JPH0590532A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH0590532A
JPH0590532A JP24771491A JP24771491A JPH0590532A JP H0590532 A JPH0590532 A JP H0590532A JP 24771491 A JP24771491 A JP 24771491A JP 24771491 A JP24771491 A JP 24771491A JP H0590532 A JPH0590532 A JP H0590532A
Authority
JP
Japan
Prior art keywords
ferroelectric
capacitor
gate electrode
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24771491A
Other languages
Japanese (ja)
Other versions
JP3160324B2 (en
Inventor
Takashi Nakamura
孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP24771491A priority Critical patent/JP3160324B2/en
Publication of JPH0590532A publication Critical patent/JPH0590532A/en
Application granted granted Critical
Publication of JP3160324B2 publication Critical patent/JP3160324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/223Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using MOS with ferroelectric gate insulating film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To detect the electric continuity state and the discontinuity state between a source and a drain at the time of readout, and enable nondestructive readout, by connecting a ferroelectric substance capacitor with the gate electrode of a field-effect transistor, and connecting an outer electrode terminal with a part between the capacitor and the gate electrode. CONSTITUTION:The title device contains a ferroelectric substance capacitor 1 and an MOS FET, and the capacitor 1 is connected with a gate electrode 22. By transferring charge stored in the ferroelectric substance capacitor 1 to the gate electrode 22, the electric continuity state and the discontinuity state of the MOS FET are changed over. The stored data are read by detecting the continuity state or the discontinuity state between a source 15 and a drain 16, so that the polarization state of the ferroelectric substanace capacitor 1 is not destructed. A bit line 17 is installed at the connection part of one electrode of the ferroelectric substance capacitor 1 and a gate electrode 22 of the MOS FET, and the voltage between the word line 14 and the bit line 17 is changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体記憶素子に関す
る。さらに詳しくは、強誘電体キャパシタを使用した非
破壊読み出しが可能な半導体記憶素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device. More specifically, it relates to a non-destructive readable semiconductor memory element using a ferroelectric capacitor.

【0002】[0002]

【従来の技術】従来より提案されている強誘電体キャパ
シタを使用した半導体記憶素子としては大きく分ける
と、1つのセルに1つのトランジスタと1つのキャパシ
タを有するタイプ(以下、1Tr・1Capa/1cellタイプ
という)と金属膜・強誘電体膜・半導体層(以下、MFS
という)構造がある。
2. Description of the Related Art A semiconductor memory device using a ferroelectric capacitor proposed hitherto is roughly classified into a type having one transistor and one capacitor in one cell (hereinafter, referred to as 1Tr · 1Capa / 1cell type). And metal film / ferroelectric film / semiconductor layer (hereinafter MFS)
There is a structure.

【0003】このうち1Tr・1Capa/1cellタイプのも
のは図12〜13に示されるように強誘電体キャパシタ1と
MOSFETのソースまたはドレインとを接続したものであ
る。なお、図12〜13において、2は強誘電体、3は下部
電極、4は拡散層、5はゲート電極、6は第1層間絶縁
膜、7は第2層間絶縁膜、8はAl配線層、9はフィール
ド酸化膜である。
Of these, the 1Tr / 1Capa / 1cell type is a ferroelectric capacitor 1 as shown in FIGS.
It is connected to the source or drain of the MOSFET. 12 to 13, 2 is a ferroelectric, 3 is a lower electrode, 4 is a diffusion layer, 5 is a gate electrode, 6 is a first interlayer insulating film, 7 is a second interlayer insulating film, and 8 is an Al wiring layer. , 9 are field oxide films.

【0004】この方式のものは、図14に示される強誘電
体のヒステリシスにおいて、AまたはBの状態を判定す
るために一度Cまで電界がかけられる。そして、そのと
き流れる電流によりAまたはBを判定するものである。
In this system, an electric field is once applied up to C in order to judge the state of A or B in the hysteresis of the ferroelectric substance shown in FIG. Then, A or B is determined by the current flowing at that time.

【0005】つぎにMFS 構造は、図15に示されるよう
に、半導体基板12上に直接強誘電体膜11を形成し、該強
誘電体膜11の分極反転電荷により下部の半導体に反転層
を形成するというものである。なお図15において、10は
ゲート電極、13は不純物拡散領域でゲート領域とソース
領域を構成する。
Next, in the MFS structure, as shown in FIG. 15, a ferroelectric film 11 is directly formed on a semiconductor substrate 12, and an inversion layer is formed on a semiconductor below by a polarization inversion charge of the ferroelectric film 11. It is to form. In FIG. 15, 10 is a gate electrode, and 13 is an impurity diffusion region which constitutes a gate region and a source region.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
た強誘電体を使用した半導体記憶素子のうち1Tr・1Ca
pa/1cellタイプのものは、破壊読み出しであるうえ
に、AまたはBを判定するために必要とされる残留分極
が比較的大きい(Capa面積が1μm2 のとき、約10μC/
cm2 は必要とされている)という問題がある。
However, among the semiconductor memory elements using the above-mentioned ferroelectric, 1Tr.1Ca is used.
The pa / 1 cell type is not only destructive read-out, but also has a relatively large remanent polarization required to judge A or B (when the Capa area is 1 μm 2 , it is about 10 μC /
cm 2 is needed).

【0007】一方、MFS 構造は、蓄積電荷量ではなく蓄
積電荷密度を必要とするため、電極面積を広く取る必要
がなく、したがって要求される残留分極も約1μC/cm2
以下と比較的小さい。
On the other hand, since the MFS structure requires the accumulated charge density rather than the accumulated charge amount, it is not necessary to take a large electrode area, and therefore the required remanent polarization is about 1 μC / cm 2
It is relatively small as below.

【0008】しかしながら、半導体基板上に直接性質の
異なる強誘電体膜を形成するのは困難であり、このため
F/Sの界面に SiO2 などのバッファ層を設けることが
提案されている(特開昭50-57345号公報参照)。
However, it is difficult to directly form a ferroelectric film having different properties on a semiconductor substrate. Therefore, it has been proposed to provide a buffer layer such as SiO 2 at the F / S interface (special feature). See Kaisho 50-57345).

【0009】しかし、バッファ層を設けると強誘電体と
バッファ層の積層コンデンサ構造となり、強誘電体にか
かる電圧が低下し、このため印加電圧を大きくしなけれ
ばならなくなるという問題がある。
However, when the buffer layer is provided, a laminated capacitor structure of a ferroelectric substance and a buffer layer is formed, and the voltage applied to the ferroelectric substance decreases, so that there is a problem that the applied voltage must be increased.

【0010】また、この構造では、バッファ層の有無に
かかわらず結晶性の良い強誘電体薄膜をうるのは困難で
ある。
Also, with this structure, it is difficult to obtain a ferroelectric thin film having good crystallinity regardless of the presence or absence of a buffer layer.

【0011】本発明は、叙上の事情に鑑み、前記従来技
術の有する欠点が解消された強誘電体使用の半導体記憶
素子を提供することを目的とする。すなわち本発明の目
的は、非破壊読み出しが可能であり、結晶性の良い強誘
電体膜が形成された半導体記憶素子を提供することであ
る。
In view of the above circumstances, it is an object of the present invention to provide a semiconductor memory device using a ferroelectric material, in which the drawbacks of the prior art described above are solved. That is, an object of the present invention is to provide a semiconductor memory element in which a ferroelectric film having non-destructive readability and good crystallinity is formed.

【0012】[0012]

【課題を解決するための手段】本発明の半導体記憶素子
は、第1導電型の半導体基板表面に間隔をおいて形成さ
れた2つの第2導電型の半導体領域のあいだの前記基板
表面に誘電体薄膜が設けられており、該誘電体薄膜上部
に導電膜が形成されゲート電極とした電界効果型トラン
ジスタと、強誘電体を2つの導電体電極ではさんだ強誘
電体キャパシタとを有するる半導体記憶素子であって、
前記電界効果型トランジスタのゲート電極が前記強誘電
体層をはさむ2つの導電体電極の一方と電気的に接続さ
れており、かつ前記ゲート電極および該ゲート電極と接
続された前記導電体電極に接続された電極端子が導出さ
れてなることを特徴としている。
According to another aspect of the present invention, there is provided a semiconductor memory device in which a dielectric layer is formed on a surface of a first conductivity type semiconductor substrate between two second conductivity type semiconductor regions formed at intervals. A semiconductor memory having a body thin film, a field effect transistor having a gate electrode with a conductive film formed on the dielectric thin film, and a ferroelectric capacitor having a ferroelectric sandwiched between two conductor electrodes. An element,
A gate electrode of the field-effect transistor is electrically connected to one of two conductor electrodes sandwiching the ferroelectric layer, and is connected to the gate electrode and the conductor electrode connected to the gate electrode. It is characterized in that the formed electrode terminals are led out.

【0013】[0013]

【作用】本発明によれば、強誘電体キャパシタをMOSFET
のゲート電極に接続すると共に、接続部から電極端子を
取り出す構成としているため、信号の書き込みにあたっ
ては、強誘電体キャパシタの両電極間に信号電圧を印加
すればよく、低い電圧で書き込みができる。また読み出
しにあたっては強誘電体キャパシタに蓄積された分極電
荷がMOSFETのゲート絶縁膜で形成されたキャパシタに転
送されMOSFETのドレイン、ソース間の導通、非導通状態
で検出でき、分極電荷を破壊しないで簡単に読み出すこ
とができる。
According to the present invention, a ferroelectric capacitor is used as a MOSFET.
Since the electrode terminal is connected to the gate electrode of the ferroelectric capacitor and the electrode terminal is taken out from the connection portion, a signal voltage may be applied between both electrodes of the ferroelectric capacitor when writing a signal, and writing can be performed at a low voltage. When reading, the polarization charge stored in the ferroelectric capacitor is transferred to the capacitor formed by the gate insulating film of the MOSFET and can be detected in the conduction or non-conduction state between the drain and source of the MOSFET, without destroying the polarization charge. It can be read easily.

【0014】さらに本発明によれば、強誘電体膜をMOSF
ETのゲート絶縁膜とは別個に形成するため、強誘電体膜
の下地電極の材質を自由に選択でき結晶性の良い強誘電
体膜を形成できる。
Furthermore, according to the present invention, the ferroelectric film is a MOSF.
Since it is formed separately from the gate insulating film of ET, the material of the base electrode of the ferroelectric film can be freely selected and a ferroelectric film with good crystallinity can be formed.

【0015】[0015]

【実施例】以下、添付図面に基づき本発明の半導体記憶
素子(以下、デバイスという)をさらに詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor memory device of the present invention (hereinafter referred to as a device) will be described in more detail below with reference to the accompanying drawings.

【0016】本発明のデバイスの基本構成は、図1に示
されるように強誘電体キャパシタとMOSFETをそれぞれひ
とつずつ含むものである。ただ、従来の1Tr・1Capa/
1cell構造(図12〜13参照)のようにキャパシタとFET
のソースまたはドレインとを接続する構造ではなく、キ
ャパシタとゲート電極とを接続したものである。強誘電
体キャパシタによる蓄積電荷をゲート電極に伝えること
によりMOSFETの導通、非導通状態を切り替えられる。強
誘電体の残留分極による電荷を利用すれば、MOSFETの導
通、非導通状態を“1”、“0”とした不揮発性メモリ
の構成が可能である。
The basic structure of the device of the present invention includes one ferroelectric capacitor and one MOSFET, as shown in FIG. However, conventional 1Tr / 1Capa /
Capacitor and FET like 1cell structure (see Figures 12-13)
The structure is not a structure in which the source or the drain is connected, but a capacitor and a gate electrode are connected. The conduction / non-conduction state of the MOSFET can be switched by transmitting the charge accumulated by the ferroelectric capacitor to the gate electrode. By utilizing the electric charge due to the remanent polarization of the ferroelectric substance, it is possible to construct a non-volatile memory in which the conduction and non-conduction states of the MOSFET are "1" and "0".

【0017】この方式では記憶を読み出すのに、図1の
ソース15とドレイン16のあいだが導通か非導通かを読み
取ることにより行うので、読み取りにより強誘電体キャ
パシタ1の分極状態を破壊することはない。また、この
構造においてもMOSFETのゲート酸化膜の下部に発生する
電荷密度を必要とするため、MFS 構造と同様に要求され
る残留分極は比較的小さくてよい。こうして、前述した
1Tr・1Capa/1cellタイプに対する問題を解決するこ
とができる。
In this method, the memory is read out by reading the conduction or non-conduction between the source 15 and the drain 16 in FIG. 1, so that the polarization state of the ferroelectric capacitor 1 is not destroyed by the reading. Absent. In addition, since this structure also requires a charge density generated below the gate oxide film of the MOSFET, the remanent polarization required as in the MFS structure may be relatively small. In this way, it is possible to solve the above-mentioned problem for the 1Tr / 1Capa / 1cell type.

【0018】また本発明の構造では、半導体基板や半導
体基板上のバッファ層の上に強誘電体薄膜を直接成膜す
る必要がなく、下部電極の材質を選ぶことによって強誘
電体薄膜と下地との整合性をうることができる。たとえ
ば酸化物ペロブスカイト構造をもつPZT (PbZrTiO3 )、
PLZT (PbLaZrTiO3 )、 PbTiO3 などは、下地にPtを用
いると結晶性の良い膜がえられる。
Further, in the structure of the present invention, it is not necessary to directly form the ferroelectric thin film on the semiconductor substrate or the buffer layer on the semiconductor substrate, and by selecting the material of the lower electrode, the ferroelectric thin film and the base can be formed. The consistency of can be obtained. For example, PZT (PbZrTiO 3 ) with oxide perovskite structure,
PLZT (PbLaZrTiO 3 ), PbTiO 3 etc. can be obtained as a film with good crystallinity if Pt is used as the base.

【0019】また強誘電体キャパシタ1の一方の電極と
MOSFETのゲート電極との接続部にビットライン17を設け
ることにより、ワードライン14とビットライン17とのあ
いだの電圧を変化させることができ、これにより強誘電
体の分極反転を操作することができる。そのためMFIS構
造のように、絶縁膜を挿入した分印加電圧を大きくする
という必要がなくなり、低い電圧で記憶させることがで
きる。こうして、前述したMFS 構造に対する問題を解決
することができる。
Further, one electrode of the ferroelectric capacitor 1
By providing the bit line 17 at the connection with the gate electrode of the MOSFET, the voltage between the word line 14 and the bit line 17 can be changed, and thereby the polarization reversal of the ferroelectric substance can be manipulated. .. Therefore, unlike the MFIS structure, it is not necessary to increase the applied voltage by inserting the insulating film, and it is possible to store at a low voltage. In this way, the above-mentioned problem with the MFS structure can be solved.

【0020】実施例1 図2〜7は本発明のデバイスの一実施例のプロセスフロ
ーをあらわす断面説明図である。なお、図7は図6を90
°回転させた方向での断面説明図である。図2〜7にお
いて、18は半導体基板、19はFET のドレイン、ソース領
域を形成するための不純物拡散領域、20は素子間分離の
ためのフィールド酸化膜、21は層間絶縁膜、22はゲート
電極、23はゲート酸化膜、24は導電体電極(導電膜)、
25は強誘電体、26は配線層、27はパシベーション膜であ
る。
Embodiment 1 FIGS. 2 to 7 are sectional explanatory views showing a process flow of an embodiment of the device of the present invention. In addition, FIG.
It is a cross-sectional explanatory view in the direction rotated by °. 2 to 7, 18 is a semiconductor substrate, 19 is an impurity diffusion region for forming FET drain and source regions, 20 is a field oxide film for element isolation, 21 is an interlayer insulating film, and 22 is a gate electrode. , 23 is a gate oxide film, 24 is a conductor electrode (conductive film),
Reference numeral 25 is a ferroelectric substance, 26 is a wiring layer, and 27 is a passivation film.

【0021】本実施例ではFET とキャパシタとが層間絶
縁膜21a により分離されている。図2に示される工程は
従来のMOSFET技術によるものである。
In this embodiment, the FET and the capacitor are separated by the interlayer insulating film 21a. The process shown in FIG. 2 is by conventional MOSFET technology.

【0022】すなわち、半導体基板表面に薄い酸化膜を
熱酸化法により形成し、部分酸化法により素子分離用の
フィールド酸化膜20を形成した。そののち、絶縁膜にポ
リシリコンを堆積してゲート電極22を形成すると共に、
ソース、ドレイン領域を形成する場所にイオン打込みを
し、熱処理をして不純物拡散層19を形成した。そのの
ち、CVD 法などにより層間絶縁膜21a を形成したもので
ある。
That is, a thin oxide film was formed on the surface of a semiconductor substrate by a thermal oxidation method, and a field oxide film 20 for element isolation was formed by a partial oxidation method. After that, polysilicon is deposited on the insulating film to form the gate electrode 22, and
Ion implantation was performed on the locations where the source and drain regions are to be formed, and heat treatment was performed to form the impurity diffusion layer 19. After that, the interlayer insulating film 21a is formed by the CVD method or the like.

【0023】つぎに、図3に示されるように層間絶縁膜
21a の上にキャパシタの下部電極となる導電膜24a を形
成、加工した。この導電膜の形成はたとえば、スパッタ
リング法で、100 〜600nm の膜厚のPt金属膜を形成し、
エッチングにより必要な部分のみを残し、他を腐蝕除去
する。この際、ゲート電極22と連結するように(図7参
照)導電膜を延ばして形成した。このPt金属膜を形成す
るのは、ついで導電膜24a の上に強誘電体25が形成され
るが、この強誘電体25に酸化物ペロブスカイト構造をも
つPZT 系(PZT 、PLZT、 PbTiO3 など)を用いるばあ
い、導電膜の材料としてはF.C.C.構造すなわち面心立方
格子構造をもつ金属、とくにPt(白金)を用いるのが好
ましいからである。その理由は、F.C.C.金属は下地にか
かわらず結晶配向性をもつ性質があり、その中でもPtは
PZT 系の強誘電体との格子定数のミスマッチが比較的小
さく、そのため強誘電体の結晶配向性が良くなるためで
ある。
Next, as shown in FIG. 3, an interlayer insulating film is formed.
A conductive film 24a to be the lower electrode of the capacitor was formed and processed on 21a. The conductive film is formed, for example, by a sputtering method to form a Pt metal film with a thickness of 100 to 600 nm.
By etching, only the necessary parts are left and the others are removed by corrosion. At this time, the conductive film was extended so as to be connected to the gate electrode 22 (see FIG. 7). The Pt metal film is formed by forming the ferroelectric 25 on the conductive film 24a, and the PZT system (PZT, PLZT, PbTiO 3 etc.) having an oxide perovskite structure is formed on the ferroelectric 25. This is because it is preferable to use a metal having an FCC structure, that is, a face-centered cubic lattice structure, especially Pt (platinum) as the material of the conductive film when using. The reason is that FCC metal has the property of crystal orientation regardless of the substrate, and among them, Pt
This is because the lattice constant mismatch with the PZT-based ferroelectric is relatively small, which improves the crystal orientation of the ferroelectric.

【0024】ついで図4に示すように強誘電体材料のた
とえば、PZT をスパッタリング法で0.1 〜0.3 μm 堆積
し、引きつづき上部電極を下部電極と同様に積層して不
要部分をエッチング除去して形成した。この強誘電体材
料の形成はスパッタリング法以外のCVD 法、ゾル−ゲル
法などでも形成できる。この強誘電体材料は酸化物ペロ
ブスカイト構造をもつPZT 、PLZTなどが強誘電性も強い
ので理想的である。しかし成膜の難しさからみると、Ge
TeやPbx Ge1-x Teのように簡単な結晶構造(NaCl型)で
結晶化温度の低い(250 ℃以下)、Ge元素を成分に有す
る強誘電体の方が、製造プロセス上優れている。
Next, as shown in FIG. 4, a ferroelectric material such as PZT is deposited to a thickness of 0.1 to 0.3 μm by a sputtering method, and then an upper electrode is laminated in the same manner as the lower electrode and unnecessary portions are removed by etching. did. The ferroelectric material can be formed by a CVD method other than the sputtering method, a sol-gel method, or the like. This ferroelectric material is ideal because PZT and PLZT, which have an oxide perovskite structure, have strong ferroelectricity. However, from the difficulty of film formation, Ge
Ferroelectrics with a simple crystal structure (NaCl type), such as Te and Pb x Ge 1-x Te, that have a low crystallization temperature (250 ° C or less) and have a Ge element as a component are superior to the manufacturing process There is.

【0025】なお、電極は2層以上の積層構造たとえ
ば、不純物がドープされたポリシリコンやアモルファス
シリコとPt層の組み合わせにすると接着性向上の効果が
ある。また、電極および強誘電体の加工に関してはウェ
ットエッチングでも良いが、微細化に適応しうる点より
イオンミリング、RIBE、RIE などのドライエッチングの
方が好ましい。
It should be noted that the electrode has a laminated structure of two or more layers, for example, a combination of impurity-doped polysilicon or amorphous silicon and a Pt layer has an effect of improving adhesiveness. Although wet etching may be used for processing the electrodes and the ferroelectric, dry etching such as ion milling, RIBE, or RIE is preferable from the viewpoint of adaptability to miniaturization.

【0026】つぎの図5〜6に示されるステップは従来
の半導体プロセス技術を用いたもので、強誘電体25およ
び上部電極の導電膜24b の上にCVD 法などでPSG を約0.
5μm 堆積し、層間絶縁膜21b を再度形成した。そのの
ち、電極コンタクトのため、層間絶縁膜21b を目抜き、
スパッタリング法によりAl膜を成膜し、エッチングでAl
の配線層26を形成した。その上にさらに、CVD 法などで
PSG を1〜2μm 堆積し、パッシベーション膜27を形成
して本発明の半導体記憶素子部分を形成した。
The steps shown in FIGS. 5 to 6 are performed by using the conventional semiconductor process technology, and the PSG of about 0.5 is formed on the ferroelectric 25 and the conductive film 24b of the upper electrode by the CVD method or the like.
5 μm was deposited and the interlayer insulating film 21b was formed again. After that, for electrode contact, the interlayer insulating film 21b is punched out,
An Al film is formed by sputtering and Al is etched.
The wiring layer 26 was formed. On top of that, the CVD method etc.
PSG was deposited to a thickness of 1 to 2 μm and a passivation film 27 was formed to form a semiconductor memory element portion of the present invention.

【0027】実施例2 図8〜11は本発明のデバイスの他の実施例のプロセスフ
ローをあらわす断面説明図である。なお、図11は図10を
90°回転させた方向での断面説明図である。図8〜11に
おいて、18〜27は実施例1における同一参照符号と同等
のものをあらわしている。
Embodiment 2 FIGS. 8 to 11 are sectional explanatory views showing a process flow of another embodiment of the device of the present invention. Note that FIG. 11 shows FIG.
It is a section explanatory view in the direction rotated 90 degrees. 8 to 11, 18 to 27 represent the same reference numerals as those in the first embodiment.

【0028】本実施例ではFET のゲート電極と強誘電体
キャパシタの下部電極とが共用となっている。図8に示
されるステップでは、従来のMOSFET技術を用いて実施例
1と同様に半導体基板18上にフィールド酸化膜20、ゲー
ト酸化膜23を形成し、その上部にゲート電極兼強誘電体
キャパシタの下部電極となるPtの導電膜22を形成し、そ
の上部に強誘電体25、さらにその上部に上部電極となる
導電膜24を形成した。ここで強誘電体25として酸化物ペ
ロブスカイト構造をもつPZT 系を用いるばあいは、前述
した理由により導電膜の材料としてPtを選択するのが好
ましい。また導電膜22、24は2層以上の積層構造であっ
てもよい。たとえば、下地との整合性を考え下部電極の
Ptの下にドープされたポリシリコンやドープされたアモ
ルファスシリコンなどのシリコン系の導電体を形成する
と一層密着性がよい。
In this embodiment, the gate electrode of the FET and the lower electrode of the ferroelectric capacitor are shared. In the step shown in FIG. 8, the field oxide film 20 and the gate oxide film 23 are formed on the semiconductor substrate 18 by using the conventional MOSFET technology as in the first embodiment, and the gate electrode / ferroelectric capacitor is formed on the field oxide film 20 and the gate oxide film 23. A Pt conductive film 22 to be a lower electrode was formed, a ferroelectric 25 was formed on the conductive film 22, and a conductive film 24 to be an upper electrode was further formed on the ferroelectric 25. When the PZT system having the oxide perovskite structure is used as the ferroelectric 25, it is preferable to select Pt as the material of the conductive film for the reason described above. Further, the conductive films 22 and 24 may have a laminated structure of two or more layers. For example, considering the compatibility with the base,
Adhesion is further improved by forming a silicon-based conductor such as doped polysilicon or doped amorphous silicon under Pt.

【0029】ついで図9に示されるように電極および強
誘電体薄膜の不要部分を除去するため、エッチング加工
し、不純物拡散領域19を形成した。加工の方法としては
前述した理由によりドライエッチングを用いるのが好ま
しい。図10〜11は実施例1と同様に、従来のMOSFET技術
を用いてAlの配線層26およびパッシベーション膜27を形
成した工程をあらわしている。
Then, as shown in FIG. 9, in order to remove unnecessary portions of the electrodes and the ferroelectric thin film, etching processing was performed to form impurity diffusion regions 19. As a processing method, it is preferable to use dry etching for the reasons described above. 10 to 11 show the process of forming the Al wiring layer 26 and the passivation film 27 by using the conventional MOSFET technique as in the first embodiment.

【0030】[0030]

【発明の効果】以上説明したとおり、本発明のデバイス
によれば強誘電体キャパシタと電界効果型トランジスタ
のゲート電極とが接続されており、かつ前記キャパシタ
とゲート電極とのあいだに外部電極端子が接続されてい
るので、書き込み時は低い電圧で行え、読み出し時に
は、強誘電体の分極反転電荷によりMOSFETのゲートに反
転層を形成し、ドレイン、ソース間の導通、非導通状態
で検出でき、非破壊読み出しが可能である。また、結晶
性の良い強誘電体薄膜を有するデバイスをうることがで
きる。
As described above, according to the device of the present invention, the ferroelectric capacitor is connected to the gate electrode of the field effect transistor, and the external electrode terminal is provided between the capacitor and the gate electrode. Since they are connected, a low voltage can be used for writing, and an inversion layer can be formed on the gate of the MOSFET by the polarization inversion charge of the ferroelectric substance for reading, and detection can be performed in the conduction or non-conduction state between the drain and source. Destructive reading is possible. Further, a device having a ferroelectric thin film having good crystallinity can be obtained.

【0031】その結果、強誘電体のキャパシタに蓄えら
れた電荷量により情報を記憶する半導体記憶素子の特性
並びに信頼性を大幅に向上でき利用範囲が増える効果が
ある。
As a result, the characteristics and reliability of the semiconductor memory element for storing information can be greatly improved by the amount of electric charge stored in the ferroelectric capacitor, and the range of use can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のデバイスの一実施例の等価回路図であ
る。
FIG. 1 is an equivalent circuit diagram of an embodiment of the device of the present invention.

【図2】本発明のデバイスの一実施例のプロセスフロー
をあらわす断面説明図である。
FIG. 2 is a cross-sectional explanatory diagram showing a process flow of one embodiment of the device of the present invention.

【図3】本発明のデバイスの一実施例のプロセスフロー
をあらわす断面説明図である。
FIG. 3 is a cross-sectional explanatory view showing a process flow of an example of the device of the present invention.

【図4】本発明のデバイスの一実施例のプロセスフロー
をあらわす断面説明図である。
FIG. 4 is a cross-sectional explanatory diagram showing a process flow of one embodiment of the device of the present invention.

【図5】本発明のデバイスの一実施例のプロセスフロー
をあらわす断面説明図である。
FIG. 5 is a cross-sectional explanatory view showing a process flow of an example of the device of the present invention.

【図6】本発明のデバイスの一実施例のプロセスフロー
をあらわす断面説明図である。
FIG. 6 is a cross-sectional explanatory diagram showing the process flow of one embodiment of the device of the present invention.

【図7】図6を90°回転させた方向での断面説明図であ
る。
FIG. 7 is a cross-sectional explanatory view in a direction obtained by rotating FIG. 6 by 90 °.

【図8】本発明のデバイスの他の実施例のプロセスフロ
ーをあらわす断面説明図である。
FIG. 8 is a sectional explanatory view showing a process flow of another embodiment of the device of the present invention.

【図9】本発明のデバイスの他の実施例のプロセスフロ
ーをあらわす断面説明図である。
FIG. 9 is a sectional explanatory view showing a process flow of another embodiment of the device of the present invention.

【図10】本発明のデバイスの他の実施例のプロセスフ
ローをあらわす断面説明図である。
FIG. 10 is a sectional explanatory view showing a process flow of another embodiment of the device of the present invention.

【図11】図10を90°回転させた方向での断面説明図で
ある。
FIG. 11 is a cross-sectional explanatory view in a direction obtained by rotating FIG. 10 by 90 °.

【図12】従来の1Tr・1Capa/1cellタイプの強誘電
体メモリの等価回路図である。
FIG. 12 is an equivalent circuit diagram of a conventional 1Tr / 1Capa / 1cell type ferroelectric memory.

【図13】従来の1Tr・1Capa/1cellタイプの強誘電
体メモリの断面説明図である。
FIG. 13 is a cross-sectional explanatory view of a conventional 1Tr / 1Capa / 1cell type ferroelectric memory.

【図14】強誘電体のヒステリシスをあらわす図であ
る。
FIG. 14 is a diagram showing hysteresis of a ferroelectric substance.

【図15】従来のMFS 構造の強誘電体メモリの断面説明
図である。
FIG. 15 is a cross-sectional explanatory diagram of a conventional MFS structure ferroelectric memory.

【符号の説明】[Explanation of symbols]

1 強誘電体キャパシタ 14 ワードライン 15 ソース 16 ドレイン 17 ビットライン 18 半導体基板 19 不純物拡散領域 22 ゲート電極 24 導電体電極(導電膜) 25 強誘電体 1 Ferroelectric capacitor 14 Word line 15 Source 16 Drain 17 Bit line 18 Semiconductor substrate 19 Impurity diffusion region 22 Gate electrode 24 Conductor electrode (conductive film) 25 Ferroelectric substance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板表面に間隔をお
いて形成された2つの第2導電型の半導体領域のあいだ
の前記基板表面に誘電体薄膜が設けられており、該誘電
体薄膜上部に導電膜が形成されゲート電極とした電界効
果型トランジスタと、強誘電体を2つの導電体電極では
さんだ強誘電体キャパシタとを有する半導体記憶素子で
あって、 前記電界効果型トランジスタのゲート電極が前記強誘電
体層をはさむ2つの導電体電極の一方と電気的に接続さ
れており、かつ前記ゲート電極および該ゲート電極と接
続された前記導電体電極に接続された電極端子が導出さ
れてなることを特徴とする半導体記憶素子。
1. A dielectric thin film is provided on the surface of the substrate between two semiconductor regions of the second conductivity type which are formed on the surface of the semiconductor substrate of the first conductivity type and are spaced apart from each other. What is claimed is: 1. A semiconductor memory device comprising: a field-effect transistor having a conductive film formed thereon as a gate electrode; and a ferroelectric capacitor having a ferroelectric material sandwiched between two conductive electrodes. Is electrically connected to one of two conductor electrodes sandwiching the ferroelectric layer, and an electrode terminal connected to the gate electrode and the conductor electrode connected to the gate electrode is led out. A semiconductor memory device characterized by the following.
【請求項2】 前記電界効果型トランジスタと前記強誘
電体キャパシタとが少なくとも1層以上の絶縁層により
電気的に分離して形成されてなる請求項1記載の半導体
記憶素子。
2. The semiconductor memory device according to claim 1, wherein the field effect transistor and the ferroelectric capacitor are formed by being electrically separated by at least one insulating layer.
JP24771491A 1991-09-26 1991-09-26 Semiconductor storage element Expired - Fee Related JP3160324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24771491A JP3160324B2 (en) 1991-09-26 1991-09-26 Semiconductor storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24771491A JP3160324B2 (en) 1991-09-26 1991-09-26 Semiconductor storage element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP35932199A Division JP3559486B2 (en) 1999-12-17 1999-12-17 Semiconductor storage element

Publications (2)

Publication Number Publication Date
JPH0590532A true JPH0590532A (en) 1993-04-09
JP3160324B2 JP3160324B2 (en) 2001-04-25

Family

ID=17167579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24771491A Expired - Fee Related JP3160324B2 (en) 1991-09-26 1991-09-26 Semiconductor storage element

Country Status (1)

Country Link
JP (1) JP3160324B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515311A (en) * 1993-07-26 1996-05-07 Olympus Optical Co., Ltd. Method of driving ferroelectric memory
US5541870A (en) * 1994-10-28 1996-07-30 Symetrix Corporation Ferroelectric memory and non-volatile memory cell for same
US5708284A (en) * 1995-03-20 1998-01-13 Sharp Kabushiki Kaisha Non-volatile random access memory
EP1134803A1 (en) * 2000-03-13 2001-09-19 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
KR100447790B1 (en) * 2001-12-04 2004-09-08 한국과학기술연구원 Error protection circuit in write signal of non destructive readout ferroelectric random access memory device and its application to the method
US7206217B2 (en) 2002-04-10 2007-04-17 Matsushita Electric Industrial Co., Ltd. Non-volatile flip flop

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515311A (en) * 1993-07-26 1996-05-07 Olympus Optical Co., Ltd. Method of driving ferroelectric memory
US5541870A (en) * 1994-10-28 1996-07-30 Symetrix Corporation Ferroelectric memory and non-volatile memory cell for same
US5708284A (en) * 1995-03-20 1998-01-13 Sharp Kabushiki Kaisha Non-volatile random access memory
EP1134803A1 (en) * 2000-03-13 2001-09-19 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US6787830B2 (en) 2000-03-13 2004-09-07 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
KR100447790B1 (en) * 2001-12-04 2004-09-08 한국과학기술연구원 Error protection circuit in write signal of non destructive readout ferroelectric random access memory device and its application to the method
US7206217B2 (en) 2002-04-10 2007-04-17 Matsushita Electric Industrial Co., Ltd. Non-volatile flip flop

Also Published As

Publication number Publication date
JP3160324B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
KR100406536B1 (en) FeRAM having aluminum oxide layer as oxygen diffusion barrier and method for forming the same
US5440173A (en) High-temperature electrical contact for making contact to ceramic materials and improved circuit element using the same
KR100336079B1 (en) Ferroelectric transistors, semiconductor memory, ferroelectric transistor operation method and ferroelectric transistor manufacturing method
US5506748A (en) Capacitor for semiconductor integrated circuit
US6541281B2 (en) Ferroelectric circuit element that can be fabricated at low temperatures and method for making the same
JPH11297942A (en) Ferroelectric memory device and its manufacture
JP3221854B2 (en) Semiconductor memory using ferroelectric layer
JP2000031398A (en) Semiconductor device and its manufacture
JP3055494B2 (en) Ferroelectric memory and method of manufacturing the same
JP3160324B2 (en) Semiconductor storage element
JP3160325B2 (en) Semiconductor storage element
JP3931445B2 (en) Manufacturing method of semiconductor device
KR100410716B1 (en) FeRAM capable of connecting bottom electrode to storage node and method for forming the same
US8257984B2 (en) Ferroelectric capacitor and method of manufacturing the same
JP2982652B2 (en) Semiconductor device
JP3559486B2 (en) Semiconductor storage element
JPH0575057A (en) Semiconductor storage device
JPH07169854A (en) Semiconductor device and manufacture of it
JP4316193B2 (en) Ferroelectric capacitor and ferroelectric memory device
JP3039425B2 (en) Capacitive element and method of manufacturing the same
JP4831562B2 (en) Ferroelectric memory device
JP3194287B2 (en) Semiconductor storage device
JPH10256495A (en) Nonvolatile semiconductor storage device
JP2004146551A (en) Solid electronic device having pb system perovskite ferroelectric film and its manufacturing method
JPH0574232B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees