JPH07126791A - Cermet alloy - Google Patents

Cermet alloy

Info

Publication number
JPH07126791A
JPH07126791A JP29734393A JP29734393A JPH07126791A JP H07126791 A JPH07126791 A JP H07126791A JP 29734393 A JP29734393 A JP 29734393A JP 29734393 A JP29734393 A JP 29734393A JP H07126791 A JPH07126791 A JP H07126791A
Authority
JP
Japan
Prior art keywords
powder
hard
grains
sintering
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29734393A
Other languages
Japanese (ja)
Inventor
Takeshi Sadohara
毅 佐土原
Katsuhiko Kojo
勝彦 古城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Tool Engineering Ltd filed Critical Hitachi Metals Ltd
Priority to JP29734393A priority Critical patent/JPH07126791A/en
Publication of JPH07126791A publication Critical patent/JPH07126791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a cermet alloy material having high hardness and superior toughness by preparing a powder mixture consisting of powder of hard carbides of specific metals and powder of hard metal boride and sintering this powder mixture by using Co powder as a binding material. CONSTITUTION:A hard WB powder or MoB powder is mixed with a powder of hard carbides of the group IVa metals (Ti, Zr, Hf), group Va metals (V, Nb, Ta), group VIa metals (Cr, Mo, W), etc., of the Periodic Table. A Co powder is added as a binding material at the time of sintering to the resulting powder mixture, which is compacted and then sintered at 1300-1600 deg.C. As to the grain size of the hard metal carbides, the grains of >=2.0mum comprise 20-70% of the whole grains and the other grains have <=2mum grain size, and the powder of hard metal borides, such as WB and MoB, and the Co powder as a binding material are added to the hard metal carbide powder. By this method, the cermet alloy material, composed essentially of the hard carbides of the group IVa-VIa metals in the Periodic Table and the W-Co-B or Mo-Co-B type hard compound and having high hardness and superior toughness, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はサーメット合金に関し、
特に複ほう化物を含むサーメット合金の靱性の向上に関
する。
This invention relates to cermet alloys,
In particular, it relates to improvement in toughness of cermet alloys containing double borides.

【0002】[0002]

【従来の技術】複ほう化物を含むサーメット合金につい
ての提案は種々なされており、本出願人も先に、MC
(ただし、Mは周期律表第4a、5a、6a属金属元素
のうち一種以上)およびW−Co−B化合物を主体とす
る硬質相、ならびにCoを主体とする結合相からなるサ
ーメット合金を提案している(米国特許5,149,5
95、欧州特許公開477685)。このサーメット合
金は、原料粉末としてWB粉末、Co粉末、およびMC
粉末を混合・成形下のちに1300〜1600℃で焼結
することにより得ることができるが、焼結時には以下の
ような挙動がなされる。すなわち、焼結時にCoは溶融
し、焼結を促進してち密化が図られ、硬質粒子であるM
C粒、WB粒とCo粒とが強固に結合される。しかも、
このCoは単に硬質粒子の間隙を埋めるだけではなく、
その一部はWBと反応してその内部に入り込みCoW2
2を形成し、さらにCoW22の表面にはCoWBが
形成される。このサーメット合金は、ビッカース硬さが
1800以上を有しているため、工具への適用が検討さ
れている。また、結合相中の金属Coの量が少ないた
め、ダイヤモンド膜形成用の基板としても有望視されて
いる。また、このサーメット合金と同様な考え方に基づ
き、MC(ただし、Mは周期律表第4a、5a、6a属
金属元素のうち一種以上)およびMo−Co−B化合物
を主体とする硬質相、ならびにCoを主体とする結合相
からなるサーメット合金も提案している(特開平5−2
09247号)。
2. Description of the Related Art Various proposals have been made for cermet alloys containing double boride.
(Provided that M is one or more of metal elements belonging to Groups 4a, 5a and 6a of the Periodic Table) and a hard phase mainly composed of a W-Co-B compound and a cermet alloy composed of a binder phase mainly composed of Co. (US Pat. No. 5,149,5
95, European Patent Publication 477685). This cermet alloy contains WB powder, Co powder, and MC as raw material powders.
It can be obtained by sintering the powder at 1300-1600 ° C. after mixing and molding, but the following behavior is performed during sintering. That is, Co is melted during sintering, promotes sintering, and is densified.
C grains, WB grains and Co grains are strongly bonded. Moreover,
This Co not only fills the gaps of hard particles,
A part of it reacts with WB and enters the inside, and CoW 2
B 2 is formed, and further CoWB is formed on the surface of CoW 2 B 2 . Since this cermet alloy has a Vickers hardness of 1800 or more, its application to tools is under study. Further, since the amount of metallic Co in the binder phase is small, it is also considered as a promising substrate for forming a diamond film. In addition, based on the same idea as this cermet alloy, MC (where M is one or more of the metal elements of the 4a, 5a, and 6a group of the periodic table) and a hard phase mainly composed of a Mo-Co-B compound, and A cermet alloy composed of a binder phase containing Co as a main component is also proposed (Japanese Patent Laid-Open No. 5-2).
09247).

【0003】[0003]

【発明が解決しようとする課題】しかし、このサーメッ
ト合金は、結合相中の金属Coが少ないことに起因して
靱性の点では十分でなかった。したがって、工具として
の使用時もさることながら、所定形状への研削加工時に
カケが生じるという問題があった。この問題について
は、研削加工条件を緩やかにすれば回避できるが、加工
時間が増大して工業生産上好ましくない。そこで本発明
は、MC(ただし、Mは周期律表第4a、5a、6a属
金属元素のうち一種以上)、およびW−Co−B化合物
もしくはMo−Co−B化合物を主体とする硬質相、な
らびにCoを主体とする結合相からなるサーメット合金
の靱性を向上することを課題とする。
However, this cermet alloy is insufficient in toughness due to the small amount of metallic Co in the binder phase. Therefore, there is a problem that chipping occurs during grinding into a predetermined shape, not to mention when used as a tool. This problem can be avoided by grading the grinding processing conditions, but the processing time increases, which is not preferable for industrial production. Therefore, the present invention provides MC (where M is one or more of the metal elements of Group 4a, 5a, and 6a of the Periodic Table) and a hard phase mainly composed of a W-Co-B compound or a Mo-Co-B compound, Another object is to improve the toughness of a cermet alloy composed of a binder phase mainly composed of Co.

【0004】[0004]

【課題を解決するための手段】本発明者は前記課題を解
決するため種々検討した結果、MC粉末を単一粒度とし
て添加するのではなく、相対的に微細な粒子と相対的に
粗大な粒子を混合して添加することにより焼結体中のM
C相が相対的に微細なMC粒と相対的に粗大なMC粒と
が混在した組織となり、このような組織であると靱性が
向上することを知見した。本発明は以上の知見に基づき
なされたものであり、MC(ただし、Mは周期律表第4
a、5a、6a属金属元素のうち一種以上)およびW−
Co−B化合物を主体とする硬質相、ならびにCoを主
体とする結合相からなる焼結体であり、MCのうち平均
粒径2.0μm以上のMC粒が面積率で20〜70%、
残部のMC粒が平均粒径2.0μm未満であることを特
徴とするサーメット合金、または、MC(ただし、Mは
周期律表第4a、5a、6a属金属元素のうち一種以
上)およびMo−Co−B化合物を主体とする硬質相、
ならびにCoを主体とする結合相からなる焼結体であ
り、MCのうち平均粒径2.0μm以上のMC粒が面積
率で20〜70%、残部のMC粒が平均粒径2.0μm
未満であることを特徴とするサーメット合金である。
As a result of various studies to solve the above problems, the present inventor did not add MC powder as a single particle size but rather relatively fine particles and relatively coarse particles. By mixing and adding M in the sintered body
It has been found that the C phase has a structure in which relatively fine MC grains and relatively coarse MC grains coexist, and such a structure improves toughness. The present invention has been made based on the above findings, and MC (where M is the fourth periodic table
a, one or more of metal elements of 5a, 6a) and W-
A sintered body composed of a hard phase mainly composed of a Co-B compound and a binder phase mainly composed of Co, in which MC particles having an average particle size of 2.0 μm or more have an area ratio of 20 to 70%,
A cermet alloy characterized in that the remaining MC grains have an average grain size of less than 2.0 μm, or MC (where M is one or more of the metal elements of Groups 4a, 5a, and 6a of the Periodic Table) and Mo−. A hard phase mainly composed of a Co-B compound,
And a sintered body composed of a binder phase mainly composed of Co, in which MC grains having an average grain size of 2.0 μm or more have an area ratio of 20 to 70%, and the remaining MC grains have an average grain size of 2.0 μm.
It is a cermet alloy characterized by being less than.

【0005】[0005]

【作用】以下本発明を更に詳細に説明する。本発明にか
かる焼結体は、原料粉末としてWB粉末またはMoB粉
末、Co粉末、およびMC粉末を混合・成形下のちに1
300〜1600℃で焼結することにより得ることがで
きる。混合量としては、WB粉末またはMoB粉末を2
〜45体積%、Co2〜20体積%、残部MC粉末とす
ればよい。WB粉末またはMoB粉末を2〜45体積%
とするのは、2体積%未満ではW−Co−B化合物また
はMo−Co−B化合物の生成が不十分で硬度の確保が
できず、45体積%を越えると均一な焼結が困難になる
傾向にあるからである。Coを2〜20体積%とするの
は、2体積%未満では密度が上がりにくく強度、靱性が
低下するためであり、20%を越えると結合相中に残留
する金属Coが多くなり硬度を低下させるためである。
The present invention will be described in more detail below. The sintered body according to the present invention is prepared by mixing and molding WB powder or MoB powder, Co powder, and MC powder as raw material powder, and then
It can be obtained by sintering at 300 to 1600 ° C. The amount of WB powder or MoB powder is 2
˜45% by volume, Co2˜20% by volume, and the balance MC powder. 2 to 45% by volume of WB powder or MoB powder
When the content is less than 2% by volume, the W-Co-B compound or the Mo-Co-B compound is not sufficiently formed to secure the hardness, and when it exceeds 45% by volume, uniform sintering becomes difficult. This is because there is a tendency. The reason why the Co content is 2 to 20% by volume is that if the content is less than 2% by volume, the density is hard to increase and the strength and toughness are deteriorated. This is to allow it.

【0006】原料粉末、特にMC粉末の粒度を特定する
点に本発明の特徴がある。すなわち、MC粉末は、平均
粒径2μm未満の微細な粉末と平均粒径2μm以上の粗
大な粉末を用いることにより、MCのうち平均粒径2.
0μm以上のMC粒が面積率で20〜70%、残部のM
C粒が平均粒径2.0μm未満の組織を得ることがで
き、靱性向上に寄与する。ただし、極度に粉末粒径が大
きくなると粉末の活性度が小さくなり焼結が進行しなく
なるので、10μm以下とするのがよい。WB粉末、C
o粉末の粒径も、10μm以下の範囲で選択すればよ
い。
The present invention is characterized in that the grain size of the raw material powder, particularly the MC powder, is specified. That is, as the MC powder, by using a fine powder having an average particle size of less than 2 μm and a coarse powder having an average particle size of 2 μm or more, an average particle size of 2.
The area ratio of MC particles of 0 μm or more is 20 to 70%, and the balance is M.
It is possible to obtain a structure in which C grains have an average grain size of less than 2.0 μm, which contributes to improvement in toughness. However, if the particle size of the powder becomes extremely large, the activity of the powder becomes small and the sintering does not proceed, so the particle size is preferably 10 μm or less. WB powder, C
The particle size of the powder may be selected within the range of 10 μm or less.

【0007】以上の原料粉末を混合、成形後に焼結する
が、この焼結は非加圧焼結法を適用することができる。
焼結温度は、1300℃未満では焼結が十分に進行せ
ず、また1600℃を越えると硬質相の粒成長が著しく
なる。よって、1300〜1600℃とするのがよい。
また、焼結時間は、10分未満では焼結が十分に進行せ
ず、120分を越えると硬質相の粒成長が著しくなる。
よって、焼結時間は10〜120分とするのがよい。焼
結時には以下のような挙動がなされる。すなわち、焼結
時にCoは溶融し、焼結を促進してち密化が図られ、硬
質粒子であるMC粒、WB粒(またはMoB粒)とCo
粒とが強固に結合される。しかも、このCoは単に硬質
粒子の間隙を埋めるだけではなく、その一部はWB(ま
たはMoB)と反応してその内部に入り込みCoW22
(またはCoMo22)を形成し、さらにCoW2
2(またはCoMo22)の表面にはCoWB(または
CoMoB)が形成される。
The above raw material powders are mixed and molded and then sintered, and a non-pressure sintering method can be applied to this sintering.
If the sintering temperature is lower than 1300 ° C, the sintering does not proceed sufficiently, and if it exceeds 1600 ° C, the grain growth of the hard phase becomes remarkable. Therefore, the temperature is preferably set to 1300 to 1600 ° C.
When the sintering time is less than 10 minutes, the sintering does not proceed sufficiently, and when it exceeds 120 minutes, the grain growth of the hard phase becomes remarkable.
Therefore, the sintering time is preferably 10 to 120 minutes. The following behavior occurs during sintering. That is, Co is melted at the time of sintering, promotes sintering, and is densified, and hard particles such as MC particles, WB particles (or MoB particles) and Co particles
It is firmly bonded to the grains. Moreover, this Co not only fills the gaps between the hard particles, but a part thereof reacts with WB (or MoB) and enters the inside thereof, and CoW 2 B 2
(Or CoMo 2 B 2 ) and then CoW 2 B
CoWB (or CoMoB) is formed on the surface of 2 (or CoMo 2 B 2 ).

【0008】[0008]

【実施例】以下本発明を実施例に基づき説明する。 (実施例1)平均粒度0.6μmおよび3.5μmのW
C粉末、平均粒度2.5μmのWB粉末、平均粒径8μ
mのCo粉末を準備し、(90−X)vol%WC1−Xvol
%WC2−5vol%WB−5vol%Coの配合組成となるよう
に混合した。なお、WC1とは平均粒度0.6μmのW
C粉末を、またWC2とは平均粒度3.5μmのWC粉
末を示す。この混合物を1500kgf/cm2の圧力にてプ
レス成形し、この成形体を真空中にて1500℃、1時
間焼結してして焼結体を得た。焼結体のビッカース硬さ
(Hv)、クラック抵抗(CR)を測定した。その結果
を表1に示す。
EXAMPLES The present invention will be described below based on examples. (Example 1) W having an average particle size of 0.6 μm and 3.5 μm
C powder, WB powder with an average particle size of 2.5 μm, average particle size of 8 μ
Prepare the Co powder m, (90-X) vol % WC 1 -Xvol
% Were mixed so that the composition of WC 2 -5vol% WB-5vol% Co. In addition, WC 1 is W having an average particle size of 0.6 μm.
C powder and WC 2 mean WC powder having an average particle size of 3.5 μm. This mixture was press-molded at a pressure of 1500 kgf / cm 2 , and the molded body was sintered in a vacuum at 1500 ° C. for 1 hour to obtain a sintered body. The Vickers hardness (Hv) and crack resistance (CR) of the sintered body were measured. The results are shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】表1より、平均粒度0.6μmと粒度の小
さいWC粉末のみを用いたNo1の材料は硬度は高いが
靱性は低く、平均粒度3.5μmのWC粉末の添加量を
増加するにつれ硬度は低下するが靱性は高くなることが
判る。No.5の材料は、靱性は向上するが、硬度が低
下しすぎて本系材料の特徴を損なう。表1のNo1およ
びNo2のミクロ組織を観察した。図1にNo1の、ま
た図2にNo.2の金属ミクロ組織写真を示す。No.
1のWC粒は1μm以下の範囲でほぼ均一であるのに対
し、No.2は3μmを越える粗大なWC粒と1μm以
下の微細なWC粒が混在した組織となっていることが確
認された。また、No.3、4も同様な組織となってい
た。
From Table 1, it can be seen that the No. 1 material using only WC powder having an average particle size of 0.6 μm and a small particle size has high hardness but low toughness, and the hardness increases as the amount of WC powder having an average particle size of 3.5 μm increases. It can be seen that the toughness decreases but the toughness increases. No. The material of No. 5 has improved toughness, but its hardness is too low, and the characteristics of this material are impaired. The No. 1 and No. 2 microstructures in Table 1 were observed. No. 1 in FIG. 1 and No. 1 in FIG. The metal microstructure photograph of 2 is shown. No.
The WC grains of No. 1 are almost uniform in the range of 1 μm or less, whereas the WC grains of No. It was confirmed that No. 2 has a structure in which coarse WC grains exceeding 3 μm and fine WC grains of 1 μm or less are mixed. In addition, No. 3 and 4 had the same organization.

【0011】次に、No.1〜No.5の材料を研削加
工した際に生じたカケの最大寸法を測定し、研削加工性
を評価した。結果を表2に示す。
Next, No. 1-No. The maximum dimension of the chip generated when the material of No. 5 was ground was measured, and the grindability was evaluated. The results are shown in Table 2.

【0012】[0012]

【表2】 [Table 2]

【0013】表2から、3μmを越える粗大なWC粒と
1μm以下の微細なWC粒が混在した組織となっている
材料のカケ寸法が小であることがわかる。
From Table 2, it can be seen that the chip size of the material having a structure in which coarse WC grains of more than 3 μm and fine WC grains of 1 μm or less are mixed is small.

【0014】(実施例2)平均粒度0.6μmおよび
3.0μmのWC粉末、平均粒度2.5μmのMoB粉
末、平均粒径8μmのCo粉末を準備して実施例1と同
様な方法で表3に示す配合組成の材料を得た。
(Example 2) WC powders having an average particle size of 0.6 μm and 3.0 μm, MoB powder having an average particle size of 2.5 μm, and Co powder having an average particle size of 8 μm were prepared and prepared in the same manner as in Example 1. A material having a compounding composition shown in 3 was obtained.

【0015】[0015]

【表3】 [Table 3]

【0016】次に、この焼結体のミクロ組織を観察する
ことにより、WC相中における平均粒径2.0μm以上
のWC粒の面積率を求めた。結果を表4に示す。
Next, the area ratio of WC grains having an average grain size of 2.0 μm or more in the WC phase was obtained by observing the microstructure of this sintered body. The results are shown in Table 4.

【0017】[0017]

【表4】 [Table 4]

【0018】表3、4より、平均粒径2.0μm以上の
WC粒の面積率が高くなるにつれて、材料の靱性は向上
する。しかし、この面積率が高くなりすぎると、硬さの
低下が著しくなるので、本発明では平均粒径2.0μm
以上のWC粒の面積率を20〜70%とする。
From Tables 3 and 4, as the area ratio of WC grains having an average grain size of 2.0 μm or more increases, the toughness of the material improves. However, if the area ratio is too high, the hardness is remarkably lowered, and therefore, in the present invention, the average particle size is 2.0 μm.
The area ratio of the above WC grains is set to 20 to 70%.

【0019】[0019]

【発明の効果】以上説明のように、本発明によれば、M
C(ただし、Mは周期律表第4a、5a、6a属金属元
素のうち一種以上)、およびW−Co−B化合物もしく
はMo−Co−B化合物を主体とする硬質相、ならびに
Coを主体とする結合相からなるサーメット合金の靱性
を向上することができる。
As described above, according to the present invention, M
C (provided that M is one or more of the metal elements of Groups 4a, 5a, and 6a of the Periodic Table), a hard phase containing a W-Co-B compound or a Mo-Co-B compound as a main component, and Co as a main component. It is possible to improve the toughness of the cermet alloy composed of the binder phase.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のWCおよびW−Co−B化合物を主体と
する硬質相、ならびにCoを主体とする結合相からなる
サーメット合金の金属ミクロ組織写真である。
FIG. 1 is a photograph of a metal microstructure of a cermet alloy including a conventional hard phase mainly composed of WC and a W—Co—B compound and a binder phase mainly composed of Co.

【図2】本発明にかかるWCおよびW−Co−B化合物
を主体とする硬質相、ならびにCoを主体とする結合相
からなるサーメット合金の金属ミクロ組織写真である。
FIG. 2 is a photograph of a metal microstructure of a cermet alloy including a hard phase mainly containing WC and a W—Co—B compound according to the present invention and a binder phase mainly containing Co.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 MC(ただし、Mは周期律表第4a、5
a、6a属金属元素のうち一種以上)およびW−Co−
B化合物を主体とする硬質相、ならびにCoを主体とす
る結合相からなる焼結体であり、MCのうち平均粒径
2.0μm以上のMC粒が面積率で20〜70%存在す
ることを特徴とするサーメット合金。
1. MC (where M is 4a, 5 of the periodic table)
a, one or more of 6a group metal elements) and W-Co-
A sintered body comprising a hard phase mainly composed of a B compound and a binder phase mainly composed of Co, wherein MC particles having an average particle diameter of 2.0 μm or more are present in an area ratio of 20 to 70%. A characteristic cermet alloy.
【請求項2】 MC(ただし、Mは周期律表第4a、5
a、6a属金属元素のうち一種以上)およびMo−Co
−B化合物を主体とする硬質相、ならびにCoを主体と
する結合相からなる焼結体であり、MCのうち平均粒径
2.0μm以上のMC粒が面積率で20〜70%存在す
ることを特徴とするサーメット合金。
2. MC (where M is 4a, 5 of the periodic table)
a, one or more of 6a group metal elements) and Mo-Co
-A sintered body composed of a hard phase mainly composed of a B compound and a binder phase mainly composed of Co, and 20 to 70% of MC particles having an average particle diameter of 2.0 µm or more are present in an area ratio. A cermet alloy characterized by.
JP29734393A 1993-11-02 1993-11-02 Cermet alloy Pending JPH07126791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29734393A JPH07126791A (en) 1993-11-02 1993-11-02 Cermet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29734393A JPH07126791A (en) 1993-11-02 1993-11-02 Cermet alloy

Publications (1)

Publication Number Publication Date
JPH07126791A true JPH07126791A (en) 1995-05-16

Family

ID=17845293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29734393A Pending JPH07126791A (en) 1993-11-02 1993-11-02 Cermet alloy

Country Status (1)

Country Link
JP (1) JPH07126791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904474A (en) * 2017-11-02 2018-04-13 北京科技大学 A kind of molybdenum cobalt boron Ternary Boride Base Cermets material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904474A (en) * 2017-11-02 2018-04-13 北京科技大学 A kind of molybdenum cobalt boron Ternary Boride Base Cermets material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0251264B1 (en) Diamond-coated tungsten carbide base sintered hard alloy material for insert of a cutting tool
EP0534191B1 (en) Cermets and their production and use
JP7272353B2 (en) Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method
JP3046336B2 (en) Sintered alloy with graded composition and method for producing the same
JP2004292905A (en) Compositionally graded sintered alloy and method of producing the same
EP0477685A2 (en) Cermets and their production and use
JP3080983B2 (en) Hard sintered alloy having gradient composition structure and method for producing the same
JPH09316587A (en) High strength fine-grained diamond sintered compact and tool using the same
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JP2775298B2 (en) Cermet tool
JPH07126791A (en) Cermet alloy
JPH05230588A (en) Hard alloy
JP2502322B2 (en) High toughness cermet
JP2796011B2 (en) Whisker reinforced cemented carbide
JP4540791B2 (en) Cermet for cutting tools
JP2900545B2 (en) Cutting tool whose cutting edge is made of cubic boron nitride based sintered body
JP2657602B2 (en) Cemented carbide and its manufacturing method
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JPH09227981A (en) Cemented carbide
JP2003113438A (en) Die made from sintered hard metal alloy
JPH0663900A (en) Water jet nozzle
JP3366696B2 (en) Manufacturing method of high strength cermet
JPH0610089A (en) Coated sintered hard alloy
JPH11269573A (en) Manufacture of cemented carbide containing plate crystal wc