JPH0575824B2 - - Google Patents

Info

Publication number
JPH0575824B2
JPH0575824B2 JP63114000A JP11400088A JPH0575824B2 JP H0575824 B2 JPH0575824 B2 JP H0575824B2 JP 63114000 A JP63114000 A JP 63114000A JP 11400088 A JP11400088 A JP 11400088A JP H0575824 B2 JPH0575824 B2 JP H0575824B2
Authority
JP
Japan
Prior art keywords
powder
metal
ceramic
composite
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63114000A
Other languages
Japanese (ja)
Other versions
JPH01287263A (en
Inventor
Kimiko Sakata
Yoshinaga Takayama
Takamasa Tanaka
Masaaki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Machinery Co Ltd
Original Assignee
Nara Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Machinery Co Ltd filed Critical Nara Machinery Co Ltd
Priority to JP11400088A priority Critical patent/JPH01287263A/en
Publication of JPH01287263A publication Critical patent/JPH01287263A/en
Publication of JPH0575824B2 publication Critical patent/JPH0575824B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、金属とセラミツクスとの複合球形粉
体に関し、特に、母材金属にセラミツクス等の被
覆に際し、当該界面における接合性の向上あるい
は熱応力緩和を図る中間層形成用の金属粉体とセ
ラミツクス粉体の複合化溶射粉体及びその製造法
に関する。 〔従来技術及び発明が解決しようとする課題〕 従来から金属材料にセラミツクスを被覆するこ
とによつて、その母材となる金属材料が有する延
性あるいは靱性等の特性に断熱性、耐熱性、耐摩
耗性および耐食性等を付加し、機械的に優れた複
合材料を作成する試みが各方面で注目され、種々
の接合体及び溶射方法が開発されている。 中でもセラミツクスの溶射法にみられる従来の
表面被覆法は、単に機械的な噛合いであつたり、
その接合面で反応層を形成するにしても材料の特
性を十分に配慮していないため、その組み合わせ
によつて熱膨張係数の差が大きく、境界面に熱的
応力歪が発生し、本質的な接合性の解決法にはな
らなかつた。 そこで母材金属と被覆セラミツクスとの接合強
度の向上を図るために、金属材料と被覆セラミツ
クスとの間に酸化物と前記金属主成分粉末を混合
した複合体である中間層を介在させることによ
り、前記欠点を解決する方法が考案された(例え
ば特開昭62−222052)。この方法では、前記金属
材料と中間層との界面では、前記金属と中間層中
に存する同種金属の合体により、あるいは接合さ
せる金属と中間層中に存する金属が異種である場
合には、界面に強度を考慮した金属間化合物を形
成させることにより接合させ、一方前記中間層と
被覆セラミツクス材の界面では反応層及び投錨効
果により接合強度の大きい中間層の組成が選択さ
れている。 このような接合強度の向上に寄与する当該中間
層を形成するための溶射処理方法をみると、母材
金属表面に二種以上の混合粉体を溶射ノズル先端
に混合しながら供給する混合溶射法と、中間層を
形成する複数の溶射粉体を個別に溶射ノズル先端
に供給する個別溶射法がある。 しかし、前者の場合には供給源における混合粉
体の比重差や粒径差などにより偏析を生じやす
く、又、後者にあつては粉体の材質や粒度、形状
等による流動度の相違(特に、セラミツクス粉体
単独では流動性が極端に悪い)により溶射供給ノ
ズルへの所望の配合比を確保できず、定量的な前
記複合中間層を形成することが出来なかつた。 そこで、本発明は、このような欠点を解決する
ため、金属粉体にセラミツクス粉体を機械的衝撃
手段により、気流中において固定化及び球体化
し、その際に両粉体界面に拡散層を形成すること
により複合粉体の成分を所定の配合比に確保した
流動性に優れた中間層形成用複合化溶射粉体及び
その製造法を提供することを目的とする。 〔課題を解決するための手段及び作用〕 上記目的を達成するために、前記中間層を形成
する複数の溶射粉体の供給源における偏析、ある
いは各々の粉体の流動性の相異による配合比の変
動を除去するために、あらかじめ、中間層を構成
する所定量比の所定成分の粉体を選択し、形状に
こだわらない(以下「不定形粉」という)主成分
金属粉体の表面にセラミツクス微細粒子を付着さ
せ、当該付着複合粉体でに多数の衝撃ピンを有す
る回転盤等により気流中で連続して打撃作用を与
えることにより(以下「機械的衝撃手段という」
倒えば特開昭62−221434)、球体化すると同時に
主成分金属粉体にセラミツクス粉体を固定化し、
金属粉体とセラミツクス粉体の界面に拡散層を形
成した複合球形粉体及びその製造法を提供するも
のである。あるいは又、予め球形化した主成分金
属表面に前記と同様に所定量比のセラミツクス粉
体を付着させた後、気流中において、機械的衝撃
手段により主成分金属粉体にセラミツクス粉体を
固定化し拡散層を形成した複合粉体及びその製造
法を提供するものである。 〔作用〕 上記のように構成された複合球形粉体によれ
ば、母材金属と異種被覆材との接合性の向上や熱
応力緩和を企図する種々採択された主成分金属粉
体とセラミツクス粉体による複合体の所望の配合
比を確保することが出来る。これは母材金属の主
成分粉体に被覆材の微細粉体を予め所定量比に固
定化し、拡散層を形成することにより単なる混合
粉体の場合に生じやすい分離や偏析あるいは、個
別粉体の流動性の相異による配合比の変動が解消
されることを利用している。 又、該複合化溶射粉体は主成分金属粉体にセラ
ミツクス粉体を付着させた複合粉体を機械的衝撃
手段により、該複合粉体個々の表面に衝撃、打撃
作用を与え、強制的に固定化するいわゆる乾式方
法により製造できる。 更に、当該粉体の拡散層は、前記複合粉体が分
離あるいは、剥離を防止し強固に接合されている
ため、溶射処理された中間層としての接合性にも
寄与し、所望の中間層が提供できる。 又、不定形粉体を母材金属主成分粉体に選択す
ることにより、成分の配合比を自由に選択できる
とともに従来の個別に行われてきた球体化工程と
固定化工程を同時に行うことにより、安価で接合
強度及び流動性に優れた中間層形成用複合化溶射
粉体及びその製造法を提供することができる。 〔実施例〕 以下、本発明による金属粉体とセラミツクス粉
体の複合球形粉体及びその製造法を詳細に説明す
る。 本発明による粉体は、母材となる金属材料を主
成分とした金属粉体に酸化物粉あるいは被覆セラ
ミツクス主成分粉末を固定化した中間層形成用複
合化溶射粉体であり、該粉体を用いて金属材料表
面に溶射する事によつて均一な中間層を形成し、
この界面(母材金属/中間層)では、前記中間層
中に存する同種金属同士の合体により、あるいは
異種金属間の場合には金属間化合物を形成する事
によつて合体される。 更に、該中間層(溶射下地)が溶射された金属
材料上に被覆セラミツクス粉を溶射し、複合化中
間層/被覆セラミツクスの界面では化学反応層の
生成及び投錨効果を用いる事によつて接合性のよ
い金属のセラミツクス被覆体を形成するものであ
る。母材となる金属材料は特に限定しないが、例
えば鉄系材料(SUS、耐熱鋼等)、非鉄系材料
(AI合金、Cu合金等)、耐熱性金属材料であり、
所定の機能を有する様に溶射下地処理される複合
化中間層は、例えば母材金属の主成分金属(Al
合金)にイツトリア(Y2O30.1〜20mol%)単独
若しくは、イツトリアと被覆用セラミツクス成分
の一部を添加したもの、あるいは母材金属の主成
分に低級酸化物を添加したもの(この場合は非鉄
系材料を含まない)、あるいは活性金属(Ti、
Nb、AI、Cu等)にイツトリア単独もしくはイツ
トリアとセラミツクス成分の一部を添加したもの
から、母材金属及び被覆セラミツクスを考慮して
選択され、前記加工処理をした表面に所定条件で
溶射する。 この様に選択された中間層用の複合化溶射粉体
を製造するには、例えば、次の2つの方法があ
る。 (1) 主成分金属粉体として不定形粉を用い、その
表面にセラミツクス粉体を付着させた複合化粉
を作り、機械的衝撃手段により、該複合粉体を
球体化すると同時に、金属粉体の表面や内部に
セラミツクス粉体を固定化させて、当該界面に
拡散層を形成した複合化溶射粉体を製造する方
法と (2) 主成分金属粉体として球体化粒子を用い、そ
の表面にセラミツクス粉体を付着させた複合化
粉を作り、機械的衝撃手段により主成分金属表
面にセラミツクス粉を固定化させて当該界面に
拡散層を形成した複合化溶射粉体を製造する方
法 との2つの方法がある。第1図は上記の製造方法
を示す概念図である。不定形粉を用いる場合は、
球形粉に比べその表面積が大きいのでセラミツク
ス粉の配合比の幅を広げることができる。第2図
は、本発明の複合化粉体を製造するための機械的
衝撃手段の一実施例を示すものであり、衝撃打撃
手段を有する装置(以下「粉体衝撃装置」とい
う)である。該粉体衝撃装置は、1ケーシング、
2ステーター、3はケーシング1内にあつて高速
回転する回転盤、4は回転盤3の外周に放射状に
周設された複数の衝撃ピン(ブレード)、5は一
端がステーター2の内壁の一部に開口し、他端が
回転盤3の中心部付近に開口して閉回路を形成す
る循環回路、6は原料投入口、7はステーターの
一部を切り欠いて設けた処理粉体排出用の開閉弁
で構成されている。運転は回分運転であり、混合
機等で主成分金属粉体表面に所定の配合比量のセ
ラミツクス粉体を付着させた複合粉体は、投入口
6より機内に投入され、高速で回転する回転盤3
の作用により分散されながら、回転盤外周方向に
運ばれ、衝撃ピン4やステーター2により衝撃作
用を受け、回転盤3の回転によつて発生する高速
気流に同伴して、さらに外周部より循環回路5を
通り、再び機内に投入され、同じ作用をくり返し
受けることにより短時間で均一な固定化及び球体
化が行われ、排出口7を開け処理品を回収する。
このような衝撃打撃手段を有する粉体処理装置を
用いることにより主成分金属にセラミツクス粉体
を強固に固定化し、当該固定化された複合粉体が
球体化される。当該複合球形粉体は、固定化及び
球体化に際し、衝撃力により、主成分金属界面に
おいてセラミツクス粉体の拡散層を形成する。当
該拡散層は、個別の複合体を一体化するものであ
り、溶射処理に際し、分離あるいは剥離を防止す
るものであり、更に溶射後の中間層の接合性向上
に寄与するものである。 以下、本粉体処理装置を用いて製造した中間層
形成溶複合化溶射粉体の実施例を表1に示しさら
に説明する。 表1には複合化溶射粉体の組成、および製造す
るための運転処理条件、さらに製品の流動性を表
す1つの指標である流動度(JIS Z 2502「金属
粉の流動度試験法」)を示す。流動度は一定量の
粉体をオリフイスから流出するのに要する時間を
示す。従つて、流動度の小さい方が流動性がよ
い。非常に流動性の悪い場合はオリフイスから流
出しないので測定ができない場合がある。また流
動度は物質の比重に依存することが大きいので異
種物質間での比較は困難であるが、複合球体化処
理により、単独では流動しえない物質も流動性を
維持できる。なお、Al合金、SUS及びCuの不定
形品の流動度はそれぞれ測定不能、36,37で
あり、これらの金属粉末を球形化した球形粉体の
流動度は、それぞれ58,14,16であり、表
1に本件複合球形粉体の流動度とほぼ同一の値を
示す。これは、前記したように単独では流動しな
いセラミツクス粉体を複合球形化することによつ
て、単独の金属粉体の流動度まで向上したことを
示す。 第3図〜第9図は本発明の実施例による複合粉
体の写真図である。 実施例 1 以下、主成分金属の表面積を拡大してセラミツ
クスの量比を制御し易くした複合粉体の実施例で
ある。 この場合は不定形主成分金属粉に直接、適量の
セラミツクス粉体を混合した後、機械的衝撃手段
により球形化と複合化を同時に行い、工程の上で
も省力化される。 表1のT−1に主成分金属として平均粒形39μ
mの不定形Al合金粉体と、セラミツクスとして
平均粒形3.5μmY2O3粉体を5mol%混合して処理
したもので、この複合粉の流動度は56であり、流
動性にすぐれている事がわかる。 第3図aは原料として用いた不定形Al合金粉
のSEM像である。bは球形粉体外見の走査電顕
(SEM)像、cは複合球形粉体断面のSEM像で
ある。dは上記断面のX線のマイクロアナライザ
ー(EPMA)によるSEM像およびX線像である。
図にみられるようにY2O3は球形粉内部に巻き込
まれて固定化されている。Al合金粉とY2O3粉の
界面には拡散層が生成し強固に接合している。 Al合金丸棒上に当該複合粉体を下地溶射し、
更にPSZ粉体を溶射して接合強度を測定したとこ
ろ、4Kg/mm2以上の引つ張り強度が得られ、破断
は主として接着剤とPSZ表面との間で生じた。
Al合金粉Y2O3粉を単に混合したものより溶射性
および流動性(JIS Z 2502)ともに優れている
ことが判明した。 実施例 2 表1のT−2に主成分金属として平均粒径39μ
mの不定形Al合金粉と、セラミツクスとして平
均粒径1.9μmのZrO2と平均粒径3.5μmのY2O3
体を5mol%混合して処理したもので、この複合
粉体の流動度は54であつた。 第4図aおよびbに複合球形粉体の外見および
断面のSEM像を示す。 実施例 3 表1のT−3に主成分金属として平均粒径58μ
mの不定形SUS粉体と、セラミツクスとして平
均粒径3.5μmのY2O3粉体と平均粒径11.4μmの
Al2O3を約5mol%配合し、金属粉体と混合した後
処理したもので、この複合粉体の流動度は30であ
つた。 第5図aおよびbに複合球形粉体の外見および
断面のSEM像を示す。SUS粉体においてもAl合
金粉体にみられたのと同様なセラミツクスの巻き
込み作用が起こり、強固な複合化が生じている。 実施例 4 表1のT−4に主成分金属として平均粒径58μ
mの不定形SUS粉体と、セラミツクスとして部
分安定化ジルコニア(PSZ)粉体を4mol%混合
した後処理したもので、この複合粉体の流動性は
非常に良く流動度は17に向上した。 第6図aに複合球形粉体の外見のSEM像を示
す。 実施例 5 表1のT−5に主成分金属として平均粒径62μ
mの不定形銅粉体と、セラミツクスとして部分安
定化ジルコニア(PSZ)粉体を混合した後処理し
たもので、この複合粉体の流動度は14であつた。 第7図a複合球形粉体の外見のSEM像を示す。 実施例 6 表1のT−6に主成分金属として平均粒径62μ
mの不定形銅粉体と、セラミツクスとして平均径
11.4μmのAl2O3を6.46mol%混合した後処理した
もので、この複合粉体の流動度は16であつた。 第8図aおよびbに複合球形粉体の外見および
断面のSEM像を示す。Cu粉体においてもAl合金
粉体にみられたのと同様なセラミツクスの巻き込
み作用が起こり、強固な複合化が生じている。 実施例 7 表1のT−7に示されるように、主成分金属と
して不定形状のAl合金粉体を予め球形化処理し
た平均粒径43μmのAl合金球形粉体を原料として
用いた。当該Al合金粉体に、平均粒径3.5μmの
Y2O3粉体を所定量比(4.5mol%)混合した後、
機械的衝撃手段を用いて回転盤外周速度100m/
s、処理時間6min.で処理した。この複合粉体処
理品外形及び断面のSEM像を第9図a,bに、
断面のSEM像およびX線像を第9図cに示す。
球形粉体の核がAl、外周がYおよびOで取り囲
み、Al合金粉とY2O3粉の複合化が成立している
様子がみられる。Al核の外周とY2O3との間に実
施例1同様AlとY2O3の拡散現象が観察され、Al
合金上にY2O3が強固に接合していることが判明
した。 当該複合粉体の流動度は表1に示されるように
57の値をもち、流動性のように粉体であることが
判明した。従来のセラミツクス個別粉体の流動度
はPSZ(造粒品)を除いて測定ができず、よつて
個別溶射法にあつては本発明による流動性にすぐ
れた複合粉体が提供できなかつた。 その他、主成分金属(比鉄系金属を除く)粉体
と低級酸化物(例えばFeO等)あるいは活性金属
(Ti、Nb等)とイツトリアを混合し、機械的衝
撃手段で複合粉体を作製するときも、主成分金属
と酸化物間に拡散および巻き込み現象が生じ、強
固に接合し、流動性の優れた複合粉体を得ること
が判明した。 活性金属とイツトリアの複合粉体は、炭化物系
(SiC等)および窒化物系(Si3O4等)セラミツク
スのように共有性結合の強い材料を被覆セラミツ
クスとして溶射するときの中間層(下地)に適し
ている。
[Industrial Application Field] The present invention relates to a composite spherical powder of metal and ceramics, and in particular, to forming an intermediate layer to improve bonding properties or alleviate thermal stress at the interface when coating a base metal with ceramics, etc. The present invention relates to a composite thermal spraying powder of metal powder and ceramic powder for use, and a method for producing the same. [Prior art and problems to be solved by the invention] Conventionally, by coating metal materials with ceramics, it has been possible to improve the properties of the base metal material such as ductility and toughness, as well as heat insulation, heat resistance, and wear resistance. Attempts to create mechanically superior composite materials with added properties such as strength and corrosion resistance have attracted attention in various fields, and various bonded bodies and thermal spraying methods have been developed. Among them, the conventional surface coating method seen in thermal spraying of ceramics is simply mechanical interlocking,
Even if a reaction layer is formed at the bonding surface, sufficient consideration is not given to the characteristics of the materials, and the combination of these results in large differences in thermal expansion coefficients, causing thermal stress and distortion at the interface, which is essentially This did not provide a solution to the problem of zygosity. Therefore, in order to improve the bonding strength between the base metal and the coating ceramic, an intermediate layer, which is a composite of an oxide and the metal-based powder, is interposed between the metal material and the coating ceramic. A method for solving the above-mentioned drawbacks has been devised (for example, Japanese Patent Application Laid-Open No. 62-222052). In this method, at the interface between the metal material and the intermediate layer, the metal and the metal of the same type existing in the intermediate layer are combined, or when the metal to be joined and the metal existing in the intermediate layer are different types, the interface is formed. Bonding is carried out by forming an intermetallic compound in consideration of strength, and on the other hand, a composition of the intermediate layer is selected that provides high bonding strength due to the reaction layer and anchoring effect at the interface between the intermediate layer and the coating ceramic material. Looking at the thermal spraying treatment methods for forming the intermediate layer that contributes to the improvement of bonding strength, there is a mixed thermal spraying method in which a mixed powder of two or more types is supplied onto the surface of the base metal while being mixed at the tip of a thermal spray nozzle. There is also an individual thermal spraying method in which a plurality of thermal spray powders forming an intermediate layer are individually supplied to the tip of a thermal spray nozzle. However, in the former case, segregation tends to occur due to differences in the specific gravity and particle size of the mixed powder at the supply source, and in the latter case, differences in fluidity due to the material, particle size, shape, etc. of the powder (especially , ceramic powder alone has extremely poor fluidity), it was not possible to secure the desired blending ratio to the thermal spray supply nozzle, and it was not possible to quantitatively form the composite intermediate layer. Therefore, in order to solve these drawbacks, the present invention immobilizes and spherizes ceramic powder onto metal powder in an air flow by mechanical impact means, and forms a diffusion layer at the interface of both powders. The object of the present invention is to provide a composite thermal sprayed powder for forming an intermediate layer with excellent fluidity in which the components of the composite powder are kept at a predetermined blending ratio, and a method for producing the same. [Means and effects for solving the problem] In order to achieve the above object, the mixing ratio due to segregation in the supply source of the plurality of thermal sprayed powders forming the intermediate layer or the difference in fluidity of each powder. In order to eliminate fluctuations in By attaching fine particles and applying a continuous impact action to the adhered composite powder in an air stream using a rotary disk or the like having a large number of impact pins (hereinafter referred to as "mechanical impact means")
JP-A No. 62-221434), at the same time as it becomes spherical, ceramic powder is immobilized on the main component metal powder,
The present invention provides a composite spherical powder in which a diffusion layer is formed at the interface between metal powder and ceramic powder, and a method for producing the same. Alternatively, after adhering a predetermined amount of ceramic powder to the surface of the main component metal, which has been sphericalized in advance, in the same manner as described above, the ceramic powder is fixed to the main component metal powder by mechanical impact means in an air flow. The present invention provides a composite powder in which a diffusion layer is formed and a method for producing the same. [Function] According to the composite spherical powder configured as described above, various selected main component metal powders and ceramic powders are used to improve the bondability between the base metal and the dissimilar coating material and to alleviate thermal stress. A desired blending ratio of the composite body can be secured. This fixes the fine powder of the coating material to the powder of the main component of the base metal in advance at a predetermined ratio and forms a diffusion layer. This takes advantage of the fact that fluctuations in the blending ratio due to differences in fluidity are eliminated. In addition, the composite thermal sprayed powder is made by applying an impact or striking action to the individual surfaces of the composite powder using mechanical impact means to force the composite powder, which is made by adhering ceramic powder to the main component metal powder. It can be produced by a so-called dry method of immobilization. Furthermore, the diffusion layer of the powder prevents the composite powder from separating or peeling and is firmly bonded, so it also contributes to the bonding properties of the thermally sprayed intermediate layer and allows the desired intermediate layer to be formed. Can be provided. In addition, by selecting amorphous powder as the base metal powder, it is possible to freely select the blending ratio of the components, and the spheroidization process and fixation process, which were conventionally performed separately, can be performed simultaneously. It is possible to provide a composite thermal sprayed powder for forming an intermediate layer that is inexpensive and has excellent bonding strength and fluidity, and a method for producing the same. [Example] Hereinafter, a composite spherical powder of metal powder and ceramic powder according to the present invention and a method for producing the same will be explained in detail. The powder according to the present invention is a composite thermal sprayed powder for forming an intermediate layer, in which an oxide powder or a coated ceramic main component powder is immobilized on a metal powder whose main component is a metal material as a base material. A uniform intermediate layer is formed by spraying onto the surface of the metal material using
At this interface (base metal/intermediate layer), metals of the same type existing in the intermediate layer are combined, or in the case of different metals, they are combined by forming an intermetallic compound. Furthermore, coating ceramic powder is thermally sprayed onto the metal material onto which the intermediate layer (sprayed base) has been thermally sprayed, and bondability is achieved by generating a chemical reaction layer and using the anchoring effect at the composite intermediate layer/coated ceramic interface. It forms a ceramic coating of metal with good quality. The metal material used as the base material is not particularly limited, but includes, for example, ferrous materials (SUS, heat-resistant steel, etc.), non-ferrous materials (AI alloy, Cu alloy, etc.), heat-resistant metal materials,
The composite intermediate layer, which is thermally sprayed to have a predetermined function, is made of, for example, the main component metal (Al) of the base metal.
Ittria (Y 2 O 3 0.1 to 20 mol%) alone or added to ittria and a part of the coating ceramic component, or added to the main component of the base metal with a lower oxide (in this case, (contains no non-ferrous materials) or active metals (Ti,
It is selected by considering the base metal and the coating ceramic, and is thermally sprayed under predetermined conditions on the processed surface. There are, for example, the following two methods for producing the composite thermal spray powder for the intermediate layer selected in this way. (1) Using amorphous powder as the main component metal powder and adhering ceramic powder to its surface, a composite powder is made, and at the same time, the composite powder is spheroidized by mechanical impact means, and at the same time, the metal powder is (2) A method of producing a composite thermal sprayed powder in which ceramic powder is immobilized on the surface or inside of the material to form a diffusion layer at the interface; and (2) spherical particles are used as the main component metal powder, 2. A method of producing a composite thermal sprayed powder in which a composite powder is made with ceramic powder attached, and the ceramic powder is immobilized on the surface of the main component metal by mechanical impact means to form a diffusion layer at the interface. There are two ways. FIG. 1 is a conceptual diagram showing the above manufacturing method. When using irregularly shaped powder,
Since it has a larger surface area than spherical powder, it is possible to widen the range of blending ratios of ceramic powder. FIG. 2 shows an embodiment of the mechanical impact means for producing the composite powder of the present invention, and is a device having the impact impact means (hereinafter referred to as "powder impact device"). The powder impact device includes one casing,
2 a stator, 3 a rotary disk that rotates at high speed within the casing 1, 4 a plurality of impact pins (blades) provided radially around the outer periphery of the rotary disk 3, and 5 one end of which is a part of the inner wall of the stator 2. 6 is a raw material input port, and 7 is a processing powder discharge port provided by cutting out a part of the stator. Consists of an on-off valve. The operation is a batch operation, and the composite powder, in which a predetermined blending ratio of ceramic powder is attached to the surface of the main component metal powder using a mixer, etc., is fed into the machine from the input port 6, and then the composite powder is fed into the machine through the input port 6, and then the composite powder is fed into the machine through the input port 6, and then Board 3
It is carried toward the outer circumference of the rotary disk while being dispersed by the effect of 5, and is put into the machine again and subjected to the same action repeatedly to be uniformly fixed and sphericalized in a short time, and the discharge port 7 is opened to collect the treated product.
By using a powder processing apparatus having such an impact means, the ceramic powder is firmly fixed to the main component metal, and the fixed composite powder is spheroidized. When the composite spherical powder is fixed and spheroidized, impact force forms a diffusion layer of ceramic powder at the main component metal interface. The diffusion layer integrates the individual composites, prevents them from separating or peeling during thermal spraying, and further contributes to improving the bondability of the intermediate layer after thermal spraying. Examples of intermediate layer-forming composite thermal spray powders produced using the present powder processing apparatus are shown in Table 1 and will be further described below. Table 1 shows the composition of the composite thermal spray powder, the operating treatment conditions for manufacturing, and the fluidity (JIS Z 2502 "Metal powder fluidity test method"), which is an indicator of the fluidity of the product. show. Flow rate indicates the time required for a given amount of powder to flow out of an orifice. Therefore, the lower the fluidity, the better the fluidity. If the fluidity is very poor, it may not flow out from the orifice and measurement may not be possible. Furthermore, since the fluidity largely depends on the specific gravity of the substance, it is difficult to compare different types of materials, but the composite spheroidization process allows substances that cannot flow alone to maintain fluidity. The flow rates of irregularly shaped products of Al alloy, SUS, and Cu are unmeasurable, 36, and 37, respectively, and the flow rates of spherical powder obtained by spheroidizing these metal powders are 58, 14, and 16, respectively. , Table 1 shows values that are almost the same as the fluidity of the present composite spherical powder. This shows that by making the ceramic powder, which does not flow by itself, into a composite spheroid as described above, the fluidity was improved to the level of that of the individual metal powder. 3 to 9 are photographs of composite powders according to examples of the present invention. Example 1 The following is an example of a composite powder in which the surface area of the main component metal is expanded to make it easier to control the amount ratio of ceramics. In this case, an appropriate amount of ceramic powder is directly mixed with the amorphous main component metal powder, and then spherical and composite are simultaneously performed by mechanical impact means, which saves labor in the process. T-1 in Table 1 has an average grain size of 39μ as the main component metal.
It is processed by mixing 5 mol% of amorphous Al alloy powder with a diameter of 1.2 mm and Y 2 O 3 powder with an average particle size of 3.5 μm as ceramics.The fluidity of this composite powder is 56, and it has excellent fluidity. I understand. Figure 3a is a SEM image of the amorphous Al alloy powder used as the raw material. b is a scanning electron microscopy (SEM) image of the appearance of the spherical powder, and c is a SEM image of the cross section of the composite spherical powder. d is an SEM image and an X-ray image of the above cross section taken by an X-ray microanalyzer (EPMA).
As seen in the figure, Y 2 O 3 is immobilized inside the spherical powder. A diffusion layer is formed at the interface between the Al alloy powder and the Y 2 O 3 powder, resulting in a strong bond. The composite powder is sprayed as a base onto an Al alloy round bar,
Furthermore, when PSZ powder was thermally sprayed and the joint strength was measured, a tensile strength of 4 kg/mm 2 or more was obtained, and the breakage mainly occurred between the adhesive and the PSZ surface.
It was found that both thermal sprayability and fluidity (JIS Z 2502) were superior to a simple mixture of Al alloy powder Y 2 O 3 powder. Example 2 T-2 in Table 1 has an average particle size of 39μ as the main component metal.
This composite powder is processed by mixing 5 mol% of amorphous Al alloy powder with 5 mol% of ZrO 2 with an average particle size of 1.9 μm and Y 2 O 3 powder with an average particle size of 3.5 μm as ceramics. was 54. Figures 4a and 4b show SEM images of the appearance and cross section of the composite spherical powder. Example 3 T-3 in Table 1 has an average particle size of 58μ as the main component metal.
m amorphous SUS powder, Y 2 O 3 powder with an average particle size of 3.5 μm as ceramics, and Y 2 O 3 powder with an average particle size of 11.4 μm as ceramics.
Approximately 5 mol% of Al 2 O 3 was mixed with metal powder and post-treated, and the fluidity of this composite powder was 30. Figures 5a and 5b show SEM images of the appearance and cross section of the composite spherical powder. In SUS powder, the same ceramic entrainment effect as seen in Al alloy powder occurs, resulting in a strong composite. Example 4 T-4 in Table 1 has an average particle size of 58μ as the main component metal.
The composite powder was post-treated by mixing 4 mol% of amorphous SUS powder with 4 mol% of partially stabilized zirconia (PSZ) powder as ceramics, and the fluidity of this composite powder was very good and the fluidity improved to 17. Figure 6a shows a SEM image of the appearance of the composite spherical powder. Example 5 T-5 in Table 1 has an average particle size of 62μ as the main component metal.
The composite powder had a fluidity of 14.m irregularly shaped copper powder was mixed with partially stabilized zirconia (PSZ) powder as ceramics, and the fluidity of this composite powder was 14. Figure 7a shows a SEM image of the appearance of the composite spherical powder. Example 6 T-6 in Table 1 has an average particle size of 62μ as the main component metal.
m amorphous copper powder and ceramics with an average diameter of
It was post-treated by mixing 6.46 mol% of Al 2 O 3 with a diameter of 11.4 μm, and the fluidity of this composite powder was 16. Figures 8a and 8b show SEM images of the appearance and cross section of the composite spherical powder. Ceramics entrainment similar to that observed in Al alloy powder occurs in Cu powder, resulting in a strong composite. Example 7 As shown in T-7 in Table 1, Al alloy spherical powder with an average particle diameter of 43 μm, which was obtained by previously spheroidizing irregularly shaped Al alloy powder as the main component metal, was used as the raw material. The Al alloy powder has an average particle size of 3.5 μm.
After mixing Y2O3 powder at a predetermined ratio ( 4.5mol %),
Rotating disk peripheral speed 100m/by using mechanical impact means
s, the treatment time was 6 min. SEM images of the external shape and cross section of this composite powder-treated product are shown in Figure 9 a and b.
A SEM image and an X-ray image of the cross section are shown in FIG. 9c.
The core of the spherical powder is surrounded by Al, the outer periphery is surrounded by Y and O, and it can be seen that a composite of Al alloy powder and Y 2 O 3 powder has been established. As in Example 1, a diffusion phenomenon of Al and Y 2 O 3 was observed between the outer periphery of the Al nucleus and Y 2 O 3 .
It was found that Y 2 O 3 was firmly bonded to the alloy. The fluidity of the composite powder is as shown in Table 1.
It had a value of 57 and was found to be a powder like fluid. The fluidity of conventional ceramic individual powders cannot be measured except for PSZ (granulated products), and therefore, the composite powder with excellent fluidity according to the present invention could not be provided by the individual thermal spraying method. Other methods include mixing main component metal (excluding ferrous metals) powder with lower oxides (e.g. FeO, etc.) or active metals (Ti, Nb, etc.) and ittria to produce composite powder using mechanical impact means. It was also found that diffusion and entrainment phenomena occur between the main component metal and the oxide, resulting in a strong bond and a composite powder with excellent fluidity. The composite powder of active metal and ittria is used as an intermediate layer (base) when materials with strong covalent bonds such as carbide (SiC, etc.) and nitride (Si 3 O 4 , etc.) ceramics are sprayed as coating ceramics. suitable for

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の金属粉体とセラミ
ツクス粉体の複合球形粉体及びその製造法によれ
ば、母材金属にセラミツクス等の異種被覆材を接
合した場合の接合性の向上や熱応力緩和を図るた
め、当該母材金属と被覆材に応じた中間層の複合
粉体を採択し、母材主成分金属粉体に微細酸化物
粉を機械的衝撃手段に固定化し、球体化し、その
際に界面に拡散層を形成したために、安定した成
分の配合比と、粉体としての適度な流動性を確保
でき、従来の溶射処理時に生じやすかつた閉塞、
分離、偏析などのトラブルをおこさない金属粉体
とセラミツクス粉体の複合球形粉体による中間層
形成用複合化溶射粉体及びその製造法を提供する
ことができる。 本出願人は、前記複合球形粉体による溶射被膜
の性能を評価するために、第10図に示すように
長さ10cm、幅5cm、厚さ0.6cmのAl基板(母材)
に、本発明あるいは市販の中間層形成用溶射粉体
を、さらにその上に市販のセラミツクスを、表2
に示した溶射条件でプラズマ溶射したサンプルを
つくり、表3に示した条件で加熱/冷却を繰り返
して、繰り返し耐熱衝撃性を測定した。第10図
において、8はAl基板、9は中間層、10はセ
ラミツクス層であり、溶射した中間層の厚さは
0.1mm、セラミツクス層の厚さは0.3mmで、幅及び
長さは中間層・セラミツクス層共各々5cmであ
る。 耐熱衝撃性試験に用いた装置を第11図に示し
た。第11図において、11は第10図に示した
中間層とセラミツクス層を溶射した、繰り返し耐
熱衝撃性測定用のサンプル、12はガスバーナ
ー、13は天然ガス流量調節用バルブ、14は酸
素流量調節用バルブ、15は溶射層冷却用の圧縮
空気配管、16は母材冷却用の圧縮空気配管、1
7はサンプルの温度を測定するためにAl基板の
裏面の溶射被較中芯部の穴に挿入されたK型熱電
対である。また、18は天然ガス供給源、19は
酸素供給源、20は冷却用の圧縮空気供給源であ
る。
As explained above, according to the composite spherical powder of metal powder and ceramic powder of the present invention and the method for producing the same, it is possible to improve bonding performance and to reduce thermal stress when a dissimilar coating material such as ceramics is bonded to a base metal. In order to alleviate the problem, we adopted a composite powder for the intermediate layer depending on the base metal and coating material, fixed fine oxide powder on the base metal main component metal powder using mechanical impact means, made it into a sphere, and By forming a diffusion layer at the interface during the process, it is possible to ensure a stable blending ratio of ingredients and appropriate fluidity as a powder, eliminating blockages that tend to occur during conventional thermal spraying.
It is possible to provide a composite thermal spray powder for forming an intermediate layer using a composite spherical powder of metal powder and ceramic powder that does not cause troubles such as separation and segregation, and a method for producing the same. In order to evaluate the performance of the thermal spray coating using the composite spherical powder, the present applicant prepared an Al substrate (base material) with a length of 10 cm, a width of 5 cm, and a thickness of 0.6 cm as shown in FIG.
Then, a thermal spray powder of the present invention or a commercially available intermediate layer forming powder was added, and a commercially available ceramic was added thereon as shown in Table 2.
Samples were prepared by plasma spraying under the thermal spraying conditions shown in Table 3, and repeatedly heated/cooled under the conditions shown in Table 3 to repeatedly measure thermal shock resistance. In Figure 10, 8 is an Al substrate, 9 is an intermediate layer, and 10 is a ceramic layer. The thickness of the sprayed intermediate layer is
The thickness of the ceramic layer is 0.3 mm, and the width and length of both the intermediate layer and the ceramic layer are 5 cm. The apparatus used for the thermal shock resistance test is shown in FIG. In FIG. 11, 11 is a sample for repeated thermal shock resistance measurement in which the intermediate layer and ceramic layer shown in FIG. 15 is a compressed air pipe for cooling the sprayed layer, 16 is a compressed air pipe for cooling the base material, 1
Reference numeral 7 denotes a K-type thermocouple inserted into a hole in the core of the thermal spraying target on the back side of the Al substrate to measure the temperature of the sample. Further, 18 is a natural gas supply source, 19 is an oxygen supply source, and 20 is a compressed air supply source for cooling.

【表】【table】

【表】 表4に耐熱衝撃性試験の結果を示した。 この試験には、表4に記載したように、中間層
用としイツトリアの配合比を変えた本発明の複合
化溶射粉体3種類と市販の不定形溶射粉体(造粒
品)、セラミツクス層用として市販の球形溶射粉
体(造粒品)を2種類用いた。この表において、
剥離までの熱冷サイクル繰り返し回数とは、溶射
被膜が剥離を開始するまで繰り返した熱冷サイク
ルの回数である。なお、この表に記載されている
数値は、同条件で2回行つた結果の平均値であ
る。 E−2、3、4においては、熱冷サイクルを
2000回繰り返しても溶射被膜の剥離は起こらなか
つた。 中間層に本発明の複合化溶射粉体を用いた場合
は、市販の中間層用溶射粉体を用いた場合、ある
いは中間層として何も溶射しなかつた場合に比べ
接合性が非常に良く、剥離までの熱冷サイクル繰
り返し回数は、市販の中間層用溶射粉体を用いた
場合および中間層としても何も溶射しなかつた場
合の3倍〜7倍以上であつた。 このように、中間層(溶射下地)に母材主成分
金属粉体にセラミツクス粉体を機械的衝撃手段に
より、強制的に固定化された中間層形成用複合化
溶射粉体を溶射することにより、熱応力を緩和
し、セラミツクスの接合性を非常に向上させるこ
とができた。
[Table] Table 4 shows the results of the thermal shock resistance test. As shown in Table 4, three types of composite thermal spray powder of the present invention for the intermediate layer with different blending ratios of yttoria, a commercially available amorphous thermal spray powder (granulated product), and a ceramic layer were used. Two types of commercially available spherical thermal spray powders (granulated products) were used. In this table,
The number of times the heat-cooling cycle is repeated until peeling is the number of times the heat-cooling cycle is repeated until the sprayed coating starts peeling off. The numerical values listed in this table are the average values of the results obtained twice under the same conditions. In E-2, 3, and 4, the heat/cool cycle is
The sprayed coating did not peel off even after 2000 repetitions. When the composite thermal sprayed powder of the present invention is used for the intermediate layer, the bondability is much better than when a commercially available intermediate layer thermal sprayed powder is used, or when nothing is thermally sprayed as the intermediate layer. The number of repetitions of heating and cooling cycles until peeling was 3 to 7 times more than when a commercially available intermediate layer thermal spray powder was used and when no intermediate layer was thermally sprayed. In this way, by thermally spraying the composite thermal spraying powder for forming the intermediate layer, which is forcibly fixed on the intermediate layer (thermal spraying base) by mechanically impacting the base metal powder and the ceramic powder. , it was possible to alleviate thermal stress and greatly improve the bonding properties of ceramics.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合化溶射粉体を製造する概念図で1
aは不定形金属粉体、2aは球形金属粉体、1b
および2bはセラミツクス粉体、1cおよび2c
は金属粉体にセラミツクス粉体を付着させた複合
粉体1dおよび2dは金属粉体にセラミツクス粉
体を強固に固定化した状態を表す。第2図は中間
層形成用複合化溶射粉体を製造するために用いた
一実施例である衝撃打撃手段を有する粉体衝撃装
置。第3図〜第9図は表1の実施例に基づく複合
化溶射粉体の粒子構造写真およびX線写真を示
し、第3図aは不定形Al合金原料粉の粒子構造
写真、第3図bおよび第4図〜第9図aは複合処
理した粒子構造写真、第3図c、第4図b、第5
図b、第8図bおよび第9図bは粒子構造写真の
断面図である。又、第3図dは、第9図cはX線
写真で左上の記号Yはイツトリウム、Oは酸素、
Alはアルミニウムの成分を示す。第10図は本
発明の効果を確認するための溶射被膜を形成した
サンプルを示し、第11図は当該サンプルの耐熱
衝撃性試験に用いた装置を示す。 符号の説明、1……ケーシング、2……ステー
ター、3……回転盤、4……衝撃ピン(ブレー
ド)、5……循環回路、6……原料投入口、7…
…処理粉体、8……Al基板、9……中間層、1
0……セラミツクス層、11……サンプル、12
……ガスバーナー、15,16……冷却用の圧縮
空気配管、17……K型熱電対、18……天然ガ
ス供給源、19……酸素供給源、20……圧縮空
気供給源。
Figure 1 is a conceptual diagram of manufacturing composite thermal spray powder.
a is amorphous metal powder, 2a is spherical metal powder, 1b
and 2b are ceramic powders, 1c and 2c
Composite powders 1d and 2d, in which ceramic powder is adhered to metal powder, represent states in which ceramic powder is firmly fixed to metal powder. FIG. 2 shows a powder impacting device having an impact impacting means, which is an embodiment used for producing a composite thermal sprayed powder for forming an intermediate layer. Figures 3 to 9 show photographs and X-ray photographs of the particle structure of the composite sprayed powder based on the examples in Table 1, and Figure 3a shows a photograph of the particle structure of the amorphous Al alloy raw material powder. b and Fig. 4 to Fig. 9 a are photographs of the particle structure after composite processing; Fig. 3 c, Fig. 4 b, and Fig. 5
FIG. b, FIG. 8b, and FIG. 9b are cross-sectional views of grain structure photographs. In addition, Fig. 3 d and Fig. 9 c are X-ray photographs, and the symbol Y in the upper left is yttrium, O is oxygen,
Al indicates the aluminum component. FIG. 10 shows a sample on which a sprayed coating was formed to confirm the effects of the present invention, and FIG. 11 shows an apparatus used for a thermal shock resistance test of the sample. Explanation of symbols, 1...Casing, 2...Stator, 3...Rotary disk, 4...Impact pin (blade), 5...Circulation circuit, 6...Raw material input port, 7...
...Treatment powder, 8...Al substrate, 9...Intermediate layer, 1
0...Ceramics layer, 11...Sample, 12
... Gas burner, 15, 16 ... Compressed air piping for cooling, 17 ... K type thermocouple, 18 ... Natural gas supply source, 19 ... Oxygen supply source, 20 ... Compressed air supply source.

Claims (1)

【特許請求の範囲】 1 金属母材の主成分金属粉体とセラミツクス粉
体の混合粉体を、気流中に分散した状態で機械的
衝撃作用を繰り返すことにより得られる、球形化
された金属粉体とセラミツクス粉体の中間層形成
用複合化溶射粉体。 2 前記主成分金属粉体は、鉄系材料、非鉄合金
材料、耐熱性金属材料、または活性金属である請
求項1に記載の金属粉体とセラミツクス粉体の中
間層形成用複合化溶射粉体。 3 前記セラミツクス粉体は、イツトリア
(Y2O30.1〜20mol%)、イツトリアと被覆セラミ
ツクスの混合粉体、部分安定化ジルコニア
(PSZ0.1〜20mol%)、アルミナ(Al2O30.1〜
20mol%)、または低級酸化物(1〜80mol%)
である請求項1に記載の金属粉体とセラミツクス
粉体の中間層形成用複合化溶射粉体。 4 不定形若しくは球状の金属粉体と予め定めら
れた量比のセラミツクス粉体とからなる混合粉体
を、気流中に分散させた状態で機械的衝撃作用を
繰り返して与えることにより、前記金属粉体の表
面への前記セラミツクス粉体の固定化と球状化を
同時に行なう、金属粉体とセラミツクス粉体の中
間層形成用複合化溶射粉体の製造方法。 5 不定形若しくは球状の金属粉体の表面に予め
セラミツクス粉体を付着させ、それを気流中に分
散させた状態で機械的衝撃作用を繰り返して与え
ることにより、前記金属粉体の表面への前記セラ
ミツクス粉体の固定化と球状化を同時に行なう、
金属粉体とセラミツクス粉体の中間層形成用複合
化溶射粉体の製造方法。
[Claims] 1. A spherical metal powder obtained by repeatedly subjecting a mixed powder of metal powder and ceramic powder, which are the main components of a metal base material, to a mechanical impact while being dispersed in an air flow. Composite thermal spray powder for forming an intermediate layer between ceramic powder and ceramic powder. 2. The composite thermal sprayed powder for forming an intermediate layer of metal powder and ceramic powder according to claim 1, wherein the main component metal powder is a ferrous material, a non-ferrous alloy material, a heat-resistant metal material, or an active metal. . 3 The ceramic powder includes yttoria (Y 2 O 3 0.1 to 20 mol%), a mixed powder of yttoria and coated ceramics, partially stabilized zirconia (PSZ 0.1 to 20 mol%), and alumina (Al 2 O 3 0.1 to 20 mol%).
20mol%) or lower oxides (1 to 80mol%)
The composite thermal sprayed powder for forming an intermediate layer of metal powder and ceramic powder according to claim 1. 4 A mixed powder consisting of an amorphous or spherical metal powder and a predetermined ratio of ceramic powder is dispersed in an air stream and repeatedly subjected to mechanical impact, whereby the metal powder is A method for producing a composite thermal sprayed powder for forming an intermediate layer of metal powder and ceramic powder, which simultaneously immobilizes the ceramic powder on the surface of a body and spheroidizes the ceramic powder. 5. By attaching ceramic powder in advance to the surface of an amorphous or spherical metal powder, and repeatedly applying a mechanical impact action while dispersing it in an air flow, Simultaneously fixes and spheroidizes ceramic powder.
A method for producing a composite thermal spray powder for forming an intermediate layer of metal powder and ceramic powder.
JP11400088A 1988-05-11 1988-05-11 Thermal spraying powder combined with metal powder and ceramic powder for intermediate layer between metal and ceramic and its production Granted JPH01287263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11400088A JPH01287263A (en) 1988-05-11 1988-05-11 Thermal spraying powder combined with metal powder and ceramic powder for intermediate layer between metal and ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11400088A JPH01287263A (en) 1988-05-11 1988-05-11 Thermal spraying powder combined with metal powder and ceramic powder for intermediate layer between metal and ceramic and its production

Publications (2)

Publication Number Publication Date
JPH01287263A JPH01287263A (en) 1989-11-17
JPH0575824B2 true JPH0575824B2 (en) 1993-10-21

Family

ID=14626555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11400088A Granted JPH01287263A (en) 1988-05-11 1988-05-11 Thermal spraying powder combined with metal powder and ceramic powder for intermediate layer between metal and ceramic and its production

Country Status (1)

Country Link
JP (1) JPH01287263A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304146B6 (en) * 2009-05-18 2013-11-20 Ústav fyziky plazmatu Process for preparing multilayer ceramic coating and multilayer ceramic coating prepared in such a manner
CN112725716B (en) * 2020-12-23 2022-05-10 中国兵器工业第五九研究所 Core-shell structure ceramic composite powder for thermal spraying and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946460A (en) * 1972-09-05 1974-05-04
JPS5146740A (en) * 1974-10-18 1976-04-21 Hitachi Ltd Kukichowakino dosaseigyosochi
JPS55152103A (en) * 1979-05-17 1980-11-27 Nippon Tungsten Co Ltd Heat-resistant zirconium oxide-base cermet powder and manufacture of the same
JPS5887267A (en) * 1981-11-11 1983-05-25 ベ−バ−ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボバリ・ウント・シ− High temperature protective layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946460A (en) * 1972-09-05 1974-05-04
JPS5146740A (en) * 1974-10-18 1976-04-21 Hitachi Ltd Kukichowakino dosaseigyosochi
JPS55152103A (en) * 1979-05-17 1980-11-27 Nippon Tungsten Co Ltd Heat-resistant zirconium oxide-base cermet powder and manufacture of the same
JPS5887267A (en) * 1981-11-11 1983-05-25 ベ−バ−ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボバリ・ウント・シ− High temperature protective layer

Also Published As

Publication number Publication date
JPH01287263A (en) 1989-11-17

Similar Documents

Publication Publication Date Title
US4911987A (en) Metal/ceramic or ceramic/ceramic bonded structure
EP1942209B1 (en) Cold sprayed metal matrix composites
JP2008540822A (en) Coating method and coated product on substrate surface
JPS58171502A (en) Pulverized composite powder of ceramic and metal
WO2013176058A1 (en) Cermet powder
CN104862695A (en) Composite coating and titanium-alloy-based composite material and manufacturing method of composite coating and titanium-alloy-based composite material
JP2002004027A (en) Mixed powder thermal spraying method
JPH0575824B2 (en)
CN109266950A (en) Cubic boron nitride enhances steel-based composite material and preparation method thereof
CN106346169B (en) Paste solder, preparation method and the application of diamond are brazed in air
JPS58171550A (en) Grain dispersion type composite material and its manufacture
JPH11286768A (en) Wear resistant coating material and wear resistant-coating method
JP2020180348A (en) Powder for cold spray and coating formation method
JPH0128828B2 (en)
JPS62177183A (en) Method for forming metallic lining on inside surface of metallic pipe or the like
JP2011208165A (en) Film material for cold spray and method for producing the same
JPS61104036A (en) Manufacture of composite sintered body consisting of ceramic and metal
Atarashiya et al. Functionally Gradient Material of the System Ni‐Mgo, Ni‐Nio, Ni‐Si3N4 OR A1‐Ain, by Pressureless Sintering
JP2640234B2 (en) Oxide spray material
JPS5939505B2 (en) Tuyere surface treatment method
Zhao et al. Feasibility Study of Brazing Aluminium Alloys Through Pre‐Deposition of a Braze Alloy by Cold Spray Process
JPS60177172A (en) Powder for spraying
JPH01306533A (en) Production of composite material of intermetallic compound
JPH0639500A (en) Continuous casting mold lined with complex body and complex body thereof
JPS6017002A (en) Production of composite metallic micro-ball