JPH0582120A - Nonaqueous type battery - Google Patents

Nonaqueous type battery

Info

Publication number
JPH0582120A
JPH0582120A JP3241942A JP24194291A JPH0582120A JP H0582120 A JPH0582120 A JP H0582120A JP 3241942 A JP3241942 A JP 3241942A JP 24194291 A JP24194291 A JP 24194291A JP H0582120 A JPH0582120 A JP H0582120A
Authority
JP
Japan
Prior art keywords
battery
electrode
conductive polymer
positive electrode
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3241942A
Other languages
Japanese (ja)
Inventor
Noriyuki Yoshinaga
宣之 好永
Masahisa Fujimoto
正久 藤本
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3241942A priority Critical patent/JPH0582120A/en
Publication of JPH0582120A publication Critical patent/JPH0582120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve an electrode capacity by using mixture of a Li ion introduced inorganic compound and electrically conductive polymer as a positive electrode or a negative electrode of a nonaqueous type battery. CONSTITUTION:A material formed by mixing polyaniline 10 pts.wt. synthesized by means of electrolytic polymerization into MnO2 is used as a positive electrode 1, and Li metal is used as a negative electrode 2, and LiBF4-PC solution is used as electrolyte with which a separator 3 is impregnated. Since an electrode into which electrically conductive polymer such as polypyrrole to dope or de- dope possibly anion or cation is mixed is used as the electrode or as an electrically conductive agent, the electrically conductive polymer can also contribute to a charging/discharging capacity, so that a high capacity nonaqueous type battery capable of being charged/discharged can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は正極と負極と非水電解液
とを備えた非水系電池に関する。
FIELD OF THE INVENTION The present invention relates to a non-aqueous battery provided with a positive electrode, a negative electrode and a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】リチウムを負極活物質とし、非水電解液
を用いた非水系一次電池は、高電圧、高エネルギー密
度、優れた低温特性、低い自己放電率等の長所を有し、
携帯用の小型電気機器、または携帯用の小型電子機器の
ための電源、或はコンピュータのメモリバックアップ用
の電源等の用途に広く用いられている。
Non-aqueous primary batteries using lithium as a negative electrode active material and a non-aqueous electrolyte have advantages such as high voltage, high energy density, excellent low temperature characteristics, and low self-discharge rate.
It is widely used as a power source for a portable small electric device or a portable small electronic device, or a power source for a memory backup of a computer.

【0003】これらの非水系一次電池の正極活物質とし
ては従来二酸化マンガン、或はフッ化炭素が代表的なも
のとして用いられている。
As a positive electrode active material for these non-aqueous primary batteries, conventionally, manganese dioxide or fluorocarbon has been used as a typical one.

【0004】一方、この種非水系電池を繰り返し充放電
して使用できるようにした非水系二次電池も開発されて
いる。この非水系二次電池の負極活物質としてはリチウ
ム、リチウムと合金化する金属を用いたリチウム合金、
或はリチウムイオンのインターカレートが可能な炭素材
料などが知られている。また正極活物質としてはLi 2
MnO3を含有する二酸化マンガン、酸化バナジウム、
酸化コバルト等が提案されており、これらの負極と正極
とを組み合わせた非水系二次電池も一部実用化されてい
る。
On the other hand, this type of non-aqueous battery is repeatedly charged and discharged.
A non-aqueous secondary battery that can be used by
There is. Lithium is used as the negative electrode active material of this non-aqueous secondary battery.
A lithium alloy using a metal that alloys with lithium,
Or carbon material capable of intercalating lithium ions
Fees are known. Further, as the positive electrode active material, Li 2
MnO3Containing manganese dioxide, vanadium oxide,
Cobalt oxide, etc. have been proposed.
Some non-aqueous secondary batteries combining
It

【0005】ところで上記の小型電気機器や小型電子機
器はその小型化が一層進み、これに伴って電源用として
の非水系一次電池にも小型化、即ち高容量化と、高エネ
ルギー密度化が求められつつある。また、現在実用化さ
れている非水系二次電池においてもその特性はまだ不十
分な点が多く、高容量化、且つ高エネルギー密度化が望
まれている。
By the way, the miniaturization of the above-mentioned small electric devices and small electronic devices has been further advanced, and along with this, the nonaqueous primary batteries for power sources are also required to be miniaturized, that is, have a higher capacity and a higher energy density. It's being done. In addition, many non-aqueous secondary batteries that are currently in practical use still have insufficient characteristics, and there is a demand for higher capacity and higher energy density.

【0006】さらに近年、導電性ポリマーを利用した導
電材料が提案されている。導電性ポリマーは、各種アニ
オンやカチオンなどをドーパントとしたドーピング、並
びにアンドーピング処理が可能であり、ドーピング処理
により導電性が飛躍的に上昇する。またアニオンがドー
ピングされる導電性ポリマーを正極材料として、カチオ
ンがドーピングされる導電性ポリマーを負極材料として
各々使用すると共に上記ドーパントを含有する溶液を電
解液として用い、ドーピング及びアンドーピングを電気
化学的に可逆的に行なうことにより充放電可能な電池が
構成される。
Furthermore, in recent years, a conductive material using a conductive polymer has been proposed. The conductive polymer can be doped with various anions or cations as dopants, and can be undoped, and the doping treatment significantly increases the conductivity. Further, a conductive polymer doped with anions is used as a positive electrode material, a conductive polymer doped with cations is used as a negative electrode material, and a solution containing the above dopant is used as an electrolytic solution. A rechargeable battery is constructed by reversibly performing the rechargeable battery.

【0007】[0007]

【発明が解決しようとする課題】従来、二酸化マンガン
等のリチウムイオンをインターカレートする無機化合物
を電極活物質として用いる場合、電極の導電率を向上さ
せるためにアセチレンブラック等の導電剤を混合して用
いていた。この場合、導電剤分は電極の容量減少につな
がり、この種の電池の更なる小型化のためにはエネルギ
ー密度が不十分であった。
Conventionally, when an inorganic compound that intercalates lithium ions such as manganese dioxide is used as an electrode active material, a conductive agent such as acetylene black is mixed in order to improve the conductivity of the electrode. Was used. In this case, the conductive agent component leads to a decrease in the capacity of the electrode, and the energy density is insufficient for further miniaturization of this type of battery.

【0008】本発明は斯様な問題点に鑑みて為されたも
のであって、電極容量の向上をせしめ、非水系電池の高
容量化、高エネルギー密度化を実現することを目的とし
ている。
The present invention has been made in view of the above problems, and an object thereof is to improve the electrode capacity and to realize a high capacity and high energy density of a non-aqueous battery.

【0009】[0009]

【課題を解決するための手段】本発明は、正極と負極と
非水電解液とを備えた非水系電池において、上記正極、
または負極のいずれか一方に、リチウムイオンをインタ
ーカレートする無機化合物と導電性ポリマーとの混合物
を用いており、特にその導電性ポリマーの混合量が3重
量部から30重量部であることを特徴とする。
The present invention provides a non-aqueous battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the positive electrode is
Alternatively, a mixture of an inorganic compound that intercalates lithium ions and a conductive polymer is used for either one of the negative electrodes, and particularly, the mixed amount of the conductive polymer is 3 to 30 parts by weight. And

【0010】[0010]

【作用】本発明によれば、正、負いずれか一方の電極と
して、導電剤としてアニオン、或はカチオンが可逆的に
ドープ、脱ドープするポリピロール等の導電性ポリマー
が混合された電極を用いているので、その導電性ポリマ
ーも充放電容量に寄与するため、従来の導電剤を用いた
場合より電極特性が秀れ、高容量の充放電可能な非水系
電池が得られる。
According to the present invention, an electrode in which a conductive polymer such as polypyrrole which is reversibly doped or dedoped with an anion or a cation as a conductive agent is mixed is used as the positive or negative electrode. Since the conductive polymer also contributes to the charge / discharge capacity, the electrode characteristics are superior to the case of using a conventional conductive agent, and a high-capacity chargeable / dischargeable non-aqueous battery can be obtained.

【0011】[0011]

【実施例】以下に実施例をあげ、本発明を具体的に説明
する。 [実施例 1]図1は非水系電池の基本構成を示してお
り、正極1としてMnO2に電解重合で合成したポリア
ニリンを10重量部混合した材料を用い、負極2にはリ
チウム金属を用い、セパレータ3に含浸させる電解液と
してはLiBF4−PC溶液を用いて本発明電池Aを作
製した。また、比較例として、正極にMnO2にアセチ
レンブラック10重量部を混合した以外は本発明電池A
と同様にして比較電池Bを作製した。尚、この図1に示
す電池において、4は正極缶、5は負極缶、6は正極集
電体、7は負極集電体、8は絶縁パッキングである。
EXAMPLES The present invention will be specifically described with reference to the following examples. [Example 1] Fig. 1 shows a basic structure of a non-aqueous battery. As a positive electrode 1, a material obtained by mixing 10 parts by weight of polyaniline synthesized by electrolytic polymerization with MnO 2 was used, and as a negative electrode 2, lithium metal was used. LiBF 4 -PC solution was used as the electrolytic solution with which the separator 3 was impregnated to prepare the battery A of the invention. As a comparative example, the battery A of the present invention was prepared except that 10 parts by weight of acetylene black was mixed with MnO 2 for the positive electrode.
Comparative battery B was prepared in the same manner as in. In the battery shown in FIG. 1, 4 is a positive electrode can, 5 is a negative electrode can, 6 is a positive electrode current collector, 7 is a negative electrode current collector, and 8 is an insulating packing.

【0012】これらの電池A,Bについて充放電試験を
行なった。充電は充電電流1mAで3.6Vまで、放電
は放電電流1mAで2.0Vまでとした。
A charge / discharge test was carried out on these batteries A and B. Charging was performed at a charging current of 1 mA up to 3.6 V, and discharging was performed at a discharge current of 1 mA up to 2.0 V.

【0013】図2にこれらの電池の充放電特性を示す。
本発明電池Aは20mAhの充放電放電ができるのに対
し、比較電池Bは17mAhしか充放電できない。
FIG. 2 shows the charge / discharge characteristics of these batteries.
The battery A of the present invention can charge and discharge 20 mAh, while the battery B of the comparative example can charge and discharge only 17 mAh.

【0014】これは比較電池Bでは、電極の導電剤とし
てアセチレンブラックを用いているためその分容量の減
少があるが、本発明電池Aでは導電剤としてのポリアニ
リンも充放電に寄与するため、容量が大きくなったもの
と考えられる。 [実施例 2]正極1としてMnO2に電解重合で合成
したポリアニリンを20重量部混合した材料を用い、負
極2にはリチウム金属を用い、電解液にLiBF4−P
C溶液を用いて図1に示す本発明電池Cを作製した。ま
た、比較例として、正極にMnO2にアセチレンブラッ
ク20重量部を混合した以外は本発明電池Dと同様にし
て比較電池Bを作製した。
This is because the comparative battery B uses acetylene black as a conductive agent for the electrodes, so that the capacity is reduced by that amount. However, in the battery A of the present invention, polyaniline as a conductive agent also contributes to charging and discharging, so the capacity is Is believed to have grown. [Example 2] A material obtained by mixing 20 parts by weight of polyaniline synthesized by electrolytic polymerization with MnO 2 was used as the positive electrode 1, lithium metal was used as the negative electrode 2, and LiBF 4 -P was used as the electrolytic solution.
The battery C of the present invention shown in FIG. 1 was produced using the C solution. Further, as a comparative example, a comparative battery B was prepared in the same manner as the battery D of the present invention except that 20 parts by weight of acetylene black was mixed with MnO 2 for the positive electrode.

【0015】これらの電池C,Dについて充放電試験を
行なった。充電は充電電流1mAで3.6Vまで、放電
は放電電流1mAで2.0Vまでとした。
A charge / discharge test was performed on these batteries C and D. Charging was performed at a charging current of 1 mA up to 3.6 V, and discharging was performed at a discharge current of 1 mA up to 2.0 V.

【0016】図3にこれらの電池の充放電特性を示す。
本発明電池Aは19mAhの充放電放電ができるのに対
して比較電池Bは16mAhしか充放電できない。
FIG. 3 shows the charge / discharge characteristics of these batteries.
The battery A of the present invention can charge and discharge 19 mAh, while the battery B of the comparative example can charge and discharge only 16 mAh.

【0017】これは比較電池Dでは、電極の導電剤とし
てアセチレンブラックを用いているためその分容量の減
少があるが、本発明電池Cでは導電剤としてのポリアニ
リンも充放電に寄与するため、容量が大きいくなったも
のと考えられる。 [実施例 3]正極1としてMnO2に電解重合で合成
したポリピロールを10重量部混合した材料を用い、負
極2にはリチウム金属を用い、電解液にLiBF4−P
C溶液を用いて図1に示す本発明電池Eを作製した。ま
た、比較例として、正極にMnO2にケッチェンブラッ
ク10重量部を混合した以外は本発明電池Eと同様にし
て比較電池Fを作製した。
In Comparative Battery D, acetylene black is used as the conductive agent for the electrodes, so the capacity is reduced by that amount. However, in Battery C of the present invention, polyaniline as the conductive agent also contributes to charge and discharge, so the capacity is reduced. Is considered to have become larger. [Example 3] A material obtained by mixing 10 parts by weight of polypyrrole synthesized by electrolytic polymerization in MnO 2 was used as the positive electrode 1, lithium metal was used as the negative electrode 2, and LiBF 4 -P was used as the electrolytic solution.
The battery C of the present invention shown in FIG. 1 was produced using the C solution. Further, as a comparative example, a comparative battery F was prepared in the same manner as the battery E of the present invention, except that 10 parts by weight of Ketjen black was mixed with MnO 2 for the positive electrode.

【0018】これらの電池E,Fについて充放電試験を
行なった。充電は充電電流1mAで3.6Vまで、放電
は放電電流1mAで2.0Vまでとした。
A charging / discharging test was conducted on these batteries E and F. Charging was performed at a charging current of 1 mA up to 3.6 V, and discharging was performed at a discharge current of 1 mA up to 2.0 V.

【0019】図4にこれらの電池の充放電特性を示す。
本発明電池Eは20mAhの充放電放電ができるのに対
して比較電池Fでは17mAhしか充放電できない。
FIG. 4 shows the charge / discharge characteristics of these batteries.
Inventive battery E can charge and discharge 20 mAh, whereas comparative battery F can only charge and discharge 17 mAh.

【0020】これは比較電池Fでは、電極の導電剤とし
てケッチェンブラックを用いているためその分容量の減
少があるが、本発明電池Cでは導電剤としてのポリピロ
ールも充放電に寄与するため、容量が大きくなったもの
と考えられる。
In Comparative Battery F, since Ketjen Black is used as the conductive agent for the electrodes, the capacity is reduced by that amount, but in the Battery C of the present invention, polypyrrole as the conductive agent also contributes to charging / discharging. It is considered that the capacity has increased.

【0021】尚、上記した各実施例においては、電極材
料としてMnO2を用いた場合を例にとって説明した
が、MnO2以外に、リチウム金属と可逆的に反応する
TiS2、FeS2、Nb34、Mo34、Mo3Se4
CoS2、V25、P25、CrO3、V38、Te
2、GeO2等の無機化合物と電解質アニオン、或いは
カチオンが可逆的にドープ、脱ドープするポリアニリ
ン、ポリピロール、ポリチオフェン等の導電性ポリマー
の混合物を用いることができる。
In each of the above-mentioned embodiments, the case where MnO 2 is used as the electrode material has been described as an example, but in addition to MnO 2 , TiS 2 , FeS 2 , and Nb 3 which reversibly react with lithium metal. S 4 , Mo 3 S 4 , Mo 3 Se 4 ,
CoS 2 , V 2 O 5 , P 2 O 5 , CrO 3 , V 3 O 8 , Te
It is possible to use a mixture of an inorganic compound such as O 2 or GeO 2 and a conductive polymer such as polyaniline, polypyrrole, or polythiophene, which is reversibly doped or dedoped with an electrolyte anion or a cation.

【0022】また電解液としては、プロピレンカーボネ
ート、ブチレンカーボネート、1、2ージメトキシエタ
ン、γーブチロラクトン、スルホラン等の非プロトン性
有機溶媒の単独、或いはおのおの2つ以上の混合溶媒に
LiClO4、LiBF4、LiCF3SO3、LiP
6、LiAsF6等の電解質を単独あるいは2つ以上混
合して溶解したものも用いることができる。
As the electrolytic solution, aprotic organic solvents such as propylene carbonate, butylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone and sulfolane are used alone or in a mixed solvent of two or more of each, LiClO 4 and LiBF. 4 , LiCF 3 SO 3 , LiP
Electrolytes such as F 6 and LiAsF 6 may be used alone or as a mixture of two or more electrolytes dissolved therein.

【0023】更にリチウムイオンをインターカレートす
る無機化合物と導電性ポリマーとの混合物としては、そ
の導電性ポリマーの混合量が少なすぎるても、また多す
ぎても良い結果は得られず、好ましくは3重量部から3
0重量部である。
Further, as a mixture of an inorganic compound for intercalating lithium ions and a conductive polymer, if the amount of the conductive polymer mixed is too small or too large, good results are not obtained, and it is preferable. 3 parts by weight to 3
0 parts by weight.

【0024】[0024]

【発明の効果】以上述べた如く、本発明によれば、正
極、または負極のいずれか一方に、リチウムイオンをイ
ンターカレートする無機化合物と導電性ポリマーとの混
合物を用いているので、その導電性ポリマーも充放電容
量に寄与するため、従来の導電剤を用いた場合より電極
特性が優秀であり、非水電池系電極の高容量化が可能と
なり、その工業的価値は非常に大きい。
As described above, according to the present invention, a mixture of an inorganic compound that intercalates lithium ions and a conductive polymer is used for either the positive electrode or the negative electrode. Since the conductive polymer also contributes to the charge / discharge capacity, the electrode characteristics are excellent as compared with the case where the conventional conductive agent is used, the capacity of the nonaqueous battery system electrode can be increased, and its industrial value is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電池の構造構成を示す断面図である。FIG. 1 is a cross-sectional view showing a structural configuration of a battery of the present invention.

【図2】本発明電池の充放電特性図である。FIG. 2 is a charge / discharge characteristic diagram of the battery of the present invention.

【図3】本発明電池の他の実施例の充放電特性図であ
る。
FIG. 3 is a charge / discharge characteristic diagram of another example of the battery of the present invention.

【図4】本発明電池の更に他の実施例の充放電特性図で
ある。
FIG. 4 is a charge / discharge characteristic diagram of still another embodiment of the battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 Positive electrode 2 Negative electrode 3 Separator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極と非水電解液とを備えた非水
系電池において、上記正極、または負極のいずれか一方
に、リチウムイオンをインターカレートする無機化合物
と導電性ポリマーとの混合物を用いたことを特徴とする
非水系電池。
1. A non-aqueous battery comprising a positive electrode, a negative electrode and a non-aqueous electrolytic solution, wherein a mixture of an inorganic compound intercalating lithium ions and a conductive polymer is added to either the positive electrode or the negative electrode. A non-aqueous battery characterized by being used.
【請求項2】 前記導電性ポリマーの混合量が3重量部
から30重量部であることを特徴とする請求項1記載の
非水系電池。
2. The non-aqueous battery according to claim 1, wherein the amount of the conductive polymer mixed is 3 to 30 parts by weight.
JP3241942A 1991-09-20 1991-09-20 Nonaqueous type battery Pending JPH0582120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3241942A JPH0582120A (en) 1991-09-20 1991-09-20 Nonaqueous type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3241942A JPH0582120A (en) 1991-09-20 1991-09-20 Nonaqueous type battery

Publications (1)

Publication Number Publication Date
JPH0582120A true JPH0582120A (en) 1993-04-02

Family

ID=17081863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3241942A Pending JPH0582120A (en) 1991-09-20 1991-09-20 Nonaqueous type battery

Country Status (1)

Country Link
JP (1) JPH0582120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167403A (en) * 2015-03-10 2016-09-15 株式会社リコー Nonaqueous electrolyte power storage element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167403A (en) * 2015-03-10 2016-09-15 株式会社リコー Nonaqueous electrolyte power storage element

Similar Documents

Publication Publication Date Title
US5272022A (en) Non-aqueous electrolyte secondary battery
US6274271B1 (en) Non-aqueous electrolyte lithium secondary battery
KR100782868B1 (en) Charging method for charging nonaqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP2007179956A (en) Negative electrode and battery using same
KR20160091864A (en) Nonaqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH08115742A (en) Lithium secondary battery
JP3212639B2 (en) Non-aqueous solvent secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
USH1076H (en) Lithium ion rechargeable intercallation cell
WO2013061922A1 (en) Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JPH07211351A (en) Nonaqueous electrolyte for secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP4166295B2 (en) Non-aqueous electrolyte battery
JPH0696759A (en) Nonaqueous electrolytic secondary battery and manufacture of active material used therefor
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2002117903A (en) Nonaqueous electrolyte battery
JPH10144346A (en) Secondary battery containing nonaqueous solvent electrolytic solution
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JP2000077099A (en) Battery