JPH07169854A - Semiconductor device and manufacture of it - Google Patents

Semiconductor device and manufacture of it

Info

Publication number
JPH07169854A
JPH07169854A JP5316209A JP31620993A JPH07169854A JP H07169854 A JPH07169854 A JP H07169854A JP 5316209 A JP5316209 A JP 5316209A JP 31620993 A JP31620993 A JP 31620993A JP H07169854 A JPH07169854 A JP H07169854A
Authority
JP
Japan
Prior art keywords
film
lower electrode
layer
insulating film
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5316209A
Other languages
Japanese (ja)
Other versions
JP2629586B2 (en
Inventor
Taku Hase
卓 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5316209A priority Critical patent/JP2629586B2/en
Publication of JPH07169854A publication Critical patent/JPH07169854A/en
Application granted granted Critical
Publication of JP2629586B2 publication Critical patent/JP2629586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the counter diffusion of elements by providing a barrier layer made of an oxide film of Ti on a layer insulating film, a ferroelectric thin film burying lower electrode material in the layer and covering the lower electrode material, and an upper electrode, and preventing the layer insulating film from touching the ferroelectric thin film. CONSTITUTION:A thin TiO2 film 9 being a barrier layer is provided on a layer insulating film 3. Then a well-shaped lower electrode burying hole is formed in the thin TiO2 film 9, and a lower electrode 4 is made. The lower electrode is ground until flattened surfaces of the barrier layer 9 and the lower electrode 4 appear by grinding by the use of mechanical or chemical reaction. On these surfaces a thin PZT film is made. The TiO2 layer 9 functions as a counter diffusion barrier between the PZT layer 5 and the layer insulating film 3 at the time of the manufacture of the thin PZT film. Consequently, it becomes possible to prevent the counter diffusion between the thin PZT film and SiO2, and to form a capacity insulating film on a flat surface without etching the lower electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路装置に内
蔵されている半導体デバイス及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device incorporated in a semiconductor integrated circuit device and a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体メモリセル内の容量絶縁膜として
強誘電体薄膜を用いることにより、高速で書き込み、読
み出し動作を行うことの出来る不揮発メモリ、もしくは
比誘電率の大きい強誘電体薄膜を容量絶縁膜として利用
した集積度の高いダイナミックランダムアクセスメモリ
(DRAM)を作製することができる。このようなメモ
リセルを作製する場合、容量絶縁膜として主にPbもし
くはBiを成分として含む酸化物強誘電体薄膜が利用さ
れる。従来の技術としては、「ビットパラレル構造を持
つ16キロビット強誘電体不揮発メモリ」:ウォーマッ
ク、トイッシュ、ダイジェスト オブ 1989 アイ
トリプルイー インターナショナル ソリッドステイト
サーキット カンファレンス、ページ242−243、
1989年(”A 16kb Ferroelectr
ic Nonvolatile Memory wit
h a Bit Parallel Architec
ture”, :R.Womack and D.To
isch, Digestof 1989 IEEE
International Solid−State
Circuits Conference, pp.
242−243,Feb. 1989)に示されている
構造が用いられている。すなわち、図1に示すように層
間絶縁膜3もしくは多結晶シリコンとの相互拡散を防ぐ
ための導電性バリア層上に作製された下部電極4を微細
加工した後、強誘電体薄膜5が600℃前後の成膜温度
で作製される。この後強誘電体薄膜は微細加工され上部
電極6、素子分離膜7、Al配線8が作製される。
2. Description of the Related Art By using a ferroelectric thin film as a capacitive insulating film in a semiconductor memory cell, a nonvolatile memory capable of high-speed writing and reading or a ferroelectric thin film having a large relative dielectric constant is capacitively insulated. A highly integrated dynamic random access memory (DRAM) used as a film can be manufactured. When manufacturing such a memory cell, an oxide ferroelectric thin film mainly containing Pb or Bi as a component is used as a capacitive insulating film. As a conventional technology, "16 kilobit ferroelectric nonvolatile memory having a bit parallel structure": Warmack, Toish, Digest of 1989 Eye Triple E International Solid State Circuit Conference, pages 242-243,
1989 ("A 16kb Ferroselectr
ic Nonvolatile Memory wit
ha Bit Parallel Architec
“Ture” ,: R. Womack and D. To
isch, Digestof 1989 IEEE
International Solid-State
Circuits Conference, pp.
242-243, Feb. 1989) has been used. That is, as shown in FIG. 1, after the lower electrode 4 formed on the conductive barrier layer for preventing mutual diffusion with the interlayer insulating film 3 or polycrystalline silicon is finely processed, the ferroelectric thin film 5 is heated to 600 ° C. It is formed at the film forming temperature before and after. After that, the ferroelectric thin film is finely processed to form the upper electrode 6, the element isolation film 7, and the Al wiring 8.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来のメ
モリセル作製技術には次のような欠点がある。即ち層間
絶縁膜としては一般にSiO2 が用いられることが多い
が、Pbを成分に含む強誘電体薄膜を微細加工された電
極パターン上に600℃前後の成膜温度で作製する場
合、電極に覆われていない部分の層間絶縁膜と強誘電体
薄膜との間でPbとSiが相互拡散を起こす。この相互
拡散により、層間絶縁膜の下に位置するトランジスタな
どの半導体素子の特性が劣化したり、層間絶縁膜直上の
強誘電体薄膜を通して電極上の強誘電体薄膜の特性が劣
化するという問題があった。
However, the conventional memory cell manufacturing technique has the following drawbacks. That is, SiO 2 is generally used as the interlayer insulating film, but when a ferroelectric thin film containing Pb as a component is formed on a finely processed electrode pattern at a film forming temperature of about 600 ° C., the electrode is covered. Pb and Si interdiffuse between the uninsulated portion of the interlayer insulating film and the ferroelectric thin film. Due to this mutual diffusion, the characteristics of semiconductor elements such as transistors located under the interlayer insulating film deteriorate, and the characteristics of the ferroelectric thin film on the electrode deteriorate through the ferroelectric thin film directly above the interlayer insulating film. there were.

【0004】さらに強誘電体の下部電極材料として一般
的に用いられているPtは反応性に乏しく、反応性イオ
ンエッチングでは一度エッチングされたPtがレジスト
の側壁など周囲に再堆積してしまい、Pt電極が意図し
た形状に微細加工できず、デバイスの歩留りを低下させ
る要因の一つとなっている。又、強誘電体が下部電極と
上部電極に挟まれた構造において、下部電極と強誘電体
を連続して堆積させた場合は前記のような元素の相互拡
散はおこらないが、最終的な形状を得るためのエッチン
グ工程において強誘電体の側壁にPtが再付着し、下部
電極と上部電極が短絡してしまうという問題が生じてい
た。又、強誘電体薄膜の作製方法によっては段差被覆性
が悪いため、下部電極の加工により生ずる段差部分が素
子の不良の原因となる。
Further, Pt, which is generally used as a lower electrode material for a ferroelectric substance, has poor reactivity, and Pt once etched is redeposited around the side wall of the resist or the like by reactive ion etching. This is one of the factors that reduce the yield of devices because the electrodes cannot be finely processed into the intended shape. In addition, in the structure in which the ferroelectric substance is sandwiched between the lower electrode and the upper electrode, when the lower electrode and the ferroelectric substance are continuously deposited, mutual diffusion of the elements as described above does not occur, but the final shape In the etching process for obtaining the above, there is a problem that Pt is redeposited on the side wall of the ferroelectric substance and the lower electrode and the upper electrode are short-circuited. Further, since the step coverage is poor depending on the method of manufacturing the ferroelectric thin film, the stepped portion caused by the processing of the lower electrode causes the element failure.

【0005】[0005]

【課題を解決するための手段】本発明はTiの酸化物よ
りなるバリア層を層間絶縁膜上に層状に有し、その層に
下部電極材料が埋め込まれており、かつ該下部電極材料
を覆う強誘電体薄膜、上部電極で構成されていることを
特徴とする半導体デバイス構造およびその製造方法に関
する。
According to the present invention, a barrier layer made of an oxide of Ti is layered on an interlayer insulating film, a lower electrode material is embedded in the layer, and the lower electrode material is covered. The present invention relates to a semiconductor device structure comprising a ferroelectric thin film and an upper electrode, and a manufacturing method thereof.

【0006】本発明の半導体デバイスの形状によれば、
Tiの酸化物層により、SiO2 を成分として含む層間
絶縁膜と強誘電体薄膜が接する部分がなくなるため、元
素の相互拡散の問題が解決される。つまり、このバリア
層は強誘電体薄膜作製温度においても層間絶縁膜の主成
分であるSi、容量絶縁膜に含まれるPbと相互拡散し
ないため結果的に層間絶縁膜中へのPbの侵入、および
Siの強誘電体薄膜中への侵入を抑制する働きを持つ。
そのため強誘電体薄膜及びトランジスタなどの素子の劣
化をともに防ぐことが出来る。なお、バリア層としてT
iの酸化物を用いるためには最初からTiの酸化物を堆
積しても良いが、金属Tiを堆積し、強誘電体の形成・
加工段階で同時に酸化を行ってTi酸化物としても良
い。
According to the shape of the semiconductor device of the present invention,
Since the oxide layer of Ti eliminates the portion where the interlayer insulating film containing SiO 2 as a component and the ferroelectric thin film are in contact, the problem of mutual diffusion of elements is solved. In other words, since this barrier layer does not interdiffuse with Si, which is the main component of the interlayer insulating film, and Pb contained in the capacitor insulating film even at the ferroelectric thin film manufacturing temperature, as a result, Pb penetrates into the interlayer insulating film, and It has a function of suppressing the penetration of Si into the ferroelectric thin film.
Therefore, it is possible to prevent deterioration of the ferroelectric thin film and elements such as transistors. As a barrier layer, T
In order to use the oxide of i, the oxide of Ti may be deposited from the beginning, but metal Ti is deposited to form a ferroelectric substance.
It is also possible to perform oxidation at the same time in the processing stage to obtain Ti oxide.

【0007】さらに、埋め込まれた下部電極はバリア層
との間で段差を形成しないため強誘電体薄膜の作製方法
によらず信頼性の高い素子を作製できる。また下部電極
材料のエッチング工程を含まないため良好な強誘電体膜
作製に必要でかつ微細加工の困難な下部電極材料も選択
できる。
Furthermore, since the buried lower electrode does not form a step with the barrier layer, a highly reliable element can be manufactured regardless of the method of manufacturing the ferroelectric thin film. Further, since the step of etching the lower electrode material is not included, it is possible to select a lower electrode material which is necessary for good ferroelectric film production and which is difficult to perform fine processing.

【0008】[0008]

【実施例】本発明について図面を参照して説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.

【0009】(実施例1)ここでは層間絶縁膜上のバリ
ア層として300nmのTiO2 を反応性スパッタ法で
作製し200nmの深さの溝を作製したもの、下部電極
として400nmのPtをDCスパッタ法で、強誘電体
膜として200nmのPZT薄膜をゾルゲル法で作製し
た例を示す。バリア層は金属Tiを層状に作製し、下部
電極を埋め込んだ後、酸素雰囲気中での強誘電体薄膜作
製時に同時にTiも酸化することを利用して作製するこ
ともできる。強誘電体膜としてはPZTの他にPbTi
3、(Pb,La)(Zr,Ti)O3 などのペロブ
スカイト型酸化物強誘電体を用いることができる。また
ゾルゲル法は成膜方法の性格上段差のある基板上に均一
な膜厚の薄膜を形成することが難しいと考えられる成膜
方法の一つであるが、平坦な基板上では均一で良好な特
性の強誘電体膜を100nm以下の薄膜でも得ることが
できる成膜方法である。
Example 1 In this example, 300 nm TiO 2 was formed as a barrier layer on an interlayer insulating film by a reactive sputtering method to form a groove having a depth of 200 nm, and 400 nm Pt was DC sputtered as a lower electrode. An example in which a PZT thin film having a thickness of 200 nm is formed as a ferroelectric film by the sol-gel method is shown below. The barrier layer can also be formed by forming metal Ti in a layered form, burying the lower electrode, and then oxidizing Ti at the same time as forming the ferroelectric thin film in an oxygen atmosphere. As the ferroelectric film, in addition to PZT, PbTi
Perovskite type oxide ferroelectrics such as O 3 and (Pb, La) (Zr, Ti) O 3 can be used. Also, the sol-gel method is one of the film forming methods in which it is considered difficult to form a thin film having a uniform film thickness on a substrate having a step due to the nature of the film forming method, but it is uniform and good on a flat substrate. It is a film forming method that can obtain a ferroelectric film having characteristics of a thin film having a thickness of 100 nm or less.

【0010】図2は層間絶縁膜3上にバリア層TiO2
薄膜9を設けた構造である。TiO2 薄膜9に井戸状の
下部電極埋め込み穴を形成した後、下部電極4を作製す
る。下部電極は、機械的もしくは化学反応を利用した研
磨によりバリア層9と下部電極4の平坦化された表面が
露出するまで削られる。この表面にPZT薄膜5を作製
する。PZT薄膜作製時にはTiO2 層9がPZT層5
と層間絶縁膜3との相互拡散バリアとして機能する。図
3に層間絶縁膜SiO2 上に50nmのTiO2 バリア
層を作製したのち、PZT薄膜を作製した場合のオージ
ェ電子分光により測定した深さ方向の組成分布を示す。
PZT/TiO2 界面でPZT層からバリア層に侵入す
るPbは界面から10nm程度に留まっておりSiO2
中に侵入するPbは存在しない。さらにTiO2 /Si
2 界面でもSiの拡散が抑制されており、PZT層内
ではSiは検出限界以下である。この結果からTiO2
薄膜がPZT成膜時の拡散バリア層となることが確認さ
れる。ちなみにTiO2 層9上ではPZTの準安定相で
ある常誘電体のパイロクロア構造となるが、パイロクロ
ア相部分はPZT成膜後にTiO2 バリア層と共にエッ
チングで除去されるので実用上問題はなく、エッチング
せずにパイロクロア相部分と酸化チタン部分を素子分離
膜として用いることもできる。
FIG. 2 shows a barrier layer TiO 2 on the interlayer insulating film 3.
This is a structure provided with a thin film 9. After forming a well-shaped lower electrode burying hole in the TiO 2 thin film 9, the lower electrode 4 is manufactured. The lower electrode is ground by mechanical or chemical polishing until the barrier layer 9 and the flattened surface of the lower electrode 4 are exposed. The PZT thin film 5 is formed on this surface. When the PZT thin film is formed, the TiO 2 layer 9 is the PZT layer 5
And an inter-layer insulating film 3 function as a mutual diffusion barrier. FIG. 3 shows the composition distribution in the depth direction measured by Auger electron spectroscopy when a PZT thin film is formed after forming a 50 nm TiO 2 barrier layer on the interlayer insulating film SiO 2 .
At the PZT / TiO 2 interface, Pb penetrating from the PZT layer to the barrier layer remains at about 10 nm from the interface, and SiO 2
There is no Pb penetrating inside. Furthermore, TiO2 / Si
Diffusion of Si is also suppressed at the O 2 interface, and Si is below the detection limit in the PZT layer. From this result, TiO 2
It is confirmed that the thin film serves as a diffusion barrier layer during PZT film formation. By the way, the TiO 2 layer 9 has a parachlore pyrochlore structure which is a metastable phase of PZT. However, since the pyrochlore phase portion is removed by etching together with the TiO 2 barrier layer after PZT film formation, there is no problem in practical use. Alternatively, the pyrochlore phase portion and the titanium oxide portion can be used as the element isolation film.

【0011】(実施例2)図4に示す実施例は層間絶縁
膜3にコンタクトホールを作製し多結晶シリコン10と
Siバリアメタル11で下部電極4とトランジスタ2の
ドレインを接続する必要がある場合を示している。層間
絶縁膜3を作製した後第一のコンタクトホールを作製し
て多結晶シリコンを埋め込む。続けて金属Ti層9を作
製する。本構造の場合、多結晶シリコンを酸化させない
ためにバリア層として金属Tiを用いなければならな
い。埋め込まれた第一のコンタクトホール上に容量キャ
パシタの面積として必要な面積の第二のコンタクトホー
ルを形成する。第二のコンタクトホールは、Siバリア
メタル11、下部電極4で順次埋め込まれ平坦になるよ
うに研磨された後、その上にPZT薄膜5を作製する。
この場合は強誘電体膜作製時に酸化された酸化チタンバ
リア層9の膜厚t1とSiバリアメタル11の膜厚t2
をt1>t2の関係にしなければならない。以上のよう
な構造のメモリセルを作製することにより第2図の場合
と同様にPZT薄膜とSiO2 との相互拡散を防ぐこと
ができ、かつ下部電極をエッチングすることなく平坦な
面上に容量絶縁膜を形成できる。
(Embodiment 2) In the embodiment shown in FIG. 4, it is necessary to form a contact hole in the interlayer insulating film 3 and connect the lower electrode 4 and the drain of the transistor 2 with the polycrystalline silicon 10 and the Si barrier metal 11. Is shown. After forming the interlayer insulating film 3, a first contact hole is formed and polycrystalline silicon is embedded. Subsequently, the metal Ti layer 9 is produced. In the case of this structure, metal Ti must be used as the barrier layer in order to prevent the polycrystalline silicon from being oxidized. A second contact hole having an area necessary for the area of the capacitor is formed on the buried first contact hole. The second contact hole is sequentially filled with the Si barrier metal 11 and the lower electrode 4 and polished to be flat, and then the PZT thin film 5 is formed thereon.
In this case, the film thickness t1 of the titanium oxide barrier layer 9 and the film thickness t2 of the Si barrier metal 11 that are oxidized when the ferroelectric film is formed.
Must be in the relationship of t1> t2. By manufacturing the memory cell having the above structure, the mutual diffusion of the PZT thin film and SiO 2 can be prevented as in the case of FIG. 2 , and the capacitor can be formed on the flat surface without etching the lower electrode. An insulating film can be formed.

【0012】なお、上記記述はメモリセルのキャパシタ
を想定した場合についてのみ述べたが、本発明は広く半
導体集積回路にPbを含む強誘電体薄膜を適用する多く
の場合に同様の効果が得られる。
Although the above description has been made only for the case where a memory cell capacitor is assumed, the present invention can obtain the same effect in many cases in which a ferroelectric thin film containing Pb is widely applied to semiconductor integrated circuits. .

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術によるメモリセル構造である。FIG. 1 is a memory cell structure according to the prior art.

【図2】本発明によるメモリセル構造である。FIG. 2 is a memory cell structure according to the present invention.

【図3】TiO2 (50nm)/SiO2 上にPZT薄
膜が作製された場合の深さ方向の組成分布図である。
FIG. 3 is a composition distribution diagram in the depth direction when a PZT thin film is formed on TiO 2 (50 nm) / SiO 2 .

【図4】多結晶シリコンによるコンタクトが存在する場
合の本発明によるメモリセル構造である。
FIG. 4 is a memory cell structure according to the present invention in the presence of contacts made of polycrystalline silicon.

【符号の説明】[Explanation of symbols]

1 Si基板 2 トランジスタ 3 層間絶縁膜 4 下部電極 5 PZT薄膜 6 上部電極 7 素子分離膜 8 Al配線 9 酸化チタンバリア層 10 多結晶シリコン 11 Siバリアメタル DESCRIPTION OF SYMBOLS 1 Si substrate 2 Transistor 3 Interlayer insulation film 4 Lower electrode 5 PZT thin film 6 Upper electrode 7 Element isolation film 8 Al wiring 9 Titanium oxide barrier layer 10 Polycrystalline silicon 11 Si barrier metal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/822 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/822

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 層間絶縁膜上に、Tiの酸化物を層状に
有し、該層に下部電極材料が埋め込まれており、かつ該
下部電極を覆う強誘電体薄膜、上部電極を有することを
特徴とする半導体デバイス。
1. An interlayer insulating film having a layered oxide of Ti, a lower electrode material embedded in the layer, and a ferroelectric thin film and an upper electrode covering the lower electrode. Characteristic semiconductor device.
【請求項2】 層間絶縁膜上に、TiもしくはTiの酸
化物を層状に形成した後、該層に電極面積として必要な
開口面積を持つ井戸状の溝を形成し、その上に前記溝の
深さより厚い下部電極層を形成した後に該下部電極層を
研磨することにより平坦面に埋め込まれた下部電極構造
を形成し、しかる後に強誘電体膜を形成した後該強誘電
体膜をTiの酸化物層と共に加工し、最後に上部電極を
形成することを特徴とする請求項1記載の半導体デバイ
スの製造方法。
2. A layer of Ti or an oxide of Ti is formed on the interlayer insulating film, and a well-shaped groove having an opening area required as an electrode area is formed in the layer, and the well-shaped groove is formed on the well. After forming a lower electrode layer thicker than the depth, a lower electrode structure embedded in a flat surface is formed by polishing the lower electrode layer, and then a ferroelectric film is formed and then the ferroelectric film is formed of Ti. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the upper electrode is formed by processing together with the oxide layer.
JP5316209A 1993-12-16 1993-12-16 Semiconductor device and method of manufacturing the same Expired - Lifetime JP2629586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5316209A JP2629586B2 (en) 1993-12-16 1993-12-16 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5316209A JP2629586B2 (en) 1993-12-16 1993-12-16 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07169854A true JPH07169854A (en) 1995-07-04
JP2629586B2 JP2629586B2 (en) 1997-07-09

Family

ID=18074520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5316209A Expired - Lifetime JP2629586B2 (en) 1993-12-16 1993-12-16 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2629586B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003468A1 (en) * 1995-07-07 1997-01-30 Rohm Co., Ltd. Dielectric capacitor and process for preparing the same
EP0834912A2 (en) * 1996-10-02 1998-04-08 Texas Instruments Incorporated Dry-etching-free process for high dielectric and ferroelectric memory cell capacitor
KR100228761B1 (en) * 1995-12-27 1999-11-01 김영환 Capacitor fabrication method of semiconductor device
US6093575A (en) * 1996-09-04 2000-07-25 Nippon Steel Corporation Semiconductor device and production method of a semiconductor device having a capacitor
WO2001024237A1 (en) * 1999-09-28 2001-04-05 Symetrix Corporation Integrated circuits with barrier layers and methods of fabricating same
JP2002141480A (en) * 2000-09-18 2002-05-17 Samsung Electronics Co Ltd Semiconductor device provided with ferroelectric capacitor and manufacturing method therefor
US6483691B1 (en) 1999-02-04 2002-11-19 Rohm Co., Ltd. Capacitor and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206569A (en) * 1990-11-30 1992-07-28 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206569A (en) * 1990-11-30 1992-07-28 Nec Corp Manufacture of semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003468A1 (en) * 1995-07-07 1997-01-30 Rohm Co., Ltd. Dielectric capacitor and process for preparing the same
CN1085411C (en) * 1995-07-07 2002-05-22 罗姆股份有限公司 Dielectric capacitor and process for preparing the same
US6454914B1 (en) 1995-07-07 2002-09-24 Rohm Co., Ltd. Ferroelectric capacitor and a method for manufacturing thereof
KR100385446B1 (en) * 1995-07-07 2004-09-08 로무 가부시키가이샤 Dielectric Capacitor and Manufacturing Method
KR100228761B1 (en) * 1995-12-27 1999-11-01 김영환 Capacitor fabrication method of semiconductor device
US6093575A (en) * 1996-09-04 2000-07-25 Nippon Steel Corporation Semiconductor device and production method of a semiconductor device having a capacitor
EP0834912A2 (en) * 1996-10-02 1998-04-08 Texas Instruments Incorporated Dry-etching-free process for high dielectric and ferroelectric memory cell capacitor
EP0834912A3 (en) * 1996-10-02 1999-10-20 Texas Instruments Incorporated Dry-etching-free process for high dielectric and ferroelectric memory cell capacitor
US6483691B1 (en) 1999-02-04 2002-11-19 Rohm Co., Ltd. Capacitor and method for manufacturing the same
WO2001024237A1 (en) * 1999-09-28 2001-04-05 Symetrix Corporation Integrated circuits with barrier layers and methods of fabricating same
JP2002141480A (en) * 2000-09-18 2002-05-17 Samsung Electronics Co Ltd Semiconductor device provided with ferroelectric capacitor and manufacturing method therefor

Also Published As

Publication number Publication date
JP2629586B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
US6249014B1 (en) Hydrogen barrier encapsulation techniques for the control of hydrogen induced degradation of ferroelectric capacitors in conjunction with multilevel metal processing for non-volatile integrated circuit memory devices
US5452178A (en) Structure and method of making a capacitor for an intergrated circuit
JP3319994B2 (en) Semiconductor storage element
US7023043B2 (en) Top electrode in a strongly oxidizing environment
US5461536A (en) Storage capacitors using high dielectric constant materials
EP1313141B1 (en) Semiconductor device and method of manufacturing the same
US6645779B2 (en) FeRAM (ferroelectric random access memory) and method for forming the same
US6225185B1 (en) Method for fabricating semiconductor memory having good electrical characteristics and high reliability
JPH09205181A (en) Semiconductor device
JP4050004B2 (en) Semiconductor device and manufacturing method thereof
JP2002151657A (en) Dielectric element and manufacturing method therefor
KR20010086354A (en) Semiconductor device with capacitive element and method of forming the same
JP3166746B2 (en) Capacitor and method of manufacturing the same
US6495412B1 (en) Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
JPH07169854A (en) Semiconductor device and manufacture of it
JPH09199679A (en) Structure for semiconductor device and manufacture of the same
JPH09162369A (en) Manufacture of semiconductor memory device
US6297526B1 (en) Process for producing barrier-free semiconductor memory configurations
JP2002203948A (en) Semiconductor device
JP2000156473A (en) Semiconductor device, fabrication thereof and fabrication of capacitor
KR20000017148A (en) Semiconductor device and its manufacturing method
EP0721664B1 (en) Structure and method of making a capacitor for an integrated circuit
US6958501B2 (en) Contact-making structure for a ferroelectric storage capacitor and method for fabricating the structure
EP1094507A2 (en) Barrier layers for ferroelectric memory devices
JP3039425B2 (en) Capacitive element and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 17

EXPY Cancellation because of completion of term