JPH0577749B2 - - Google Patents

Info

Publication number
JPH0577749B2
JPH0577749B2 JP60161223A JP16122385A JPH0577749B2 JP H0577749 B2 JPH0577749 B2 JP H0577749B2 JP 60161223 A JP60161223 A JP 60161223A JP 16122385 A JP16122385 A JP 16122385A JP H0577749 B2 JPH0577749 B2 JP H0577749B2
Authority
JP
Japan
Prior art keywords
annealing
thickness
silicon steel
steel plate
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60161223A
Other languages
English (en)
Japanese (ja)
Other versions
JPS6223984A (ja
Inventor
Masao Iguchi
Isao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16122385A priority Critical patent/JPS6223984A/ja
Priority to DE8686301071T priority patent/DE3666229D1/de
Priority to EP86301071A priority patent/EP0193324B1/en
Priority to AU53747/86A priority patent/AU570835B2/en
Priority to CA000502337A priority patent/CA1297070C/en
Priority to DE8686904726T priority patent/DE3673290D1/de
Priority to EP86904726A priority patent/EP0215134B1/en
Priority to US06/907,734 priority patent/US4713123A/en
Priority to PCT/JP1986/000087 priority patent/WO1986004929A1/ja
Priority to US06/832,172 priority patent/US4698272A/en
Priority to KR1019860001259A priority patent/KR910006011B1/ko
Publication of JPS6223984A publication Critical patent/JPS6223984A/ja
Publication of JPH0577749B2 publication Critical patent/JPH0577749B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)
JP16122385A 1985-02-22 1985-07-23 一方向性珪素鋼板の磁歪の圧縮応力特性を改善する極薄張力被膜 Granted JPS6223984A (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP16122385A JPS6223984A (ja) 1985-07-23 1985-07-23 一方向性珪素鋼板の磁歪の圧縮応力特性を改善する極薄張力被膜
DE8686301071T DE3666229D1 (en) 1985-02-22 1986-02-17 Extra-low iron loss grain oriented silicon steel sheets
EP86301071A EP0193324B1 (en) 1985-02-22 1986-02-17 Extra-low iron loss grain oriented silicon steel sheets
AU53747/86A AU570835B2 (en) 1985-02-22 1986-02-19 Metal nitride/carbide coated grain oriented silicon steel sheet
CA000502337A CA1297070C (en) 1985-02-22 1986-02-20 Extra-low iron loss grain oriented silicon steel sheets
DE8686904726T DE3673290D1 (de) 1985-02-22 1986-02-21 Herstellungsverfahren fuer unidirektionale siliziumstahlplatte mit aussergewoehnlichem eisenverlust.
EP86904726A EP0215134B1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
US06/907,734 US4713123A (en) 1985-02-22 1986-02-21 Method of producing extra-low iron loss grain oriented silicon steel sheets
PCT/JP1986/000087 WO1986004929A1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
US06/832,172 US4698272A (en) 1985-02-22 1986-02-21 Extra-low iron loss grain oriented silicon steel sheets
KR1019860001259A KR910006011B1 (ko) 1985-02-22 1986-02-22 극저철손 결정 방향성 규소 강판

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16122385A JPS6223984A (ja) 1985-07-23 1985-07-23 一方向性珪素鋼板の磁歪の圧縮応力特性を改善する極薄張力被膜

Publications (2)

Publication Number Publication Date
JPS6223984A JPS6223984A (ja) 1987-01-31
JPH0577749B2 true JPH0577749B2 (da) 1993-10-27

Family

ID=15730964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16122385A Granted JPS6223984A (ja) 1985-02-22 1985-07-23 一方向性珪素鋼板の磁歪の圧縮応力特性を改善する極薄張力被膜

Country Status (1)

Country Link
JP (1) JPS6223984A (da)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003236311A1 (en) * 2002-03-28 2003-10-27 Nippon Steel Corporation Directional hot rolled magnetic steel sheet or strip with extremely high adherence to coating and process for producing the same
JP4635457B2 (ja) * 2004-02-27 2011-02-23 Jfeスチール株式会社 クロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜を有する方向性電磁鋼板およびクロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜の被成方法。
DE102013208617A1 (de) * 2013-05-10 2014-11-13 Siemens Aktiengesellschaft Elektroblech mit einer die elektrische Isolation verbessernden Schicht und Verfahren zu dessen Herstellung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144419A (en) * 1977-05-23 1978-12-15 Kawasaki Steel Co Method of making one directional silicon steel plate with extremely low core loss

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144419A (en) * 1977-05-23 1978-12-15 Kawasaki Steel Co Method of making one directional silicon steel plate with extremely low core loss

Also Published As

Publication number Publication date
JPS6223984A (ja) 1987-01-31

Similar Documents

Publication Publication Date Title
JPS63186826A (ja) 超低鉄損一方向性珪素鋼板の製造方法
JPS60131976A (ja) 鉄損特性に優れた一方向性けい素鋼板の製造方法
JPS6335684B2 (da)
JPS6332849B2 (da)
JPH0577749B2 (da)
JPH0220710B2 (da)
JPS637333A (ja) グラス皮膜特性のすぐれた低鉄損方向性電磁鋼板の製造方法
JPS6354767B2 (da)
JPH075973B2 (ja) 超低鉄損一方向性けい素鋼板の製造方法
JPH11310882A (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JPS6269501A (ja) 低鉄損一方向性けい素鋼板の製造方法
JPS6332850B2 (da)
JPH11243005A (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JPS62290844A (ja) 超低鉄損一方向性けい素鋼板
JPH0413426B2 (da)
JPS6396218A (ja) 超低鉄損一方向性珪素鋼板の製造方法
JPH01159322A (ja) 超低鉄損一方向性珪素鋼板の製造方法
JPH0374486B2 (da)
JPS63278209A (ja) 熱安定性、超低鉄損一方向性けい素鋼板
JPH0337844B2 (da)
JPH0699823B2 (ja) 超低鉄損一方向性珪素鋼板の製造方法
JPS6229107A (ja) 超低鉄損一方向性珪素鋼板の製造方法
JPS6358805A (ja) 鉄損の低い方向性けい素鋼板
JPH0374488B2 (da)
JPS6270520A (ja) 超低鉄損一方向性けい素鋼板の製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees