionally, the above-mentioned metal-bonded grindstone has been used as a thin blade grindstone used for precision cutting of ceramics or the like, which are difficult to grind materials, from the viewpoint of mechanical strength of the grindstone.

【0005】このメタルボンド砥石は、結合材として青
銅系やニッケル系などの軟質金属や鋳鉄(特開平3−2
64263号公報)を用い、焼結法や電鋳法を用いて製
造される。これにより得られたメタルボンド砥石は、結
合材の組織が緻密であるために砥石自体の機械的強度が
高く、また難研削材の研削に特に要求される結合材によ
る砥粒の保持力も高く、研削時の砥石の変形が少なく、
仕上げ精度が良好であるなどの利点を有している。
[0005] This metal-bonded grindstone is made of a soft metal such as bronze or nickel or a cast iron (Japanese Patent Laid-Open No. 3-2).
64263) and a sintering method or an electroforming method. The resulting metal bond grindstone has a high mechanical strength of the grindstone itself because the structure of the binder is dense, and also has a high holding force of the abrasive grains by the binder particularly required for grinding difficult-to-grind materials, Less deformation of the grinding wheel during grinding,
It has advantages such as good finishing accuracy.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記のメタル
ボンド砥石は、結合材組織が緻密で摩滅し難いため、砥
石の研削面に絶えず砥粒の新しい切り刃が現れる現象、
いわゆる「自生発刃作用」が小さく、目詰まりしやす
く、研削抵抗が大きいため高能率加工が困難となり、ま
たドレッシング(目立て)性が悪いなどの欠点があっ
た。
However, in the above-mentioned metal bond whetstone, the phenomenon that a new cutting edge of abrasive grains constantly appears on the grinding surface of the whetstone because the bonding material structure is dense and hard to be worn out,
The so-called "self-generated blade action" is small, clogging is liable to occur, and grinding efficiency is high, so that high-efficiency machining becomes difficult, and the dressing (sharpening) property is poor.

【0007】本発明は、これらの課題を解決するために
なされたものであって、従ってその目的は、研削能率と
機械的強度が共に優れ、難研削材料の精密加工に好適に
使用することができる超砥粒砥石とその製造方法を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems, and an object of the present invention is to provide a material which is excellent in both grinding efficiency and mechanical strength and can be suitably used for precision machining of difficult-to-grind materials. It is an object of the present invention to provide a super-abrasive grindstone and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決する手
段として本発明は、平均粒径が0.5μm〜60μmの
範囲内であるダイヤモンドまたはcBNからなる超砥粒
と結合材粒子との焼結体からなり、この結合材粒子が、
表面に酸化物被膜が形成された融点2000℃以上の金
属の粒子からなるものである超砥粒砥石を提供する。前
記の金属は、W、Os、Ta、Ir、Mo、およびRu
からなる群から選ばれた1種以上であることが好まし
い。
As a means for solving the above-mentioned problems, the present invention provides a method for firing super-abrasive grains of diamond or cBN having an average particle diameter in the range of 0.5 μm to 60 μm and binder particles. Consisting of binders, the binder particles
Provided is a superabrasive grindstone made of metal particles having a melting point of 2000 ° C. or more and having an oxide film formed on the surface. The metals are W, Os, Ta, Ir, Mo, and Ru.
It is preferable that at least one selected from the group consisting of

【0009】本発明はまた、平均粒径が0.5μm〜6
0μmの範囲内であるダイヤモンドまたはcBNからな
る超砥粒と、表面に酸化物被膜が形成された融点200
0℃以上の金属の粒子からなる結合材粒子とを混合し、
得られた粉体混合物を焼結する工程を含む超砥粒砥石の
製造方法を提供する。前記の焼結は、放電プラズマ焼結
法またはホット・アイソスタチック・プレス焼結法を用
いて行うことが好ましい。前記の焼結は、不活性ガスま
たは酸素分圧が0.01MPa以下の雰囲気中で行うこ
とが好ましい。また前記の焼結は、0.5Tm(Tmは
絶対温度゜Kで表す結合材の融点または液相生成温度)
以下の焼結温度に30分以内の時間保持して行うことが
好ましい。
[0009] The present invention also relates to the present invention.
A super-abrasive made of diamond or cBN within a range of 0 μm, and a melting point of 200 having an oxide film formed on the surface.
Mixing with binder particles composed of metal particles at 0 ° C. or higher,
Provided is a method for producing a superabrasive grindstone including a step of sintering the obtained powder mixture. The sintering is preferably performed using a spark plasma sintering method or a hot isostatic press sintering method. The sintering is preferably performed in an atmosphere having an inert gas or oxygen partial pressure of 0.01 MPa or less. In addition, the sintering is performed at 0.5 Tm (Tm is the melting point or liquid phase generation temperature of the binder expressed by absolute temperature ゜ K).
It is preferable to perform the sintering at the following sintering temperature for 30 minutes or less.

【0010】[0010]

【発明の実施の形態】以下、本発明を一実施形態によっ
て説明する。図1に模式的に示すように、この実施形態
の超砥粒砥石10は、ダイヤモンドまたはcBNの超砥
粒1と結合材粒子2との焼結体からなっている。そして
この結合材粒子2は、表面に酸化物被膜3が形成された
融点2000℃以上の金属、例えばWの粒子4からなっ
ている。この超砥粒1の平均粒径は、0.5μm〜60
μmの範囲内とされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to an embodiment. As schematically shown in FIG. 1, a superabrasive grindstone 10 of this embodiment is made of a sintered body of superabrasive grains 1 of diamond or cBN and binder particles 2. The binder particles 2 are made of a metal having a melting point of 2000 ° C. or higher, for example, W particles 4 having an oxide film 3 formed on the surface. The average particle size of the superabrasive particles 1 is 0.5 μm to 60 μm.
It is in the range of μm.

【0011】この超砥粒砥石10は、例えば下記の方法
により製造することができる。すなわち、平均粒径が
0.5μm〜60μmの範囲内であるダイヤモンドまた
はcBNからなる超砥粒1と、表面に酸化物被膜3が形
成された融点2000℃以上の金属の粒子4からなる結
合材粒子2とを混合し、得られた粉体混合物を、例えば
放電プラズマ焼結法(以下、「SPS法」という)また
はホット・アイソスタチック・プレス法(以下、「HI
P法」という)を用いて焼結する。
The superabrasive grindstone 10 can be manufactured, for example, by the following method. That is, a binder composed of superabrasive grains 1 made of diamond or cBN having an average particle size in the range of 0.5 μm to 60 μm, and metal particles 4 having a melting point of 2000 ° C. or more and having an oxide film 3 formed on the surface. The particles 2 are mixed with each other, and the obtained powder mixture is subjected to, for example, spark plasma sintering (hereinafter, referred to as “SPS”) or hot isostatic pressing (hereinafter, referred to as “HI”).
P method).

【0012】得られた超砥粒砥石10は、砥粒として平
均粒径0.5μm〜60μmの微細なダイヤモンド粒子
またはcBN粒子が用いられているので、セラミックス
などの難研削材料を精密に研削することができる。
Since the obtained superabrasive grindstone 10 uses fine diamond particles or cBN particles having an average particle diameter of 0.5 μm to 60 μm as abrasive grains, it grinds difficult-to-grind materials such as ceramics precisely. be able to.

【0013】また結合材としては、Wなど、硬くて脆い
2000℃以上の高融点の金属粒子が用いられている。
高融点金属粒子は、焼結したとき超砥粒1との結合力が
強く、しかも結合材粒子どうしの融着によって形成され
る焼結組織体は、適度の崩落性を有しているので、この
超砥粒砥石を研削に用いると、砥石自体の物理的強度は
高く、砥粒を強力に保持しながら、しかもドレッシング
(目立て)性が良好であり、目詰まりし難く自生発刃作
用があり、研削抵抗が小さく、効率のよい研削が可能と
なる。
As the binder, hard and brittle metal particles having a high melting point of 2000 ° C. or more, such as W, are used.
Since the refractory metal particles have a strong bonding force with the superabrasive grains 1 when sintered, and the sintered structure formed by fusion of the binder particles has a moderate collapse property. When this super-abrasive grindstone is used for grinding, the physical strength of the grindstone itself is high, the abrasive grains are strongly retained, and the dressing (sharpening) property is good. In addition, the grinding resistance is small and efficient grinding can be performed.

【0014】しかし、超砥粒砥石の製造に際して、超砥
粒1と前記の高融点金属粒子と、または高融点金属粒子
どうしを強力に融着するためには、少なくとも0.6T
m以上の温度に加熱しなければならない。この温度は、
例えば結合材としてW(融点3655゜K)を用いる場
合であれば約1900℃以上となる。ところが、この焼
結温度では、高温のため超砥粒1自体が変質して研削力
が減少し、目標とする研削性能を十分に発揮し得ないこ
とがわかった。
However, at the time of manufacturing a superabrasive grindstone, at least 0.6 T is required in order to strongly fuse the superabrasive grain 1 with the high melting point metal particles or between the high melting point metal particles.
m or more. This temperature is
For example, when W (melting point 3655 ° K) is used as the binder, the temperature is about 1900 ° C or more. However, it was found that at this sintering temperature, the superabrasive grains 1 themselves deteriorated due to the high temperature, and the grinding force was reduced, so that the target grinding performance could not be sufficiently exhibited.

【0015】そこで、本発明者らは、鋭意研究の結果、
高融点金属粒子4の表面に酸化物被膜3を形成すると、
この酸化物被膜3の融点は、例えばWの酸化物である三
酸化タングステンWO3 の融点が1400℃であるよう
に、金属自体の融点より大幅に降下し、超砥粒1が変質
しない温度の目安である0.5Tm以下、例えば150
0℃程度の加熱により、超砥粒1と結合材粒子2、およ
び結合材粒子2どうしが互いにその表面で融着し、強力
な焼結組織体を形成し得ることを見いだし本発明に到達
した。
Therefore, the present inventors have conducted intensive research and have found that
When the oxide film 3 is formed on the surface of the refractory metal particles 4,
The melting point of the oxide film 3 is much lower than the melting point of the metal itself, such as tungsten trioxide WO 3 , which is an oxide of W, at 1400 ° C., for example. 0.5 Tm or less, for example, 150
It has been found that by heating at about 0 ° C., the superabrasive grains 1 and the binder particles 2, and the binder particles 2 are fused to each other on their surfaces to form a strong sintered structure, and have reached the present invention. .

【0016】前記の焼結組織体において、酸化物被膜3
は結合材粒子2の表面にのみ形成されているので、粒子
どうしは、この表面の被膜層でのみ互いに融着し、結合
材金属粒子4自体の硬くて脆い性質が失われることはな
い。従って本発明の超砥粒砥石10は、超砥粒1の切れ
味を高温焼結によって損うことなく、ドレッシング性が
良好で、目詰まりし難く、自生発刃作用があり、研削抵
抗が小さく、効率の良い精密研削砥石となる。
In the sintered structure, the oxide film 3
Are formed only on the surface of the binder particles 2, the particles fuse with each other only in the coating layer on this surface, and the hard and brittle properties of the binder metal particles 4 themselves are not lost. Therefore, the superabrasive grindstone 10 of the present invention has good dressing properties, is hardly clogged, has a spontaneous blade action, has a small grinding resistance, and does not impair the sharpness of the superabrasive grains 1 due to high-temperature sintering. It becomes an efficient precision grinding wheel.

【0017】次に、本発明の超砥粒砥石を構成する諸要
素について詳しく説明する。本発明の超砥粒砥石に用い
られる超砥粒は、ダイヤモンドまたはcBNである。例
えばセラミックス材料などの硬い被研削体を細密加工す
るなどの場合には、最高硬度を有するダイヤモンドを用
いることが好ましい。このダイヤモンドは、単結晶のも
のであっても多結晶のものであってもよく、天然ダイヤ
モンド、人造ダイヤモンドのいずれも使用できる。
Next, various elements constituting the superabrasive grinding wheel of the present invention will be described in detail. The superabrasive used in the superabrasive grindstone of the present invention is diamond or cBN. For example, in the case of finely processing a hard object to be ground such as a ceramic material, it is preferable to use diamond having the highest hardness. This diamond may be a single crystal or a polycrystal, and any of natural diamond and artificial diamond can be used.

【0018】しかし、鉄系の被研削体を加工する場合
は、ダイヤモンドの使用に問題があるので、この場合に
はcBNを用いることが好ましい。このcBNも、単結
晶のもの、多結晶のものいずれでもよい。また、本発明
に用いる超砥粒は、前記の任意の2種類以上の混合物で
あってもよい。
However, when processing an iron-based workpiece, there is a problem in using diamond. In this case, it is preferable to use cBN. This cBN may be either single-crystal or polycrystalline. The superabrasive grains used in the present invention may be a mixture of any two or more of the above.

【0019】超砥粒の平均粒径は、0.5μm〜60μ
mの範囲内とされる。平均粒径が0.5μm未満では粒
子が微細にすぎて研削能力が十分に発現せず、60μm
を越えると、例えばこの砥石を細密研削やラッピングな
どに用いる場合に、被研削面の仕上げが粗くなって不適
当である。この観点から、超砥粒の平均粒径は、0.5
μm〜10μmの範囲内とすることが好ましい。
The average grain size of the superabrasive grains is 0.5 μm to 60 μm.
m. If the average particle size is less than 0.5 μm, the particles are too fine and the grinding ability is not sufficiently exhibited,
If the whetstone is exceeded, for example, when this grindstone is used for fine grinding or lapping, the finish of the surface to be ground becomes rough, which is inappropriate. From this viewpoint, the average particle size of the superabrasive particles is 0.5
It is preferable to set it in the range of μm to 10 μm.

【0020】結合材として用いられる金属は、融点が2
000℃以上であって、その粒子表面に酸化物被膜を形
成することができ、この酸化物被膜が超砥粒を劣化させ
ない温度で溶融し得るものであればいずれでもよいが、
好ましい金属は、W、Os、Ta、Ir、Mo、および
Ruからなる群から選ばれたものである。上記の好まし
い金属の硬さ(Hv)、融点(℃)、酸化物組成、およ
び酸化物融点(℃)を表1に示す。この内で特に好まし
い金属は、融点が最も高いWである。
The metal used as the binder has a melting point of 2
000 ° C. or higher, an oxide film can be formed on the particle surface, and any oxide film can be used as long as it can be melted at a temperature that does not deteriorate superabrasive grains.
Preferred metals are those selected from the group consisting of W, Os, Ta, Ir, Mo, and Ru. Table 1 shows the hardness (Hv), melting point (° C.), oxide composition, and oxide melting point (° C.) of the above preferable metals. Among them, a particularly preferable metal is W having the highest melting point.

【0021】[0021]

【表1】 [Table 1]

【0022】結合材粒子の粒径は、特に限定されるもの
ではないが、超砥粒の平均粒径の5%〜50%の範囲内
とすることが好ましい。超砥粒に対する結合材粒子の粒
径が50%を越えると、焼結の際、混合物が型に充填さ
れた状態で超砥粒と結合材粒子との接触面積が小さくな
り、焼結時の結合力が不足して砥石自体の強度が低下す
る。また5%未満では、接触面積は十分に大きいから焼
結時の結合力は問題ないが、気孔率および気孔径が小さ
くなって、焼結物は無気孔メタルボンド砥石と大差がな
くなる。
The particle size of the binder particles is not particularly limited, but is preferably in the range of 5% to 50% of the average particle size of the superabrasive particles. If the particle size of the binder particles with respect to the superabrasive particles exceeds 50%, the contact area between the superabrasive particles and the binder particles in the state where the mixture is filled in the mold during sintering becomes small, Insufficient bonding force reduces the strength of the grindstone itself. If it is less than 5%, the contact area is sufficiently large so that there is no problem in the bonding force at the time of sintering.

【0023】本発明の超砥粒砥石は、粉体の表面焼結に
よって成形されるので、図1に示すように、その組織内
には多数の気孔5が含まれ、多孔質になっている。その
気孔率は、5%〜60%の範囲内とされていることが好
ましい。気孔率が5%未満では、結合材の組織が緻密と
なって摩滅し難く、従って自生発刃作用が起こり難くな
るばかりでなく、研削時に発生する切り屑を収容するポ
ケット(図1の符号6)の容量が不足し、また冷却液の
循環も不十分となり、目詰まりや摩擦熱による溶融など
が起こり易い。気孔率が60%を越えると、砥石自体の
物性が低下し、また目こぼれや目潰れが起こり易くな
る。これら観点から、気孔率は5%〜45%の範囲内と
することが更に好ましい。気孔率は、超砥粒と結合材粒
子のそれぞれの粒径、混合割合、焼結時に加える圧力、
混合時の揮発性介在物の有無などの諸条件を選定するこ
とにより調節することができる。
The superabrasive grindstone of the present invention is formed by surface sintering of powder, and as shown in FIG. 1, its structure contains many pores 5 and is porous. . The porosity is preferably in the range of 5% to 60%. When the porosity is less than 5%, the structure of the binder becomes dense and hard to wear, so that the spontaneous cutting action does not easily occur, and also a pocket (6 in FIG. 1) for accommodating chips generated during grinding. 2) capacity is insufficient, and the circulation of the cooling liquid is also insufficient, so that clogging and melting due to frictional heat are likely to occur. If the porosity exceeds 60%, the physical properties of the grindstone itself are reduced, and dropout or crushing is likely to occur. From these viewpoints, the porosity is more preferably in the range of 5% to 45%. The porosity is determined by the particle size of the superabrasive grains and the binder particles, the mixing ratio, the pressure applied during sintering,
It can be adjusted by selecting various conditions such as the presence or absence of volatile inclusions during mixing.

【0024】本発明の超砥粒砥石の製造に際しては、予
め、表面に酸化物被膜3が形成された高融点金属粒子を
用意する。高融点金属粒子の表面に酸化物被膜を形成す
るには、高融点金属粒子を空気中に放置して自然酸化さ
せるか、酸素雰囲気中で加熱するなど強制酸化させる
か、または高融点金属粒子にその酸化物を塗布するなど
の方法があり、これらの方法のいずれを用いてもよい。
In producing the superabrasive grindstone of the present invention, high melting point metal particles having an oxide film 3 formed on the surface are prepared in advance. In order to form an oxide film on the surface of the refractory metal particles, the refractory metal particles are left in the air to be naturally oxidized, forcibly oxidized by heating in an oxygen atmosphere, or formed into a refractory metal particle. There are methods such as applying the oxide, and any of these methods may be used.

【0025】次に超砥粒と前記の結合材粒子とを均一に
混合する。超砥粒と結合材との混合割合は、超砥粒:結
合材粒子の容量比で1:0.5〜1:3の範囲内とする
ことが好ましい。1:0.5より結合材の割合が少ない
場合は、超砥粒の密度が高すぎて焼結体の強度が低下
し、砥石が脆くなる。1:3より結合材の割合が多い場
合は、研削能力が低下する。
Next, the superabrasive grains and the binder particles are uniformly mixed. The mixing ratio of the superabrasives and the binder is preferably in the range of 1: 0.5 to 1: 3 in terms of the volume ratio of the superabrasives: the binder. If the ratio of the binder is less than 1: 0.5, the density of the superabrasive grains is too high, the strength of the sintered body is reduced, and the grindstone becomes brittle. When the ratio of the binder is larger than 1: 3, the grinding ability is reduced.

【0026】超砥粒と結合材との混合に際しては、例え
ばエタノールなどの揮発性液体を添加し、ボールミルな
どで液中分散を行い、その後に減圧乾燥などによって液
体成分を除去し、超砥粒と結合材粒子との粉体混合物を
得ることが好ましい。この方法によれば、超砥粒の凝集
が防止され、超砥粒が結合材中に均一に分散した粉体混
合物が得られるばかりでなく、混合時の粉体摩擦による
切り刃の鈍化や発熱による変質が防止される。
When mixing the superabrasive with the binder, a volatile liquid such as ethanol is added, and the mixture is dispersed in a liquid using a ball mill or the like. It is preferred to obtain a powder mixture of the particles and the binder particles. According to this method, agglomeration of the superabrasive grains is prevented, and not only a powder mixture in which the superabrasive grains are uniformly dispersed in the binder is obtained, but also the dulling of the cutting blade due to powder friction during mixing and heat generation. Deterioration is prevented.

【0027】焼結は、SPS法またはHIP法を用いて
行うことが好ましい。これらはいずれも粉末焼結法であ
り、これらの焼結法によれば、超砥粒と結合材粒子との
界面における拡散、反応、固溶などが促進され、超砥粒
と結合材粒子との結合力が強化される。
The sintering is preferably performed by using the SPS method or the HIP method. These are all powder sintering methods, and according to these sintering methods, diffusion, reaction, solid solution, etc., at the interface between the superabrasive grains and the binder particles are promoted, and the superabrasive grains and the binder particles are formed. Is strengthened.

【0028】SPS法は、例えば図2に概略を示す放電
プラズマ焼結装置(SPS装置)を用いて行うことがで
きる。図2において、このSPS装置は、筒状のダイ2
1と、このダイ21と同軸的に挿入された中子22と、
これらのダイ21および中子22と嵌合する上部パンチ
23および下部パンチ24と、これら上下のパンチ2
3、24に挟まれた粉体混合物25の温度を測定する熱
電対26とを有している。この上部パンチ23および下
部パンチ24は、ダイ21と中子22との間隙に充填さ
れた粉体混合物25を上下から挟圧するためのプレス
(図示せず)に連結されていると共に、粉体混合物25
にパルス電流を印加するためのそれぞれの電極を構成し
ている。このSPS装置において、少なくとも上下のパ
ンチ23,24に挟まれた部分はチャンバ(図示せず)
内に収容され、このチャンバ内は真空に排気されるか、
または不活性ガスが導入されるようになっている。
The SPS method can be performed using, for example, a discharge plasma sintering apparatus (SPS apparatus) schematically shown in FIG. In FIG. 2, this SPS device is a cylindrical die 2.
1, a core 22 inserted coaxially with the die 21,
An upper punch 23 and a lower punch 24 fitted to the die 21 and the core 22, and upper and lower punches 2
And a thermocouple 26 for measuring the temperature of the powder mixture 25 sandwiched between 3 and 24. The upper punch 23 and the lower punch 24 are connected to a press (not shown) for pressing the powder mixture 25 filled in the gap between the die 21 and the core 22 from above and below. 25
Each electrode for applying a pulse current to the electrodes is constituted. In this SPS device, at least a portion sandwiched between upper and lower punches 23 and 24 is a chamber (not shown).
And the inside of this chamber is evacuated to a vacuum or
Alternatively, an inert gas is introduced.

【0029】超砥粒と結合材との粉体混合物25は、所
定の砥石の形状に成形されたダイ21と中子22との間
隙に所定量が充填され、チャンバ内が真空にされ、また
は不活性ガスで置換された後に、上部パンチ23および
下部パンチ24で上下から所定の圧力で圧縮され、次い
でパルス電流が印加される。
A predetermined amount of the powder mixture 25 of the superabrasive grains and the binder is filled in the gap between the die 21 and the core 22 formed in a predetermined grinding stone shape, and the inside of the chamber is evacuated, or After the replacement with the inert gas, the upper and lower punches 23 and 24 compress the pressure from above and below at a predetermined pressure, and then apply a pulse current.

【0030】このSPS法によれば、通電電流を調節す
ることにより、粉体混合物25を所定の焼結温度に均一
に素早く昇温することができ、また温度管理や焼結時間
管理も厳密に行うことができる。上記のSPS法に用い
ることができるSPS装置としては、例えば住友石炭鉱
業社製モデルSPS−2050型放電プラズマ焼結装置
などを挙げることができる。
According to this SPS method, the powder mixture 25 can be uniformly and quickly heated to a predetermined sintering temperature by adjusting the current, and the temperature control and the sintering time control are strictly controlled. It can be carried out. Examples of the SPS device that can be used in the above-described SPS method include a model SPS-2050 type discharge plasma sintering device manufactured by Sumitomo Coal Mining Co., Ltd.

【0031】一方、HIP法は、例えば超砥粒と結合材
粒子との混合物に成形助材としてワックスなどを加え、
単軸プレスなどを用いて圧力10MPa程度に加圧して
粉体圧縮成形物をつくり、この粉体圧縮成形物を真空中
約800℃に加熱してワックスの除去と仮焼結とを行
い、次いで形状整形の後に、真空または不活性ガス雰囲
気中で熱圧を加えて本焼結を行い焼結体を得る方法であ
る。
On the other hand, in the HIP method, for example, a wax or the like is added as a molding aid to a mixture of superabrasive grains and binder particles,
Using a uniaxial press or the like, pressurize to a pressure of about 10 MPa to produce a powder compression molded product, and heat the powder compression molded product to about 800 ° C. in a vacuum to remove wax and perform preliminary sintering. After shaping, the main body is sintered by applying heat and pressure in a vacuum or an inert gas atmosphere to obtain a sintered body.

【0032】いずれの焼結方法においても、焼結は、不
活性ガスまたは酸素分圧が0.01MPa以下の雰囲気
中で行うことが好ましい。酸素分圧が0.01MPaを
越える雰囲気で熱圧を加えて焼結を行うと、超砥粒が変
質したり、結合材表面の酸化物被膜が増大して結合材が
高融点金属であることの利益が失われる惧れがあるから
である。不活性ガスとしては、N2 またはArなどが好
適に用いられる。
In any sintering method, sintering is preferably performed in an atmosphere having an inert gas or an oxygen partial pressure of 0.01 MPa or less. When sintering is performed by applying heat pressure in an atmosphere in which the oxygen partial pressure exceeds 0.01 MPa, the superabrasive grains are altered or the oxide film on the surface of the binder is increased, so that the binder is a high melting point metal. May lose the benefits of As the inert gas, N 2 or Ar is preferably used.

【0033】焼結に際して、焼結温度は0.5Tm以下
とすることが好ましい。ここでTmとは、絶対温度゜K
で表す結合材金属の融点または液相生成温度である。焼
結温度を0.5Tm以下とすることによって、前記のよ
うに、結合材粒子どうしが酸化物被膜のみによって融着
し、砥石自体の強度を維持しながら適度の崩落性を有し
て自生発刃作用を現し、良好な研削性が維持されるよう
になる。
At the time of sintering, the sintering temperature is preferably 0.5 Tm or less. Here, Tm is the absolute temperature ゜ K
Is the melting point of the binder metal or the liquid phase formation temperature. By setting the sintering temperature to 0.5 Tm or less, as described above, the binder particles are fused together only by the oxide film, and while maintaining the strength of the grindstone itself, it has a moderate collapse property and is spontaneously generated. A blade effect is exhibited, and good grinding properties are maintained.

【0034】焼結温度の下限は、用いられる結合材の特
性と焼結圧力に依存するが、少なくとも粒子どうしが互
いに表面融着して融合相を形成し得る温度とされる。こ
の下限温度は、通常600℃以上である。この観点か
ら、実際上好ましい焼結温度範囲は600℃〜1500
℃の範囲内とされる。
The lower limit of the sintering temperature depends on the properties of the binder used and the sintering pressure, but is set at a temperature at which at least the particles can be surface-fused with each other to form a fusion phase. This lower limit temperature is usually 600 ° C. or higher. From this viewpoint, a practically preferable sintering temperature range is 600 ° C. to 1500 ° C.
It is in the range of ° C.

【0035】また、焼結に際して、前記の焼結温度に保
持する時間は30分以内とすることが好ましい。液相を
生じる温度に30分を越えて保持すると、超砥粒が著し
く減量するからである。この観点から、焼結温度と焼結
時間とが厳密に制御できるSPS法は、本発明の超砥粒
を製造するのに好適な方法である。
In sintering, the time for maintaining the above sintering temperature is preferably within 30 minutes. If the temperature at which a liquid phase is generated is maintained for more than 30 minutes, the amount of superabrasive grains is significantly reduced. From this viewpoint, the SPS method in which the sintering temperature and the sintering time can be strictly controlled is a method suitable for producing the superabrasive of the present invention.

【0036】(実施例1)超砥粒として平均粒径25μ
mのダイヤモンドを用い、結合材として表面に酸化物被
膜が形成された粒径1μm〜2μmのWを用い、超砥
粒:結合材の容量比を25:32として混合した。W粒
子表面の酸化物被膜は、W粒子を大気中で800℃に1
時間加熱後、自然冷却して形成した。このときの酸化物
被膜の膜厚は0.05μm〜0.5μmであった。
(Example 1) Super abrasive grains having an average grain size of 25 µm
m of diamond, W having a particle size of 1 μm to 2 μm having an oxide film formed on the surface was used as a binder, and mixing was performed with a volume ratio of superabrasive: binder of 25:32. The oxide film on the surface of the W particles is obtained by heating the W particles at 800 ° C. in air.
After heating for an hour, it was formed by natural cooling. At this time, the thickness of the oxide film was 0.05 μm to 0.5 μm.

【0037】前記の混合物中にエタノールを添加し、ス
ラリー状としたうえでボールミルに仕込み、液中分散法
により分散を行い、終了後にエタノールを減圧除去し
て、結合材中に超砥粒が均一に分散した粉体混合物を得
た。
Ethanol is added to the above mixture to form a slurry, which is then charged in a ball mill, and dispersed by a liquid dispersion method. After completion, the ethanol is removed under reduced pressure, so that the superabrasive grains are uniform in the binder. To obtain a powder mixture dispersed.

【0038】得られた粉体混合物を図2に示したSPS
装置を用いて焼結した。ダイ21はグラファイト製であ
り、内径が92mmであり、中子22は外径が40mm
であった。このダイ21と中子22との間隙に前記の粉
体混合物を14.7g充填し、このダイの雰囲気をO2
分圧0.01MPa以下のガスで置換し、上部パンチ2
3および下部パンチ24を駆動して粉体混合物25を2
0MPaに加圧すると共に双方のパンチ間にパルス電流
を印加し、1260℃に5分間加熱した。
The obtained powder mixture was subjected to SPS shown in FIG.
Sintered using the equipment. The die 21 is made of graphite, has an inner diameter of 92 mm, and the core 22 has an outer diameter of 40 mm.
Met. The gap between the die 21 and the core 22 was filled with 14.7 g of the powder mixture, and the atmosphere of the die was changed to O 2.
Replace with a gas having a partial pressure of 0.01 MPa or less,
3 and the lower punch 24 to drive the powder mixture 25
A pressure was applied to 0 MPa and a pulse current was applied between both punches, and the punch was heated to 1260 ° C. for 5 minutes.

【0039】得られた実施例の超砥粒砥石は、外径92
mm、内径40mm、厚み0.429mmの薄刃砥石で
あり、重量は14.6644g、気孔率は42.2容量
%であった。
The obtained superabrasive grindstone of the embodiment has an outer diameter of 92.
mm, an inner diameter of 40 mm, and a thickness of 0.429 mm were used as a thin blade grindstone. The weight was 14.6444 g, and the porosity was 42.2% by volume.

【0040】(比較例1)実施例1と同様の超砥粒を用
い、結合材として粒径5μmのCoを用い、超砥粒:結
合材の容量比を25:32として実施例1と同様に液中
分散法により混合し、減圧乾燥して粉体混合物を得た。
Comparative Example 1 The same super abrasive grains as in Example 1 were used, Co having a particle size of 5 μm was used as the binder, and the volume ratio of super abrasive grains to the binder was 25:32. And dried under reduced pressure to obtain a powder mixture.

【0041】得られた粉体混合物を、実施例1と同様の
ダイおよびSPS装置を用い、焼結温度を780℃とし
た以外は実施例1と同様に焼結し、比較例1の砥石を得
た。このものの厚みは0.327mm、重量は7.76
18g、気孔率は23.6容量%であった。
The obtained powder mixture was sintered in the same manner as in Example 1 except that the sintering temperature was set to 780 ° C. using the same die and SPS apparatus as in Example 1, and the grindstone of Comparative Example 1 was used. Obtained. It has a thickness of 0.327 mm and a weight of 7.76.
18 g, porosity was 23.6% by volume.

【0042】前記実施例1および比較例1の超砥粒砥石
を用いて研削試験を行った。研削試験としては、砥石の
ヤング率や研削盤の剛性や馬力の影響を受けない湿式定
圧研削法を採用した。被研削体としては、Al23・T
iCセラミックス(曲げ強さ588MPa、マイクロビ
ッカース硬さ19GPa)を用いた。
A grinding test was performed using the superabrasive grindstones of Example 1 and Comparative Example 1. As a grinding test, a wet constant-pressure grinding method that was not affected by the Young's modulus of the grinding wheel, the rigidity of the grinding machine, and the horsepower was adopted. As the object to be ground, Al 2 O 3 .T
iC ceramics (a bending strength of 588 MPa and a micro Vickers hardness of 19 GPa) was used.

【0043】更に比較のため、比較例2として市販の同
様な形状の電鋳メタルボンド超砥粒砥石を用いた。実施
例1、比較例1および比較例2の超砥粒砥石について測
定した研削圧力(MPa)と、各研削圧力で30秒間研
削したときの研削量(mm3 )との関係を図3に示す。
For further comparison, as Comparative Example 2, a commercially available electroformed metal-bonded superabrasive having a similar shape was used. FIG. 3 shows the relationship between the grinding pressure (MPa) measured for the superabrasive grindstones of Example 1, Comparative Examples 1 and 2, and the amount of grinding (mm 3 ) when grinding for 30 seconds at each grinding pressure. .

【0044】試験の結果、比較例2の電鋳メタルボンド
超砥粒砥石は、研削圧約0.9MPaで目詰まりなどの
ため研削不能となった。この圧力限界時の研削量は約2
mm 3 であった。比較例1のCo結合材の超砥粒砥石
は、研削圧約1.25MPaで破壊された。この圧力限
界時の研削量は約4.5mm3 であった。
As a result of the test, the electroformed metal bond of Comparative Example 2
The super-abrasive grindstone has a grinding pressure of about 0.9MPa
As a result, grinding became impossible. The grinding amount at this pressure limit is about 2
mm ThreeMet. Super abrasive whetstone of Co binder of Comparative Example 1
Was destroyed at a grinding pressure of about 1.25 MPa. This pressure limit
Approximately 4.5mm grinding timeThreeMet.

【0045】これに対して、実施例1の超砥粒砥石は、
研削圧約2MPaでなお研削性能に異常なく、研削圧約
2MPaにおいて約6mm3 の研削量を示した。この結
果から、実施例1の超砥粒砥石は、比較例1のものより
気孔率が高いにもかかわらず、物性に優れ、研削圧を大
きくしても破壊されず、研削圧にほぼ比例して研削量が
増大したことがわかる。
On the other hand, the superabrasive grindstone of Example 1
The grinding performance was still normal at a grinding pressure of about 2 MPa, and the grinding amount was about 6 mm 3 at a grinding pressure of about 2 MPa. From these results, the superabrasive grindstone of Example 1 was excellent in physical properties despite being higher in porosity than that of Comparative Example 1, and was not destroyed even when the grinding pressure was increased, and was substantially proportional to the grinding pressure. It can be seen that the amount of grinding has increased.

【0046】(実施例2)実施例1の方法に準じて、超
砥粒として表2に示す粒径のダイヤモンドを用い、結合
材として表面に酸化物被膜が形成された粒径1μm〜2
μmのWを用い、表2に示す製造条件によって直径30
mm厚さ0.5mmの砥石試料を作成した。このものの
気孔率、ヤング率、およびビッカース硬さを測定した。
結果を表2に示す。
(Example 2) In accordance with the method of Example 1, diamond having a particle diameter shown in Table 2 was used as superabrasive particles, and a particle having an oxide film formed on the surface as a binder was 1 μm to 2 μm.
μm W and a diameter of 30 according to the manufacturing conditions shown in Table 2.
A grindstone sample having a thickness of 0.5 mm and a thickness of 0.5 mm was prepared. The porosity, Young's modulus, and Vickers hardness of this product were measured.
Table 2 shows the results.

【0047】(比較例2)実施例2の方法に準じて、超
砥粒として表2に示す粒径のダイヤモンドを用い、結合
材として表2に示す粒径のCoを用い、表2に示す製造
条件によって実施例2と同形の砥石試料を作成した。こ
のものの気孔率、ヤング率、およびビッカース硬さを実
施例2と共に表2に示す。
(Comparative Example 2) According to the method of Example 2, a diamond having a particle diameter shown in Table 2 was used as superabrasive grains, and Co having a particle diameter shown in Table 2 was used as a binder. A grindstone sample having the same shape as in Example 2 was prepared according to the manufacturing conditions. The porosity, Young's modulus, and Vickers hardness of this product are shown in Table 2 together with Example 2.

【0048】[0048]

【表2】 [Table 2]

【0049】実施例2および比較例2の比較から、本発
明の超砥粒砥石は、結合材としてCoを用いた従来の超
砥粒砥石に比べて高い気孔率を有し、しかも物性的にも
優れていることがわかる。
From a comparison between Example 2 and Comparative Example 2, the superabrasive grindstone of the present invention has a higher porosity than a conventional superabrasive grindstone using Co as a binder, and furthermore has a high physical property. It can be seen that is also excellent.

【0050】(実施例3)実施例1の方法に準じて、超
砥粒として表3に示す粒径のダイヤモンドを用い、結合
材として表面に酸化物被膜が形成された粒径1μm〜2
μmのWを用い、表3に示す製造条件によって外径92
mm、内径40mm、厚さ0.4mmの薄刃砥石試料を
作成した。このものの気孔率、ヤング率、およびビッカ
ース硬さを測定した。結果を表3に示す。
Example 3 According to the method of Example 1, diamond having a particle diameter shown in Table 3 was used as superabrasive particles, and a particle having an oxide film formed on the surface as a binder was 1 μm to 2 μm.
μm W and an outer diameter of 92 mm according to the manufacturing conditions shown in Table 3.
mm, an inner diameter of 40 mm, and a 0.4 mm-thick thin blade grindstone sample were prepared. The porosity, Young's modulus, and Vickers hardness of this product were measured. Table 3 shows the results.

【0051】(比較例3)実施例2の方法に準じて、超
砥粒として表3に示す粒径のダイヤモンドを用い、結合
材として表3に示す粒径のCoを用い、表3に示す製造
条件によって実施例3と同形の砥石試料を作成した。こ
のものの気孔率、ヤング率、およびビッカース硬さを実
施例3と共に表3に示す。
(Comparative Example 3) According to the method of Example 2, a diamond having a particle diameter shown in Table 3 was used as superabrasive particles, and Co having a particle diameter shown in Table 3 was used as a binder. A grindstone sample having the same shape as that of Example 3 was prepared according to the manufacturing conditions. The porosity, Young's modulus, and Vickers hardness of this product are shown in Table 3 together with Example 3.

【0052】[0052]

【表3】 [Table 3]

【0053】実施例3および比較例3の比較から、本発
明の超砥粒砥石は、結合材としてCoを用いた従来の超
砥粒砥石に比べて高い気孔率を有し、しかも物性的にも
優れていることがわかる。
From the comparison between Example 3 and Comparative Example 3, the superabrasive grindstone of the present invention has a higher porosity than the conventional superabrasive grindstone using Co as a binder, and furthermore has a high physical property. It can be seen that is also excellent.

【0054】本発明の超砥粒砥石においては、結合材粒
子の表面に酸化物被膜が形成されていることが重要であ
る。粒径1μm〜2μmのWを結合材粒子とし、酸化物
被膜を形成したものと形成しないものを、それぞれ温度
1260℃、圧力10MPa、時間5分の条件で処理
し、この条件で焼結できたものと焼結できなかったもの
とに含まれる酸素量をオージェ分析法により測定した。
焼結できたものの測定結果を図4(a)(b)に、焼結
できなかったものの測定結果を図5(a)(b)に示
す。ここでそれぞれ、図4(a)は炭素含量が38.9
at%、図4(b)は炭素含量が7.9at%、図5
(a)は炭素含量が32at%、図5(b)は炭素含量
が3.2at%である場合を示している。
In the superabrasive grinding wheel of the present invention, it is important that an oxide film is formed on the surface of the binder particles. W having a particle size of 1 μm to 2 μm was used as binder particles, and the oxide film was formed and the oxide film was not formed. The amount of oxygen contained in the sample and that which could not be sintered was measured by Auger analysis.
4 (a) and 4 (b) show the measurement results of those which could be sintered, and FIGS. 5 (a) and 5 (b) show the measurement results of those which could not be sintered. Here, FIG. 4 (a) shows that the carbon content is 38.9, respectively.
FIG. 4 (b) shows a carbon content of 7.9 at%, FIG.
(A) shows the case where the carbon content is 32 at%, and FIG. 5 (b) shows the case where the carbon content is 3.2 at%.

【0055】すなわち、試料中の炭素含量にかかわら
ず、酸素含量が3.2at%〜6.7at%と高い図4
(a)(b)の試料は1260℃において焼結可能であ
ったのに対して、酸素含量が1.3at%〜1.9at
%と低い図5(a)(b)の試料は同じ温度で焼結し得
なかった。この酸素が結合材粒子の表面に酸化物被膜を
形成したために、結合材粒子の焼結温度を低下させ、焼
結を可能にしたことは明かである。
That is, regardless of the carbon content in the sample, the oxygen content was as high as 3.2 at% to 6.7 at%.
The samples of (a) and (b) were sinterable at 1260 ° C., whereas the oxygen content was 1.3 at% to 1.9 at.
5 (a) and 5 (b) could not be sintered at the same temperature. It is clear that the oxygen formed an oxide film on the surface of the binder particles, thereby lowering the sintering temperature of the binder particles and enabling sintering.

【0056】本発明の超砥粒砥石は、カップ砥石または
薄刃砥石の形状でセラミックスなど超硬材料の研削・切
断に有利に使用できる。図6(a)は、本発明のカップ
砥石30を用いて、例えばAl23・TiCセラミック
スなどの超硬被研削材Sを研削している状態を示してい
る。図6(b)は、本発明の薄刃砥石31を用いて、例
えばAl23・TiCセラミックスなどの超硬被研削材
Sを切断している状態を示している。
The superabrasive grindstone of the present invention can be advantageously used for grinding and cutting superhard materials such as ceramics in the form of a cup grindstone or a thin blade grindstone. FIG. 6A shows a state in which a carbide grinding material S such as Al 2 O 3 .TiC ceramics is ground using the cup grinding wheel 30 of the present invention. FIG. 6B shows a state in which a material to be ground S such as Al 2 O 3 .TiC ceramics is cut using the thin blade whetstone 31 of the present invention.

【0057】本発明の超砥粒砥石は特に、Al23・T
iCセラミックス基板から磁気ヘッドのヘッドチップを
製造する際などに有利に使用できる。このヘッドチップ
の製造方法の一例を図7(a)(b)(c)によって説
明する。図7(a)に示すように、先ずAl23・Ti
Cセラミックス基板40に、コア41、コイル42、お
よび接続パッド43からなる磁気ヘッド素子44を薄膜
法により形成する。次に、この磁気ヘッド素子44…が
多数並列して形成されたウエハ状のAl23・TiCセ
ラミックス基板40を、並列した磁気ヘッド素子44…
の両側の線45,45に沿って、本発明のダイヤモンド
薄刃砥石を用いて切断する。これによって、図7(b)
に示すように、磁気ヘッドのスライドレール(46)と
なる断面46を有する棒状体47が得られる。次に、こ
の断面46に、本発明のダイヤモンドカップ砥石を用い
て垂直方向にスライド面48となる溝を研削する。これ
によってスライドレール46が形成される。次に、本発
明のダイヤモンド薄刃砥石を用いて棒状体47を磁気ヘ
ッド素子44ごとに垂直に切断すれば、図7(c)に示
すように、磁気ヘッド素子44とスライドレール46と
スライド面48とを有するヘッドチップ50が製造でき
る。
The superabrasive grindstone of the present invention is particularly suitable for Al 2 O 3 .T
It can be advantageously used, for example, when manufacturing a head chip of a magnetic head from an iC ceramics substrate. An example of a method for manufacturing this head chip will be described with reference to FIGS. 7 (a), 7 (b) and 7 (c). As shown in FIG. 7A, first, Al 2 O 3 .Ti
A magnetic head element 44 including a core 41, a coil 42, and a connection pad 43 is formed on a C ceramics substrate 40 by a thin film method. Next, a wafer-shaped Al 2 O 3 .TiC ceramics substrate 40 in which a number of the magnetic head elements 44 are formed in parallel is combined with the magnetic head elements 44 in parallel.
Is cut using the diamond thin blade grinding wheel of the present invention along the lines 45 on both sides of. As a result, FIG.
As shown in (1), a rod-shaped body 47 having a cross section 46 serving as a slide rail (46) of the magnetic head is obtained. Next, a groove that becomes a slide surface 48 in the vertical direction is ground on the cross section 46 using the diamond cup grindstone of the present invention. Thus, the slide rail 46 is formed. Next, when the rod-shaped body 47 is vertically cut for each magnetic head element 44 using the diamond thin blade grindstone of the present invention, as shown in FIG. 7C, the magnetic head element 44, the slide rail 46, and the slide surface 48 are formed. Can be manufactured.

【0058】前記のヘッドチップ50の製造に際して
は、本発明の薄刃砥石およびカップ砥石が用いられてい
るので、研削・切断の仕上げ面はきわめて平滑であり、
また砥石の耐久性が高いので目立ての回数も減少し、高
品質のヘッドチップが高い生産効率で製造できるように
なった。
In manufacturing the above-mentioned head chip 50, since the thin blade grindstone and the cup grindstone of the present invention are used, the finished surface of grinding and cutting is extremely smooth.
In addition, since the durability of the grindstone is high, the number of times of sharpening is reduced, and a high-quality head chip can be manufactured with high production efficiency.

【0059】[0059]

【発明の効果】本発明の超砥粒砥石は、超砥粒と結合材
粒子との焼結体からなり、この結合材粒子が、表面に酸
化物被膜が形成された融点2000℃以上の金属の粒子
からなるものであるので、比較的低い温度で焼結するこ
とができ、しかも超砥粒と結合材粒子との結合力が強く
砥石自体の強度が高い。更に焼結組織体は適度の崩落性
を有し、砥粒を強力に保持しながらドレッシング性が良
好であり、目詰まりし難く自生発刃作用があり、研削抵
抗が小さく、難研削材料を精密にかつ効率よく研削する
ことができる。
The superabrasive grindstone of the present invention comprises a sintered body of superabrasive grains and binder particles, and the binder particles are formed of a metal having a melting point of 2,000 ° C. or more and having an oxide film formed on the surface. , It can be sintered at a relatively low temperature, and the bonding force between the superabrasive grains and the binder particles is strong, and the strength of the grindstone itself is high. In addition, the sintered structure has a suitable level of disintegration, has good dressing properties while strongly retaining abrasive grains, has a self-generating blade action that is unlikely to be clogged, has a small grinding resistance, and can be used to precisely grind difficult-to-grind materials. And efficient grinding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の超砥粒砥石の一実施例における断面
模式図
FIG. 1 is a schematic cross-sectional view of an embodiment of a superabrasive grindstone of the present invention.

【図2】 放電プラズマ焼結装置の一例を示す断面図FIG. 2 is a sectional view showing an example of a spark plasma sintering apparatus.

【図3】 実施例と比較例の研削圧力と研削量との関係
を示すグラフ
FIG. 3 is a graph showing a relationship between a grinding pressure and a grinding amount in Examples and Comparative Examples.

【図4】 (a)(b)はそれぞれ、焼結組成物中の酸
素含量を測定するためのオージェ分析グラフ
FIGS. 4A and 4B are Auger analysis graphs for measuring the oxygen content in a sintered composition, respectively.

【図5】 (a)(b)はそれぞれ、焼結組成物中の酸
素含量を測定するためのオージェ分析グラフ
FIGS. 5A and 5B are Auger analysis graphs for measuring the oxygen content in a sintered composition, respectively.

【図6】 (a)(b)はそれぞれ、本発明の超砥粒砥
石の異なる使用形態の例を示す斜視図
FIGS. 6 (a) and 6 (b) are perspective views respectively showing examples of different use forms of the superabrasive grindstone of the present invention.

【図7】 (a)(b)(c)は本発明の超砥粒砥石の
一適用例である磁気ヘッドのヘッドチップを製造する工
程を示す斜視図
FIGS. 7A, 7B, and 7C are perspective views showing steps of manufacturing a head chip of a magnetic head as one application example of the superabrasive grindstone of the present invention.

【符号の説明】[Explanation of symbols]

1……超砥粒 2……結合材粒子 3……酸化物被膜 4……金属粒子 5……気孔 6……ポケット 10…超砥粒砥石 21…ダイ 22…中子 23…上部パンチ 24…下部パンチ 25…粉体混合物 26…熱電対 DESCRIPTION OF SYMBOLS 1 ... Super abrasive grain 2 ... Binder material 3 ... Oxide film 4 ... Metal particle 5 ... Pore 6 ... Pocket 10 ... Super abrasive grain grindstone 21 ... Die 22 ... Core 23 ... Top punch 24 ... Lower punch 25: powder mixture 26: thermocouple

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が0.5μm〜60μmの範囲
内であるダイヤモンドまたは立方晶窒化ホウ素からなる
超砥粒と結合材粒子との焼結体からなり、この結合材粒
子が、表面に酸化物被膜が形成された融点2000℃以
上の金属の粒子からなるものであることを特徴とする超
砥粒砥石。
1. A sintered body of superabrasive grains made of diamond or cubic boron nitride having an average particle diameter in a range of 0.5 μm to 60 μm and binder particles, and the binder particles have a surface A superabrasive grindstone comprising a metal particle having a melting point of 2,000 ° C. or more and having an oxide film formed thereon.
【請求項2】 前記の金属が、W、Os、Ta、Ir、
Mo、およびRuからなる群から選ばれた1種以上であ
ることを特徴とする請求項1に記載の超砥粒砥石。
2. The method according to claim 1, wherein the metal is W, Os, Ta, Ir,
The superabrasive stone according to claim 1, wherein the superabrasive stone is at least one selected from the group consisting of Mo and Ru.
【請求項3】 平均粒径が0.5μm〜60μmの範囲
内であるダイヤモンドまたは立方晶窒化ホウ素からなる
超砥粒と、表面に酸化物被膜が形成された融点2000
℃以上の金属の粒子からなる結合材粒子とを混合し、得
られた粉体混合物を焼結することを特徴とする超砥粒砥
石の製造方法。
3. A superabrasive made of diamond or cubic boron nitride having an average particle size in the range of 0.5 μm to 60 μm, and a melting point of 2000 having an oxide film formed on the surface.
A method for producing a superabrasive grindstone, comprising mixing a binder material composed of metal particles having a temperature of at least 0 ° C. and sintering the obtained powder mixture.
【請求項4】 前記の焼結を、放電プラズマ焼結法また
はホット・アイソスタチック・プレス焼結法を用いて行
うことを特徴とする請求項3に記載の超砥粒砥石の製造
方法。
4. The method according to claim 3, wherein the sintering is performed using a spark plasma sintering method or a hot isostatic press sintering method.
【請求項5】 前記の焼結を、不活性ガスまたは酸素分
圧が0.01MPa以下の雰囲気中で行うことを特徴と
する請求項3に記載の超砥粒砥石の製造方法。
5. The method according to claim 3, wherein the sintering is performed in an atmosphere having an inert gas or oxygen partial pressure of 0.01 MPa or less.
【請求項6】 前記の焼結を、0.5Tm(Tmは絶対
温度゜Kで表す結合材の融点または液相生成温度であ
る)以下の焼結温度に30分以内の時間保持して行うこ
とを特徴とする請求項3に記載の超砥粒砥石の製造方
法。
6. The sintering is carried out at a sintering temperature of 0.5 Tm or less (Tm is a melting point or a liquid phase generation temperature of a binder represented by an absolute temperature ΔK) or less for a period of 30 minutes or less. The method for producing a superabrasive grindstone according to claim 3, wherein:
JP26882796A 1996-10-09 1996-10-09 Superabrasive stone and its manufacturing method Expired - Fee Related JP3406163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26882796A JP3406163B2 (en) 1996-10-09 1996-10-09 Superabrasive stone and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26882796A JP3406163B2 (en) 1996-10-09 1996-10-09 Superabrasive stone and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH10113877A true JPH10113877A (en) 1998-05-06
JP3406163B2 JP3406163B2 (en) 2003-05-12

Family

ID=17463814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26882796A Expired - Fee Related JP3406163B2 (en) 1996-10-09 1996-10-09 Superabrasive stone and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3406163B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214359B2 (en) 2003-02-03 2007-05-08 Showa Denko K.K. Cubic boron nitride, catalyst for synthesizing cubic boron nitride, and method for producing cubic boron nitride
KR100903910B1 (en) * 2003-02-03 2009-06-19 쇼와 덴코 가부시키가이샤 Cubic Boron Nitride and Grinding Stone Using the Same
JP2009172751A (en) * 2007-12-28 2009-08-06 Shin Etsu Chem Co Ltd External periphery cutting blade and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214359B2 (en) 2003-02-03 2007-05-08 Showa Denko K.K. Cubic boron nitride, catalyst for synthesizing cubic boron nitride, and method for producing cubic boron nitride
KR100903910B1 (en) * 2003-02-03 2009-06-19 쇼와 덴코 가부시키가이샤 Cubic Boron Nitride and Grinding Stone Using the Same
JP2009172751A (en) * 2007-12-28 2009-08-06 Shin Etsu Chem Co Ltd External periphery cutting blade and its manufacturing method
JP2013082072A (en) * 2007-12-28 2013-05-09 Shin-Etsu Chemical Co Ltd Outer periphery cutting blade and method for manufacturing the same

Also Published As

Publication number Publication date
JP3406163B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
JP4173573B2 (en) Method for producing porous abrasive wheel
JP3336015B2 (en) Manufacturing method of highly permeable whetstone
JP3949891B2 (en) Super whetstone with active binder
JPH09103965A (en) Porous superbrasive grinding wheel and its manufacture
EP2234760B1 (en) Multifunction abrasive tool with hybrid bond
JP4157082B2 (en) Method for manufacturing rigidly bonded thin whetstone
JPH10113875A (en) Super abrasive grain abrasive grindstone
JP2001246566A (en) Cutting grinding wheel, its manufacturing method and grinding method using it
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
JP2003181765A (en) Porous supergrain grinding stone and method for manufacturing the same
JP4584971B2 (en) Manufacturing method of grinding wheel
JP3380125B2 (en) Porous superabrasive stone and its manufacturing method
JP3703228B2 (en) Diamond whetstone, manufacturing method thereof and tool
JP3406163B2 (en) Superabrasive stone and its manufacturing method
JP2003136410A (en) Super-abrasive grains vitrified bond grinding wheel
JP2000198075A (en) Composite bond grinding wheel and grind wheel having resin binder phase
KR100522779B1 (en) Porous grinding stone and method of production thereof
JP2001088035A (en) Porous or air hole incorporating type grinding wheel/ stone
JP4335980B2 (en) Grinding wheel
JP3281605B2 (en) Vitrified bond whetstone and method of manufacturing the same
JP2001139936A (en) Whetstone for polishing single crystal diamond or diamond sintered product and method for polishing the same and single crystal diamond and diamond sintered product obtained by polishing
JP3055084B2 (en) Porous metal bond whetstone and method of manufacturing the same
JPH1094967A (en) Porous superabrasive grain metal bond grinding wheel superior in cutting property, and manufacture of the same
JP2002220628A (en) Diamond-metal composite with mirror plane, and artificial joint, dice, roll or mold therewith, and method for manufacturing diamond-metal composite
JP2002224963A (en) Super abrasive vitrified bonded whetstone

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees